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Abstract: This study proposes a multi-layer machine learning architecture for multi-class rainfall
estimation in Central Vietnam. The input data includes Himawari-8 satellite imagery, ERAS
reanalysis data, ASTER DEM, and rain gauge observations. Four regional satellite-based rainfall
products, including IMERG Final Run V07, IMERG Early Run V07, GSMaP_MVK _ Gauge V08,
and PERSIANN_CCS, were used as comparative datasets. Three machine learning algorithms,
including Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGB), and
Random Forest (RF), were employed within the proposed architecture. Performance evaluation
based on rain gauge observations showed that the LGBM-based rainfall product achieved the highest
classification performance among the three surveyed products, with a Probability of Detection
(POD) of 0.80, a Critical Success Index (CSI) of 0.54, a Matthews Correlation Coefficient (MCC)
of 0.59, and a Symmetric Extremal Dependence Index (SEDI) of 0.58. Compared to the best-
performing rainfall product (GSMaP_MVK_ Gauge V08), the LGBM-based product demonstrated
significant improvements in classification performance, with increases of 6.67% in POD, 8.00% in
CSI, 11.32% in MCC, and 20.83% in SEDI. In terms of rainfall regression performance, the LGBM-
based product also outperformed the other evaluated products, exhibiting the lowest errors, with a
Mean Absolute Error (MAE) of 2.91 mm/h, Root Mean Square Error (RMSE) of 5.81 mm/h, and
Mean Logarithmic Squared Error (MLSE) of 0.47.
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1. Introduction

The central region of Vietnam frequently
experiences extreme weather events, including
prolonged heavy rainfall events that cause
serious consequences. Therefore, developing a
highly accurate rainfall dataset for this region is
of great significance, not only to support
economic development but also to enable the
government to formulate effective response
strategies to rainfall-induced extreme weather
events [1, 2].

Machine learning (ML) has emerged as an
effective approach for rainfall estimation,
capable of processing large-scale, multisource
datasets and modeling complex nonlinear
relationships [3]. Min et al., (2018) employed the
Random Forest (RF) algorithm to estimate
summer rainfall across East Asia, using infrared
(IR) band data from the Himawari-§ satellite
combined with digital elevation model (DEM)
data and numerical weather prediction (NWP)
data as input features for model training. Rainfall
data from the IMERG product were used as
labels during the training process. Their
proposed model outperformed the IMERG
rainfall product, achieving a rain/no-rain
classification accuracy (Acc) of 0.87, an MAE of
0.51 mm/h, and an RMSE of 2.0 mm/h [4].
Similarly, Putra et al. (2024) conducted rainfall
estimation for six different regions in
Indonesia—Bandar Lampung, Banjarmasin,
Pontianak, Deli Serdang, Gorontalo, and Biak—
using the XGB model. The input data consisted
of brightness temperature (BT) from the
Himawari-8 satellite’s IR band 13 (10.4 pum),
along with weather radar data, which were used
as training features. Rainfall data from the
IMERG Early Run product served as the training
label, while measurements from Automated
Weather Observing System (AWOS) rain gauge
stations were used for validation. The results
demonstrated that the XGB model outperformed
the IMERG Early Run product in rainfall
classification, with Acc values of 0.89, 0.91,
0.89, 0.90, 0.92, and 0.90 for the respective
regions, and corresponding RMSE values of
2.75 mm/h, 2.57 mm/h, 3.08 mm/h, 2.64 mm/h,

1.85 mm/h, and 2.48 mm/h [5]. In the study by
Giang et al., (2023), the LGBM model was
employed to estimate daily-scale rainfall over
South Korea using three satellite precipitation
products: the Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS), the
Global Satellite Mapping of Precipitation
(GSMaP), and the Tropical Rainfall Measuring
Mission (TRMM). Rainfall observations from
Automatic Weather Stations (AWS) were used
as training labels, while DEM data and
Euclidean Distance (ED) between stations
served as supplementary inputs. An independent
dataset from the Automated Synoptic
Observation System (ASOS) was used for
validation. The results indicated that the rainfall
estimates produced by their proposed model
outperformed the original satellite precipitation
products, achieving a correlation coefficient
(CC) 0f 0.944, an MAE of 1.18 mm/day, and an
RMSE of 4.55 mm/day [6]. Nevertheless,
accurately estimating heavy rain events in
mountainous regions remains a significant
challenge and limitation in these studies.

In Vietnam, achieving high-accuracy rainfall
estimation from satellite data remains a
significant challenge, particularly for heavy and
extreme rainfall events in mountainous regions
[1, 7, 8]. To improve the accuracy of multi-class
rainfall estimation, especially for heavy rainfall
events in Central Vietnam, we propose to apply
the multi-layer ML technique in this study. The
input dataset comprises satellite imagery from
Himawari-8, ground-based rainfall observations
from meteorological stations, and auxiliary data
sources including ERAS5 reanalysis and the
ASTER Digital Elevation Model (ASTER
DEM). The proposed model categorizes rainfall
intensity into four distinct classes: weak rain,
moderate rain, heavy rain, and very heavy rain
[9, 10]. Such stratification is expected to
improve the accuracy of both classification and
overall rainfall estimation in detail. Furthermore,
to address the issue of class imbalance in the
input data—particularly the underrepresentation
of very heavy rainfall samples compared to weak
rain—two data augmentation techniques (the
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Randomized Value-based Rainfall Augmentation
(RVR) and Class Weighting (CW)) were applied
for the two-class classification model and the four-
class classification model, respectively.

