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Abstract: This study used the Google Earth Engine (GEE) platform to calculate the water capacity 

of the Saigon-Dongnai basin using remote sensing-derived products related to evapotranspiration 

(ET) and precipitation (P). The GEE was used to retrieve two important inputs: MODIS 

evapotranspiration spanning the drainage basin and CHIRPS satellite precipitation. We found that 

there was a net decrease in the water capacity from January to April every year as a result of greater 

evaporation and less precipitation. Due to the increase of precipitation from May to October 

following the decrease of solar radiation, and the drop in temperature, the rainy season imposed the 

highest values of the change in water capacity. Rainfall and evapotranspiration show a positive 

association, as does the relationship between water capacity and inputting water.  
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1. Introduction* 

 In river basins, water is essential for 

industrial processes, power generation, food 

security, and human survival. Water is essential 

to both terrestrial and aquatic ecosystems in 

order to deliver important ecosystem services for 

present and future generations. Managing the 

________ 
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complex water flow paths to and from these 

various water-use industries necessitates a 

quantitative grasp of hydrological processes. To 

support water-use management more effectively 

through retention, withdrawals, and changes in 

water use, quantitative insights, background data 

are required.  

 

  

mailto:hienltd@tdmu.edu.vn
https://doi.org/10.25073/2588-1094/vnuees.4


L. T. D. Hien, D. X. Hong / VNU Journal of Science: Earth and Environmental Sciences, Vol. 41, No. 1 (2025) 47-53 48 

The water capacity is the relationship 

between its input and outflow of water  [1]. The 

capacity between input water by precipitation 

(P) and outgoing water from evapotranspiration 

(ET) denoting the sum of evaporation from the 

land surface plus transpiration from plants, 

groundwater recharge and soil storage (ΔS) [2], 

and streamflow (Q) is referred to as the 

watersheds overall water capacity [3]. In its 

simplest form, the water capacity can be defined 

as Eq. (1). Due to urbanization, socioeconomic 

development, and population growth, there is 

some cases of a greater demand for water than 

there is supply among municipal, industrial, and 

agricultural interests.  

P= Q +ET+ ΔS (1) 

Many studies have demonstrated how 

susceptible the water resources of river basins 

are to climate change. For examples, during the 

years 1965–2012 and 1981–2010, respectively, 

López-Moreno et al., [4] and Hunziker et al., [5] 

reported temperature increases in the Altiplano 

of about 0.20 °C decade−1. The effects of long-

term temperature increases on the water 

resources in the northern Altiplano were 

calculated by Hoffmann and Requena, who 

concluded that there would be a significant 

decrease in the amount of water in lakes, rivers, 

glaciers, and wetlands, particularly during the 

dry season. Nigatu et al., (2013) [6] examined 

the components of water capacity, such as 

surface water intake, over-lake rainfall, and 

variance in evaporation patterns, and how these 

factors affected Tana Lake's water capacity in 

Ethiopia. This analysis was based on three 

distinct climate change scenarios for future time 

horizons: the 2020s (2010–2039), the 2050s 

(2040–2069), and the 2080s (2070–2099). The 

over-lake evaporation was measured using 

Hardgrave's approach; the over-lake rainfall was 

calculated using the inverse distance weighing 

(IDW) method; and the surface inflows were 

simulated using the HBV model. 

Cloud computing services have been used 

recently by the Google Earth Engine Platform 

(GEE) to enable online analysis of satellite data 

[7]. The Application Programming Interface 

(API) is used to handle geospatial datasets and 

enables the development of programs to access 

datasets containing publicly accessible remotely 

sensed imagery and other data. Its capacity to 

quickly evaluate global, regional, and local data 

makes it a valuable tool for data visualization as 

a remote sensing platform [8]. Numerous 

environmental science and earth science-related 

sectors have applied GEE [7]. Applications of 

GEE include land studies [9, 10]; agriculture, 

forestry [11], urbanization [12], wetlands 

monitoring [13], and disaster analysis [14, 15]. 

