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Abstract. This papcr analyzes th c  stability of linoar, lum ped , quadratic , and  cubic spatial 
interpolation íunctions in íinitcclcmcnt onc-dimcnsional kỉnematic wavcschcmes for simuỉation of 
rainfall-runoff proccsscs. G alerk in 's  rcsidual m cthod  transfo rm s thc k incm atic vvave partial 
diíícrential cquations into a systcm of ordinary diffcrential equations. l*hc stability of this system is 
analyxed using  thc dcíinition of the norm  of vectors and  matrices. The  s tability  index, or singularity 
of tho system , is com pu ted  by thc S ingular Valuc Decomposition algorithm . T he oscillation of thc 
solution of the íinite clemcnt onc-đimcnsỉonnl kỉncmatic wave schcmcs rcsults both from thc 
sources, and from  thc m ultip lỉcatỉon  operator of osciỉlation. The resu lts of com putatỉon  cxpcrim cnt 
and analysis show thc advantagc and disadvantage of diffcrcnt typcs of spatial intcrpoỉntion 
functỉons w hcn r i ;.M is app lied  for rainfall- runoff m odeling by  kincm atic w avc cquations.

Keyiuordti: Rainfall-runoff; Kincniatic wave; Spatial interpolatíon functions; Singular valuc decomposition; 
Stability indcx.

1. Introduction

The need for tools which havc capability 
of simulating iníluencc of spatial distribution 
of ramíall and land  usc change on runoff 
processes initiated thc devclopm cnt of 
hydrodynam ic rainfall-runoff modols [1, 8]. 
One of the basic assum ptions for such m odcls 
regards thc cxistcncc of a continuous layer of 
vvatcr moving over the w holc suríace of the 
catchinents. A lthough observations show  that 
such conditions are rare, the assum ption can
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be relaxed by considering the total flow to be 
the result of thc flow from m any small plots 
draừũng into a fine netw ork of small channels.

The actual physical flow processcs m ay be 
quite com plicated, but for practical ptưposes 
thcrc is nothing to be gained írom 
in trodudng  comploxity into thc models. As a 
com m on vvay of getting optim al results, thc 
onc-dim cnsional kinem atic w ave models [2, 
5, 8, 11] are often sclccted. Thcse can be 
solved by differcnt m cthods, onc of vvhich is 
the finite clem cnt m cthod (FEM) which is 
analyzod in this papor.

Tho FEM m odcls are normally dorivcd by 
the vveighted residuals m cthod, vvhich is
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bascd on the principlc that the solution 
residuals should be orthogonal to a set of 
vveighting íunctions [7]:

\fì\(h )~  f ) W  = 0 ,
Q

where:
- 9Ĩ (h) = / :  partial differential equation of h;

■ h * Ẹa A' : estim ated solution;
/

- w, : sot of wGightúìg íunctions;
- N, : functior»s of spatial ordinate;
- fl, : íunctions of từne.
According to Pcyrot and Taylor Ị9], the 

vveighted residual m ethod is a general and 
effective tochnique for transíorm ing partial 
diffcrcntial equations (PDE) into systoms of 
ordinary differential equations (ODE). Whon 
hl,al and Nl are íunctions deíined on a 
spatial intorval (clemcnt) the m ethod is called 
FEM. Tho spocial case of w eighting íunctions 
Wt = N' is callcd G alerkin's residual FEM and 
it is oíten uscd for solving one-dimensional 
kincmatic vvave rainfall-runoff models.

The num erical solutions of tho íinite 
element schemos for overland flow and 
groundw a(er flow in onc dimonsional 
kincmatic w avc rainfall-runoff modcls may 
oíten run into problem s with stability and 
accuracy duc to oscillation of tho solution. 
The scheme m ay be considered stable whcn 
small disturbance arc not allowcd to grow in 
thc numcrical proccdure. The reasons for 
oscillation of the Galerkin's FEM m cthod for 
kincmatic vvave cquations havo boen 
discussed by Jaber and M ohtar [5].