The remainder of this paper is structured as
follows. Section 2 describes the datasets and
research methodology. Section 3 presents the
results and evaluation. Section 4 provides the
conclusions and future research directions.

2. Case Study and Datasets
2.1. Case Study

The study area extends from Quang Binh to
Da Nang. This region experiences a very high
average annual rainfall, with the majority
occurring from August to December. The terrain
is predominantly mountainous, with elevation
increasing significantly from east to west. As a
result, rainfall in this area tends to be locally
distributed,  primarily = concentrated  in
mountainous regions [11]. The climate is
influenced by both the southwest and northeast
monsoons [12]. Monthly rainfall statistics for the

years 2019-2020 in the study area are presented
in Figure 1.

2.2. Datasets

The data used in this study were collected
from various sources. The datasets used for
model training include satellite data from
Himawari-8, provided by the Japan
Meteorological Agency (JMA), with a spatial
resolution ranging from 0.5 to 2 km and a
temporal resolution of 10 minutes [4]. In this
study, BT data extracted from 10 infrared bands
of Himawari-8 served as the primary input
features for model training. In addition, the
ERAS reanalysis dataset, developed by the
European Centre for Medium-Range Weather
Forecasts (ECMWF) [13], provides climate,
meteorological, and geophysical variables for
the region and was used as supplementary input
to improve model accuracy [14] The ASTER
DEM, developed by NASA with a spatial
resolution of 30 meters, was also integrated as an
additional input to enhance the model's
performance [15].
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Figure 1. Monthly rainfall statistics for the study area in 2019-2020.

To evaluate the model's performance, four
comparative precipitation products at the study
area were used. Among them, the Integrated
Multi-satellite Retrievals for GPM (IMERG)

products, including IMERG Early Run (V07)
and IMERG Final Run (V07), were developed
by NASA and JAXA to monitor global
precipitation. Both products offer data at a
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spatial resolution of 0.1° x 0.1° and a temporal
resolution of 30 minutes. IMERG Early Run
V07 is a near-real-time product, available from
2023, with a latency of approximately six hours,
whereas IMERG Final Run Version 07 is a post-
processed product with a latency of about 3.5
months [16, 7]. The Global Satellite Mapping of
Precipitation — Microwave—Infrared Combined
Product with Kalman Filter
(GSMaP_MVK Gauge VO08), developed by
JAXA, provides hourly global precipitation
estimates at a spatial resolution of 0.1° x 0.1°
with a latency of approximately three days,
covering the period from 1988 to 2022 [18].
Additionally, the Precipitation Estimation from
Remotely Sensed Information using Artificial
Neural Networks - Cloud Classification System
(PERSIANN_CCS), developed by the Center for
Hydrometeorology and Remote Sensing
(CHRS), provides near-real-time precipitation
estimates at a higher spatial resolution of 0.04° x
0.04° and a temporal resolution of one hour, with
very low latency [19].

Rain gauge data provided by the National
Centre for Hydro-Meteorological Network
(NCN) during the period 2019-2020 were used
as ground-truth labels for model evaluation and
training. Specifically, rainfall data recorded at
five time points of the day (00:00, 06:00, 12:00,
16:00, and 21:00) were used to construct the
evaluation and reference dataset, while the
remaining time points were used to build the
training dataset.

3. Methodology
3.1. Proposed Architecture

The proposed architecture for rainfall
estimation is illustrated in Figure 2. The input
data, collected from multiple sources, were
preprocessed to ensure consistency in both
spatial and temporal resolutions while capturing
the detailed variability of rainfall in the study
area and optimizing computational resources.
Specifically, the data were standardized to a
spatial resolution of 4 km and a temporal

resolution of 1 hour. For temporal resolutions,
the Himawari-8 satellite data, originally
available at 10-minute intervals, were
aggregated by averaging six consecutive
observations per hour to match the 1-hour
temporal resolution of the ERAS reanalysis data,
ASTER DEM, and rain gauge measurements.
For spatial resolutions, the ERAS5 data, originally
at a coarse resolution of 25 km, were resampled
to 4 km using the nearest neighbor interpolation
technique [20]. The Himawari-8 data, with an
original resolution of 2 km, and the ASTER
DEM data, originally at 30 m, were both
resampled to 4 km using the average pooling
technique [21].