Additionally, GEE has aided in the creation of 

fresh techniques for mapping and tracking land 

use/cover, carbon emissions, and other 

environmental indicators, providing critical 

insights for sustainable development planning 

and policy-making. 

In this study, we applied GEE to assess  

the water capacity of Saigon-Dongnai basin  

in the period of 2005-2023 using Modis 

evapotranspiration and precipitation Chirps. 

We're using a simplified study approach to make 

things more accessible. To calculate water 

capacity, evapotranspiration outflow will be 

subtracted from precipitation inflow. We aim to 

quantify water capacity over time and space by 

utilizing satellite-based observations of 

evapotranspiration and precipitation to confirm 

whether or not there is a difference in water 

storage capacity over time and space. 

2. Data and Methods  

2.1. Study Area  

Sai Gon - Dong Nai river basin and its 

surroundings cover an area of approximately 

49643.53 km2 including 11 provinces: Dac 

Nong, Lam Dong, Binh Phuoc, Binh Duong, 

Dong Nai, Tay  Ninh, Ho Chi Minh City, Long 

An, Ninh Thuan, Binh Thuan, and Ba Ria Vung 

Tau (Figure 1) [16]. The impacts of climate 

change are highly vulnerable to the downstream 

area of the river basin, including the subbasins of 
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Go Dau Ha, Ben Luc, Nha Be, Dong Nai, Sai 

Gon, Ha Dau Tieng and Tay Ninh. Recent river 

tides have severely impacted the socioeconomic 

growth of numerous communities downstream 

of the basin, most in Ho Chi Minh City. 

Figure 1. Boundaries of Saigon-Dongnai basin is shared resources among provinces.  

2.2. Data  

The Saigon-Dongnai basin shapefile data 

was extracted from Hydrosheds [17].  

The Terra Moderate Resolution Imaging 

Spectroradiometer (MODIS) MOD16A2GF 

Version 6.1 from NASA; a year-end gap-filled 

8-day composite dataset generated at 500m pixel 

resolution, is the source of the 

evapotranspiration product (2005–2023) in this 

study. The MOD16 algorithm is grounded in the 

logic of the Penman-Monteith equation, which 

takes as inputs eight-day remotely sensed 

vegetation property dynamics from MODIS and 

daily meteorological reanalysis data. 

The precipitation used in this study was 

taken from the quasi-global rainfall dataset, The 

Climate Hazards Group InfraRed Precipitation 

with Station (CHIRPS from Climate Hazards 

Center) data, which spans more than 35 years. 

Precipitation data at a spatial resolution of 0.5° 

(~ 5 km) is provided by CHIRPS. The dataset 

uses satellite data along with information from 

weather observation stations to estimate 

precipitation. In hydrology research, CHIRPS 

data can be quite helpful since it offers a lengthy 

and reliable time series with precipitation 

estimates at a relatively high spatial resolution. 

The data is accessible at intervals ranging from 

daily to annual.  

 

Figure 2. Study approach process. 

We calculated the portion of Q and ΔS on a 

pixel level and aggregated that information to the 

Saigon – Dongnai basin: P − ET = Q + ΔS where 
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P is monthly precipitation (mm), ET is monthly 

evapotranspiration (mm), Q is streamflow (m/s), 

and ΔS is groundwater recharge and soil storage. 

Figure 2 described the study approach process. All 

calculations and graphics were performed in GEE. 

3. Results and Discussion  

3.1. Monthly Precipitation in Period of 2005 – 2023 

Mean monthly precipitation ranged from 

114.4 mm to 253.6 mm in the period of 2005 – 

2023 that concentrated in Dong Nai, Binh 

Duong, Binh Phuoc, and Lam Dong provinces 

(Figure.3a).  Figure 3b showed the distribution 

of the monthly total of precipitation. The Saigon-

Dongnai basin experiences unequal yearly and 

monthly rainfall; 85% of the total annual rainfall 

occurs during the rainy season, which runs from 

May to October each year [18]. In the period of 

study, the precipitation was highest in October 

2016, July 2023, and October 2010 with 

approximately 450 mm, 420 mm, and 415 mm 

respectively. The annual total quantity of 

precipitation was high in 2007, 2012, 2021, and 

2022, reaching 2400 mm. 