One im portant íactor which inAucnccs thc 
stability charactoristics of tho m ethod is tho 
choice of spatial interpolation íunction. Jaber 
and M ohlar [5] usod linear, lum ped and 
upvvừid schcm es for spatial approximation 
and the enhanccd explicit scheme for 
temporal discretization. Thcy analy /cd  the 
stability of diííercnt schcmes through Fourier

analysis and concluded that the lum ped 
scheme is the m ost suitablo for solution of 
kinomatic vvave equations.

Blandíord ct al [2] investigated lincar, 
quadratic, and cubic Lnterpolation íunctions 
for sim ulation of one-dim cnsional kinem atic 
vvave by FEM and íound that quadratic 
elemonts produced thc m ost accuratc solution 
w hen tho ừnplicit interaction proccdure vvas 
usod for tomporal discretixation.

The rosults of these researches and tho 
m athem atical implication of Galorkin's FEM 
shovv that the stability and accuracy of tho 
íinite clcm ent schcmes does not only dopend 
on thc typc of spatial intcrpolation íunctions, 
but also on tho tem poral intogration of tho 
systom of ODE occurring vvhcn FEM is 
applied for overland flow kinomatic w ave 
and groundvvater Boussinesq equations.

In the vvorks citcd abovc, the numerical 
schcmes have bcon bascd on cqui-distant 
spatial elcmcnts. in practical applications, it is 
often necessary to use elem cnts of different 
size, wherc thc discrcti/ation reílects iho 
variation of physical propertios of the channol 
or thc catchm ents bcing m odclcd. The m ain 
purpose of this papor is to an a ly /c  tho cffccts 
of varying s i/e  of spatiai elem ents on the 
stability of tho solution. Furthermoro, tho 
origin of instability vvill bo discussed.

In tho analysis, thc num crical stability of 
the various schcmos vvill bo cvaluatcd by 
invostigating associatcd m atriccs using the 
Singular Value Docomposition (SVD) 
algorithm . The íollcnving typos of spatial 
intcrpolation íunctions arc invcstigated: 
linear, lum pcd, quadratic, and cubic.

2. Finite elem ent schem es for one- 
d im ensional k inem atic wave cquations

Tho onc-dim ensional kinematic vvavc
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equations havc been used for sừnulation of 
the rainfall-runoff proccss in small and 
avcrage s i/c  river basins with stecp slopes. 
Thoy havc been applicd in num crous studies 
for hydrological design, ílood íorecasting etc. 
|2, 3, 6, 8, 11, 12]. The one-dimensional 
kincmatic wave cquations are normally 
vvritten in tho form  of thc continuity equation:

ôh õq n v
* +T~  = '■<*•'>' í1)dí dx

and the equation of motion for (quasi) 
uniíorm  flo\v:

q = a h p , (2)

vvhoro: h: flow dep th  (m); q : unit-vvidth flovv 
(m:/s); r ( x , t ) :  eííoctivc rainíall or latcral flow 

(m/s); a  = s'fí 2 In  ; (i -  5 3: n : Manning

roughness coefficient (m 1 ' / s ); .S’„ : tho suríacc 
or bottom  slope that oquals to íriction slopo in 
the case of kinomatic wavo approximation; x: 
spatial coordinatc (m); and I : timc (s).

Equations (1) and (2) are partial diíícrcntial 
equations which havc no goncral analytical 
solution. Hovvevor, with givon initial condition 
/?(/={)) and boundary condition numcrical
solutions can bt? found. The kinomatic wave 
results from the changcs in flow and since it is 
URÌdirectional (from upstream to downstrcam), 
only one boundary  condition is rcquữed.

Principlos of spatial discretixalion for the 
one-dimcnsional kinematic w ave model 
using thc FEM m othod have been prcscnted 
by Ross ct al [11]. The suríaco area of thc rivcr 
basin is divided in the cross-flow dừection 
into "strips". Each strip is then divided into 
computational elem onts basod on the 
characteristics (e.g. slopc) of the basin so that 
each element is approxim ately homogcncous.

For cach com putational element, the 
variables h(x,t) and q(x,t) are approxim ated Ũ1 
the form:

h (x j)* h =  ỵ  Nị(x)hị(t)-.

q(x.t) e  Ậ = z  Nịtx)iiị(t) 
/=/

(3)

vvhcre: Nt(x):  space interpolation íunction
(shapc íunction or vveighting íunction).