  

a. b. 

Figure 3. Mean precipitation in the Saigon-Dongnai basin (a) and the monthly average precipitation (b)  

in the period of 2005 – 2023. 

 

 

a. b. 

Figure 4. Mean evapotranspiration in the Saigon-Dongnai basin (a) and the monthly average 

evapotranspiration (b) in the period of 2005 – 2023. 
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3.2. Monthly Evapotranspiration in Period of  

2005 – 2023 

The annual average evapotranspiration rate 

is around 1,191.06 mm, with a maximum 

evapotranspiration of above 100 mm in June to 

September. The evapotranspiration process has 

its highest value in June to September due to a 

rise in soil temperature and a decrease in relative 

humidity, which leads to increased evaporation. 

Most of the studied years were marked by a rise 

in the evaporation, the maximum value was 

1,216 mm in 2018 (Figure 4b). The annual total 

quantity of evapotranspiration was high in 2017, 

2018, 2019, and 2021 that reached 

approximately 1,200 mm/year. The increase 

tendency of annual evapotranspiration was 

observed (Figure 4b) in the period of 2005 – 

2023.  Mean monthly evapotranspiration ranged 

from 57.75 mm to 128.15 mm that concentrated 

in Binh Duong, Binh Phuoc, and Lam Dong 

provinces (Figure. 4a).   

3.3. Monthly Water Capacity in Period of  

2005 – 2023 

The mean monthly water capacity (Q+AS) in 

the Saigon – Dongnai basin in the period of 2005 

– 2023 concentrated from 80 to 110 mm in Tay 

Ninh, Binh Duong, Binh Phuoc, Dong Nai 

province and Ho Chi Minh city (Figure 4a). A 

negative tendency in water capacity was 

observed in months of January, February, and 

March whereas an opposite trend can be seen in the 

rest of months in the period of study (Figure 4b). 

Water loss and incoming water in the river 

must be controlled in order to control the process 

of water capacity, which is crucial for 

managingwater resources. Equation 1 is used to 

limit these water losses in order to reach water 

capacity and determine the amount of storage 

change with respect to the river (Q). In order to 

manage the water surplus and the benefits of 

water for agriculture, the economy, and society, 

reservoirs must be established to the 

preservation of all water needs for the years. This 

will guarantee that all future water needs will be 

met. There was an equivalent amount of water 

deficit during the sunny season due to excessive 

evaporation in the majority of the years, which 

decreased water capacity and caused a water 

deficit. It is vital to address the issues that lead to 

water deficit in most years, such as reducing the 

rate of evaporation, temperatures, wind speed, 

and relative humidity, in order to reduce this 

phenomenon, achieve the water capacity, and 

manage and control the water. 

 

 

 

a. b. 

Figure 5. Mean water capacity in the Saigon – Dongnai basin (a) and the monthly average water capacity (b). 
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4. Conclusion  

The findings observed that, for each year 

considered, there was a negative tendency in the 

water capacity from January to April as a result 

of greater evaporation and less precipitation. 

Due to an increase in precipitation from May to 

October, a decrease in solar radiation, and a drop 

in temperature, the rainy season observed the 

highest values of the alter in water capacity. 

Precipitation and evapotranspiration have a 

positive correlation, as does the relationship 

between water capacity and income water. We 

mapped the amount of water in space and time 

with the use of Earth Engine's satellite data 

products that have capacity to quickly evaluate 

global, regional, and local data. It allows us to 

divide water into its consumptive uses and assess 

the impact of these divisions on a wide range of 

significant functions within a water basin. 

However, the study has limitations in that it has 

not verified satellite rain and evapotranspiration 

data with gaussed monitored data. Therefore, in 

the next studies we will take steps to evaluate 

this satellite data. 

Acknowledgments  

This research is funded by the National 

Foundation for Science and Technology 

Development (NAFOSTED) under project code 

105.06-2021.17. 

References  

[1] P. Nugroho, D. Marsono, P. Sudira, Suryatmojo, 

Impact of Land-use Changes on Water Balance. 

Procedia Environmental Sciences, Vol. 17, 2013, 

pp. 256-262,   

https://doi.org/10.1016/j.proenv.2013.02.036). 

[2] A. Poortinga, Q. Nguyen, N. S. Thwal, A. P. 

Nicolau, Water Balance and Drought, JA Cardille, 

MA Crowley, D Saah, NE Clinton,  Cloud-Based 

Remote Sensing with Google Earth Engine: 

Fundamentals and Applications, Springer 

International Publishing, 2024, pp. 953-983, 

https://doi.org/10.1007/978-3-031-26588-4_44. 

[3] H. Suryatmojo, Water Balance Changes in the 

Tropical Rainforest with Intensive Forest 

Management System, International Journal of 

Sustainable Future for Human Security, Vol. 1, 

No.2, 2013, pp. 56-62,  

https://doi.org/10.24910/JSUSTAIN%2F1.2%2F5662. 

[4] J. I. L. Moreno, E. M. Tejeda, S. M. V. Serrano,  

J. Bazo, C. A. Molina, J. Revuelto, A. S. Lorenzo, 

F. N. Serrano, E. Aguilar, O. Chura, Recent 

Temperature Variability and Change in the 

Altiplano of Bolivia and Peru, International Journal 

of Climatology, Vol. 36, No. 4, 2016,  

pp. 1773-1796, https://doi.org/10.1002/joc.4459. 

[5] S. Hunziker, S. Brönnimann, J. Calle, I. Moreno, 

M. Andrade, L.Ticona, A. Huerta, W. Lavado-

Casimiro, Effects of Undetected Data Quality 

Issues on Climatological Analyses, Climate of the 

Past, Vol. 14, 2018, pp. 1-20,  

https://doi.org/10.5194/cp-14-1-2018. 

[6] Z. M. Nigatu, T. Rientjes, A.T. Haile, Hydrological 

Impact Assessment of Climate Change on Lake 

Tana’s Water Balance, Ethiopia,  American Journal 

of Climate Change, Vol. 5, 2016, pp. 27-37,  

https://doi.org/10.4236/ajcc.2016.51005 

[7] H. Tamiminia, B. Salehi, M. Mahdianpari, L. 

Quackenbush, S. Adeli, B. Brisco, Google Earth 

Engine for Geo-big Data Applications: A Meta-

Analysis And Systematic Review, ISPRS Journal 

of Photogrammetry and Remote Sensing, Vol. 164, 

2020, pp. 152-170,  

https://doi.org/10.1016/j.isprsjprs.2020.04.001. 

[8] N. N. Patel, E. Angiuli, P. Gamba, A. Gaughan,  

G. Lisini, F. R. Stevens, A. J. Tatem, G. Trianni, 

Multitemporal Settlement and Population Mapping 

from Landsat using Google Earth Engine, 

International Journal of Applied Earth Observation 

and Geoinformation, Vol. 35, 2015, pp. 199-208, 

https://doi.org/10.1016/j.jag.2014.09.005. 

[9] H. Huang, Y. Chen, N. Clinton, J. Wang, X. Wang, 

C. Liu, P. Gong, J. Yang, Y. Bai, Y Zheng, Z. Zhu,  

Mapping Major Land Cover Dynamics in Beijing 

using all Landsat images in Google Earth Engine, 

Remote Sensing of Environment, Vol. 202, 2017, 

pp. 166-176,  

https://doi.org/10.1016/j.rse.2017.02.021. 

[10] H. A. Zurqani, C. J. Post, E. A. Mikhailova, M. A. 