It is noted that tho exprcssions (3) should 
satisíy not only Equation (1) but also the 
initial condition and the boundary condition.

The Galcrkin's rosidual m ethod
normalizes thc approxim ated error vvith
shapc íunction ovor the solution domain:

M  ị dh: ÕN: }
ị  \ ^ ^ i +ni ỉT L - r i \ ^ ị clx = 0 . (4) 

Q i= l[c lt ắ ôx J
The approxim ation (3) com bined w ith the 

integral (4) transíorm s the partial diííercntial 
Equation (1) into a system  of ordinary 
diíícrcntial equations, vvhich for oach element 
(4) takes thc form:

(e) dh
dt

(5)

For thc lincar scheme, tho spatial 
interpolation íunctions can bo dofinod as:

N\(x) = 1 -  y , and N ị (x)  = y , 
whore y  = x / I ; l  is tho length of thc elemcnt.

In this case, the matricos of Equation (5) 
are w ritten as:

B(e) = Ị  
2

A(,) =

-1  1
-1  1

’ 1_ r
3 6 . f(0  _ ) 1

2
/

.6
/
3.

/
.2 .

r(x,t)

The lum ped scheme [5] is bascd on the 
spatial interpolation íunctions expressed in 
the forms:

N h = 1 - H

The hcavyside íunction H(x) is deíined as: 
H(x)=  0 if X  < 0;
H(x) = 1 if x 2  0;
s: distance from node j-1.

(  I ' * ( ỉ \s —— Ị II s -  —
l  2,/ J l  2 )
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The m atriccs for tho lum ped schemo of 
Equation (5) can bc estim ated in the form:

rA<e) = — 
2

/ 0 
0 /

The m atrix B(í) and vector f (e) remain 
the samc as linear schcme.

In the casc of quadratic scheme [2], tho 
spatial intcrpolation íunctions are:

Nị = l - ĩ y  + ĩ y 2:
N 2 = 4 y - 4 y 2;

N ^ - y  + l y 2.
The m atrices for one elem ent are deíined 

as followừig:

A(e>

Bw  =

21 / /
15 15 30
/ 8/ /
15 15 15 *

1 / 21
30 15 15

1 2 1' '  /
2 3 6 6
2 0 2 • = 21
3 3 3

1 2 1 /
6 3 2 6

r(x,t)

For cubic schem c (ono elem ent, íour 
nodes), spatial intcrpolation íunctions can bc 
exprcsscd in the íorms:

/Vj = l - 5 . 5 y  + 9 y 2 - 4 . 5 /

N2 = 9 y - 22.5 V2 + 1 3 .5 /

N3 = -4 .5 ^ +  1 8 /  - 1 3 .5 /

N4 = y - 4 .5 y 2 + 4 .5 /  .
The m atrices for one elcment are 

integrated and are prcsentcd as:
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For the vvhole dom ain containing the 
elem ents, Equation (5) has the form:

(6)A — + Bq - f  =0 
íit

In tho case of using lum pcd scheme, 
m atriccs A; B and vcctor f for the dom ain 
(strip) containing n elem ents can be presented 
in tho íorms:

tì =

i
2

0

i.ĨL  
2 2

0 0 0 0 0

0 0 0 0 0 0 0

0 0
2 2

0 0 

0
2 2

0 0 ừ
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0 0 0 « l* A0 -  + -■ ĩ 2
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2 2
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For overland flovv, the system  of ordinary 
differontial cquations (6), can be vvrittcn in 
the form:

A —  + Bq -  C r = 0 , 
dí

(7)

vvhere: C: sparse m atrix containing thc size of 
elcmcnts; r: vcctor of effectivc rainíall.

The solution of Equation (7) can bc 
obtained by various num erical m ethods, one 
of which is tho Standard Runge-Kutta method 
and Successive Linear Intcrpolation for 
solution of ODE w ith boundaries [4,10].

In ordcr to an a ly /e  hovv tho stability and 
accuracy of thc solution schem es depends on 
the choice of spatial intcrpolation íunctions, 
cquation (7) has been transíorm cd into a 
system of linoar algcbraic equations:

Ax = y , (8)

vvhore: —  = \  : unknow n vector; 
ầt

y = C r -  Bq : givcn voctor íor explicit 
temporal difforcntial schem e and estim ated 
vcctor for implicit intoractivo schem e for oach 
ti me step.