Schlautman, J. L. Sharp,  Geospatial Analysis of 

Land Use Change in the Savannah River Basin 

using Google Earth Engine, International Journal 

of Applied Earth Observation and Geoinformation, 

Vol. 69, 2018, pp. 175-185,  

https://doi.org/10.1016/j.jag.2017.12.006. 

https://www.sciencedirect.com/author/57222715340/jun-yang


L. T. D. Hien, D.X. Hong / VNU Journal of Science: Earth and Environmental Sciences, Vol. 41, No. 1 (2025) 47-53 53 

[11] E. L. Bullock, C. E. Woodcock, P. Olofsson,  

Monitoring Tropical Forest Degradation Using 

Spectral Unmixing and Landsat Time Series 

Analysis, Remote Sensing of Environment,  

Vol. 238, 2020, pp. 110968,  

https://doi:10.1016/j.rse.2018.11.011. 

[12] X. Liu, G. Hu, Y. Chen, X. Li, X. Xu, S. Li, F. Pei, 

S. Wang, High-resolution Multi-temporal Mapping 

of Global Urban Land Using Landsat Images 

Based on the Google Earth Engine Platform, 

Remote Sensing of Environment, Vol. 209, 2018, 

pp. 227-239,  

https://doi.org/10.1016/j.rse.2018.02.055. 

[13] B. Chen, X. Xiao, X. Li , L. Pan, R. Doughty, J. Ma, 

J. Dong, Y. Qin, B. Zhao , Z. Wu, R. Sun, G. Lan, 

G. Xie, N. Clinton, C. Giri, A Mangrove Forest 

Map of China in 2015: Analysis of Time Series 

Landsat 7/8 and Sentinel-1A Imagery in Google 

Earth Engine Cloud Computing Platform, ISPRS 

Journal of Photogrammetry and Remote Sensing, 

Vol. 131, 2017, pp. 104-120,    

https://doi.org/10.1016/j.isprsjprs.2017.07.011. 

[14] E. Meilianda, B. Pradhan, Syamsidik, L. K. 

Comfort, D. Alfian, R Juanda, S. Syahreza, K. 

Munadi,  Assessment of Post-Tsunami Disaster 

Land Use/Land Cover Change and Potential 

Impact of Future Sea-Level Rise to Low-Lying 

Coastal Areas: A Case Study of Banda Aceh coast 

of Indonesia, International Journal of Disaster Risk 

Reduction, Vol. 41, 2019, pp. 101292,  

https://doi.org/10.1016/j.ijdrr.2019.101292. 

[15] B. D. Vries, C. Huang, J. Armston, W. Huang, J. 

W. Jones, M. W. Lang,  Rapid and robust 

Monitoring of Flood Events Using Sentinel-1 and 

Landsat Data on the Google Earth Engine, Remote 

Sensing of Environment, Vol. 240, 2020,  

pp. 111664,  

https://doi.org/10.1016/j.rse.2020.111664. 

[16] T. H. Thai,  Assessment of Climate Change 

Impacts on Flooding in the Downstream of the 

Dong Nai River, VNU Journal of Science, Earth 

Sciences Vol. 27, 2011, pp. 25-31,  

https://js.vnu.edu.vn/EES/article/view/1497. 

[17] B. Lehner, G. Grill, Global River Hydrography and 

Network Routing: Baseline Data and New 

Approaches to Study the World’s Large River 

Systems, Hydrological Processes, Vol. 27, 2013,  

pp. 2171-2186, https://doi.org/10.1002/hyp.9740. 

[18] N. N. H. Giang, C. N. X. Quang, D. T. Long, P. D. 

Ky, N. D. Vu, D D. Tran, Statistical and 

Hydrological Evaluations of Water Dynamics in 

the Lower Sai Gon-Dong Nai River, Vietnam, 

Water, Vol. 14, No. 12022, pp. 130,  

https://doi.org/10.3390/w14010130. 

 