3. S tability  and error analysis

In order to evaluate the stability of 
various íinitc elem ent schemcs, the Singular 
Value Decomposition (SVD) algorithm  will bc 
applied. It will bc introductíd and described 
bclow togcther vvith the deíinition of somo 
cssential vcctor and  matrix concepts:

(i) According to tho SVD algorithm  [4. 10], 
the matrix A  (raxra) can bc expressed in the 
form:

A = U IV r , (9)
vvhcre u , V: square orthogonal matriccs 
(mxm), E : diagonal matrix w ith ôn called

singular values of m atrix A.
(ii) The norm  of the vcctor X is defined as:

(10)

(iii) The norm  of the matrix A  is defined 
as thc m axim uin coofficient of extcnsion and 
can be expressed as:

llA I = II1' s  V II < ||U ||||S |||vTII = | |I | |  = ó'm„  (11)

The physical implication of Equation (8) is 
that onc vector, X, in linear space is transíormed 
by A into another vector, y. This 
transíormation takos three diííerent forms: 
cxtension, compression, and turning.

The stability index, or singularity of tho 
matrix A, can bo deíined as the ratio of 
maximum extcnsion capacity ovcr the minimum 
comprcssion capacity, exprosscd as [4]:

C o n d A )  =

uỵyTx
* H

min
u ỵy7H

'max
min

(12)

vvhere ỔmữS, ổmin: m axim um  and m inim um  
singular values of A rospcctivcly.

Novv, in ordcr to study tho stability of the 
solution scheme, a disturbancc (oscillation) 
Ay  is introducod. This results in a 
corresponding disturbance (oscillation) Ax  in 
the solution. The systcm of linear algcbraic 
equations (8) w ith and without oscillation 
bccomcs:

Ax = y =. ||y|| < ||A |« ||x|| = 8 max||x|| (13)

A(x + Ax) = y + Ay => ||Ay|Ị > 6min ||Ax||, 

vvhere: Ax, ằ y : oscillation vcctor of solution 
and oscillation vcctor of crrors respcctivcly.

This m eans that:

y \ \

(14)

x|| = (xr . x ) ,/2

The relationship (14) show s that the 
stability of the solution of system  (8) dcpends 
on the stability indcx of the m atrix A with a 
high value of the index indicatừig lovver 
stabiỉity. The relationship (14) aiso m eans that 
the stability index (or singularity of A) may 
be considered as the m ultiplication of 
oscillation Ay:
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Ay = CAr -  BAq. (15)
The upper lim it of oscillation (15) can be 

estim ated by applying the dcíinition of the 
norm  of vectors and matrices:
\\jy\\ = ||CAr -  IỈAq\\ <

< ||c4r[+||Bâí | s +S I M (16)
wherc: ổ : m axim um  singular value of 

matrix B; : maximum singular valuo of 
matrix c.

Exprossion (16) shows that thc source of 
oscillation include oscillation in the sourcc 
tcrm  r (effective rainíall) as well as oscillation 
in the advcction term accum ulated during the 
com putation process. The uppcr limits of 
thosc oscillations dcpend on the chosen 
spatial interpolation íunction, and they are 
rclated with the structure of the matrices B 
and c  rcspectivcly. Thcsc valuos will bc 
com putcd and tho results will bc discussed 
belovv for the selectcd types of intorpolation 
hmctions.

The solution of tho systcm  (8) normally 
requừes to invorso matrix A [5, 12]. VVo can 
shovv that tho singularity of tho (square) 
matrix A has tho sam e value as thc singularity 
of thc inversc matrix A'7 by using Equation (9): 

A~' = V E 'l ỉ r . (17)
Application of Singular Value Docomposition 

of A'1 gives:
A*1 =U'E'Vt . (18)
The decom positions (9) and (18) are 

"almost" uniquo [10]. It m cans that = z  , 
and:

C ond(A ) = = C ond(A  ') =
ổ—

‘'min max
The rclationships (14) and (19) shovv that 

the stability and  accuracy of solution of 
system (8) are  directly relatcd with the 
singularity of the hard matrix A.

4. N um erical experim ents

In order to vcriíy tho mothodology, som e 
basic investigations arc m ade for diííerent 
types of interpolation schem es in section 4.1. 
In section 4.2, the effect of using elem ents af 
various lcngths is investigated. Pinally, in 
sectíon 4.3, the inílucnce of different disturbanco 
sources is analyxcd.

4.ĩ. Stabiỉity indcx of matrix A for diffcrcnt typcs 
ofspatial intcrpoỉationỹunctions

Novv we assum e that the studied strip of 
suríacc area is divided into elem ents of 
(equal) unit lcngth. The indcx of stability of 
matrix A has been com putcd for various 
num bcrs of elem ents for oach typc of 
interpolation íunction. The rcsults of the 
com putations arc presontcd in Fig. 1.

Fig. 1. 'ITie changc of stab iỉity  indcx m atrix A.

The num erical experim ents show  that the 
index of stability is virtually constant for each 
type of interpolation schom c when tho 
num bcr of elcm ents is tw o or highcr. It is also 
clear that the lum pcd schem e gives the lovvest 
value of stability index, whilc linear, 
quadratic and cubic schcm cs give 2, 3 and 4 
tim es higher valucs rcspcctively. In 
conclusion, the lum ped schcm e has the
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highcst order of stability am ong tho four 
studiod numerical schemes.

The rcsults of numerical experim ents 
prcsonted abovo agreo vvell vvith the rcsults of 
analytical Fourior stability analysis for 
consistent (lincar) and lum pcd schomcs that 
ha vo been presonted in the vvork by Jaber and 
M ohtar [5|.

4.2. The impact offin ite elcnicnt approximations

Numerical expcrim ents have been 
conducted in order to assess tho effect of 
olement s i/c  on stability of the íour íinite 
olcment schemes: linear, lum ped, quadratic 
and cubic. Tho calculations havo been m ade 
for a strip of 1000 m  length, which has boen 
approxim ated by tw o elem ents. Tho lengths 
of the two elem ents have been choscn 
according to threc diíícrcnt options, with 
more or loss asym m etric proportions: option 
1 vvith proportìons 1:1, option 2 vvith proportions 
1:9, and option 3 vvith proportions 1:99.

The stability index of m atrix A and the 
maximum extension capacity of errors of 
matrices B and c have boen com putcd and 
arc shovvn in Table 1. The results show  that 
the stability of the íinibc elem cnt one- 
dimensional kinem atic vvave schem es does 
not only depend on the typc of spatial 
interpolation íunction, but also on the spatial 
discretừation of the suríace strip considered. 
For all four interpolation schemcs, thc  lower 
the stability is, the m ore disproportionate the 
elcments are. At the same timc for all three 
options, oach w ith differcnt geomctric 
proportions, the stability is higher for lum ped 
and lincar schcmcs than that for quadratic 
and cubic schemes.

Anothcr conclusion is that there are tvvo 
main causcs for oscillation of the solution. 
One is the oscillation sources, and the other 
one is thc m ultiplication operator.

Furthermore, it should be pointod out that thc 
cfficiency of thc algorithm  is an im portant 
aspect with regards to thc choicc of 
interpolation schcmc for practical applications. 
The linear and lum ped schem cs requirc n+1 
equations, vvhile quadratic and cubic schemes 
require 2n+l and 3n+l cquations respectively 
for solving a problem  vvith n elements.

'1'able 1. S tability index of m atrix  A 
and m axim um  coefficiont of oscillation

C ases of 
study

Linear
Lum -
pcd

Q uad-
ratic

Cubic

O ption 1 X 5
max

0 .8 6 6 0 .8 6 6 1.29 1.67

max 404.5 404.5 334.2 198.7

Cond(A) 3.73 2 .0 0 5.83 8.13
O ption  2 V' B

max 0 .8 6 6 0 .8 6 6 1.29 1.67

452.8 452.8 618.5 355.8

Cond(A) 14.6 1 0 .0 41.2 63.1

O ption  3 c ti 
mox

0 .8 6 6 0.866 1.29 1.67

S L 495.0 495.0 680.3 391.3

Cond(A ) 149.6 100.0 448.8 688.6

4.3. The upper limit of osciỉlation soưrccs for 
different typcs ofspatial intcrpolation fìuĩctions

ỉí the oscillation occurring at a given time 
step are supposed to be equal for different 
typcs of spatial íunctions, then the uppcr 
liirút of source of oscillation will bo related 
w ith the m axim um  singular values of 
matrices B and c. The structure of thcse 
matrices is depended on the type of 
interpolation íunctions. The m axim um  
singular valuos of B and c for unit elem ents 
of equal length have been com puted and are 
prescnted in Table 2.

The results show that for advection 
oscillation, both thc lincar and thc lum ped 
schemes give values that are ncarly 
ữidependent of the num ber of clcm ents, 
vvhile the quadratic and cubic schemes exhibit
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increasing values for increasing nưm ber of 
elements (sec Fig. 2). The cxperim cnt also 
shovvs that linear and lum ped schemes have 
the same source of oscillation. Thoy can also 
control thc advcction oscillation bctter than 
quadratic and cubic ones. Hovvever, the 
oscillation of effcctive rainíall com ponent is 
bctter controllGd by quadratic and cubic 
schemes than by lum ped and linear ones.

Table 2. M axim um  coefficicnts of source of oscillation

N urnber of 
elem cnts

Para-
m ctcrs

Linear
I.um -
pcd

Q uad-
ratic

Cubic

1 X  6
m*x

1.0 1.0 1.16 1.55

S L 0.500 0.500 0.667 0.375

2 S L 0.866 0.866 1.29 1.67

ổ cnux. 0.809 0.809 0.689 0.398

3 X B 1.0 1.0 1.33 1.71

ó Lnox 0.901 0.901 0.689 0.398

4 ^  max
0.951 0.951 1.34 1.73

co  nitx. 0.940 0.940 0.689 0.398

5 X &
*  niax

1.0 1.0 1.35 1.74
X c

nux 0.960 0.960 0.689 0.398

6 X *
max

0.975 0.975 1.35 1.75

S L 0.971 0.971 0.689 0.398

7 S L 1.0 1.0 1.35 1.75

S L 0.978 0.978 0.689 0.398

Elcmcni*

Fig. 2. The change of m axim um  extension capacity 
of m atrix  B.

5. C onclusions

This paper analyses the sources and 
causes of oscillation of solutions for íinitc 
elem ent one dimonsional rainfall-runoff 
m odcls w hcn different typos of spatia] 
interpolation íunctions is applied for 
overland flow kinomatic wavo simulation. Lt 
does so by applying tho dcíinition of norm  of 
vectors and matricos and the Sirigular Valuo 
Dccomposition (SVD) algorithm.

Tho structure of matrix A, which contains 
sizes of the íinitc clem ents, is relatcd to thc 
type of spatial intorpolation íunction which is 
applicd. From thc above proscntod results 
and discussions, it can be concludcd that thc 
stability indcx or singularity of matrix A can 
be considered as an eííoct of m ultiplication of 
oscillation occurring during com putation 
process. It will affcct tho stability and 
accuracy of thc solution of íinito elem ent one- 
dim cnsional kinem atic vvave schemcs, and it 
is actually onc of tho main causes of 
oscillation of solutions.

T he rosults of com putation experimont 
show  thc advantagc and disadvantagc of 
diffcrcnt typos of spatial intcrpolation 
íunctions w hcn FEM is appliod for rainíall- 
runoff kincm atic w avc models. If thc reason 
for grovving oscillation is scen as the most 
im portant critcrion for assessing stability of 
num crical schemes, the lum ped and lỉncar 
schomes havc higher ordcr of stability than 
the quadratic and cubic schemes. Hovvcver, 
w hen the lum ped schemc is used, tho matrix 
A bccom es a diagonal matrix and then thc 
algorithm  is m ore efficient than all othcr threc 
typcs of schcmos.

T he rcsults also show that thc íinitc 
clom ent onc-dimonsional kinomatic vvavc 
schem es can be improvod by choosing the 
m ost suitablo spatial interpolation íunction 
for decreasing the singularity of matrix A and
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minimi/.e the source of oscillation. Tho spatial 
interpolation íunctions of higher o rder do not 
always givc im proved results w hen íinite 
clcment m ethod is used for kincm atic wave 
raĩnfall-runoff models.
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