The data input to model M1 is classified as
either rain or no-rain events using a rainfall
threshold of 0.1 mm/h. Model M2 then classifies
the identified rain events into four intensity
categories: weak (0.1-1.0 mm/h), moderate
(1.0-5.0 mm/h), heavy (5.0-30.0 mm/h), and
very heavy (> 30.0 mm/h). The division of
rainfall into four classes with corresponding
intensities is intended to reflect the
characteristics of precipitation in the study area,
where rapid changes in intensity and spatial
extent occur due to variations in topography and
complex, localized climatic conditions [22].
Models M3 to M6 are then used to perform
regression on rainfall amounts for each
corresponding rainfall category classified by
M2. The outputs of these regression models are
then combined based on the predicted rainfall
classes to construct the final rainfall products.
Subsequently, the proposed rainfall product was
matching in both spatial and temporal resolution
with the four comparative rainfall products,
namely GSMaP_MVK Gauge V08, IMERG
Final Run V07, IMERG Early Run V07, and
PERSIANN CCS. The classification and
regression performance of these rainfall products
was then evaluated against rain gauge
observations (ground truth) using the metrics
detailed in Section 3.3.

To address data class imbalance in the
classification models, the RVR technique is
applied to the model M1, while a CW strategy is
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used for the model M2. The RVR technique
randomly augments rainfall samples based on
intensity intervals. Specifically, the entire range
of rainfall values recorded from rain gauge
stations, ranging from 0.1 to 95.2 mm/h, was
divided into 11 narrower sub-ranges, including:
0.1-1.0 mm/h, 1.0-2.0 mm/h, 2.0-3.5 mm/h,
3.5-5.0 mm/h, 5.0-8.0 mm/h, 8.0-12.0 mm/h,
12.0-20.0 mm/h, 20.0-30.0 mm/h, 30.0-40.0
mm/h, 40.0-50.0 mm/h, and > 50.0 mm/h. The
objective of the RVR technique is to balance the
distribution of samples within the moderate,
heavy, and very heavy rain classes, thereby
increasing the number of rainfall samples in
these classes and reducing the disparity with the
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enhances the models’ sensitivity to minority
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Figure 2. Proposed model architecture for rainfall estimation.
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3.2. Machine Learning Algorithms

The RF algorithm, introduced by Breiman in
2001, builds an ensemble of decision trees using
bootstrap aggregation [23]. The trees are trained
in parallel on random subsets of the input data.
The final predictions are made by majority
voting for classification or averaging for
regression [4]. During the training process, the
decision trees are grown simultaneously in a
level-wise manner. Deeper trees tend to provide
more detailed learning and higher accuracy;
however, they are also more prone to overfitting
and require longer training time [24].

The XGB is an optimized implementation of
the Gradient Boosting framework, which
constructs an ensemble of weak learners,
typically decision trees, to minimize a
predefined loss function and enhance predictive
performance [25]. XGB employs a level-wise
tree growth strategy (breadth-first expansion),
where each subsequent tree is built to correct the
residuals (errors) from previous trees, thereby
iteratively enhancing model accuracy [5].

The LGBM is an optimized Gradient
Boosting framework that enhances efficiency
and scalability. It grows trees leaf-wise, uses
histogram-based learning to reduce memory
usage, and applies Exclusive Feature Bundling

Additionally, it employs Gradient-based One-
Side Sampling (GOSS) to prioritize samples
with large gradients, preserving key training
information while reducing sample size [6].

3.3. Training and Evaluation

The input dataset is divided into training
(80%) and testing (20%) subsets. This study
applied 5-fold cross-validation on the training
set using the Scikit-learn library to optimize the
training process. Subsequently, the classification
performance was evaluated using the F1-score,
CSI, POD, FAR (False Alarm Ratio), BIAS
(Bias Score), MCC [26], and SEDI [27], and the
results are presented in Table 1. Meanwhile, the
regression performance was assessed using
metrics of the CC, MAE, RMSE, and MLSE [28],
and is presented in Table 2. In these two tables,
TP- denotes the number of rainfall samples
correctly classified as rain; FP - represents the
number of non-rain samples incorrectly
classified as rain; TN - indicates the number of
non-rain samples correctly classified as non-
rain; and FN - refers to the number of rainfall
samples incorrectly classified as non-rain; and N
- the total number of samples; p,, p, represent

the estimated and observed rainfall values,
respectively.

(EFB) to lower feature dimensionality.
Table 1. Basic classification metrics
Name Equation Range Optimal
F1-score F1— score = (2TP)/(2TP + FP + FN) [0,1] 1
CSI CSI =TP/(TP + FP+FN) [0,1] 1
POD POD = TP/(TP + FN) [0,1] 1
MCC MCC - TP XTN —FP X FN 11 :
" (TP +FP) X (TP + FN) x (TN + FP) X (TN + FN) [=1.1]

SEDI — in(F)—1n(H)+1n(1—H)—in(1—F)

Fy+In(H)+In(l-H)+In(1-F
SEDI n(F) + In(H) + In( ) + In( ) L11] !

TP FP
Here: H = s F =
TP + FN FP+TN

FAR FAR = FP/(FP+TP) [0, ) 0
BIAS BIAS = (TP + FP)/(TP + FN) (-00, o0) 1
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Table 2. Basic regression metrics

Name Equation Range | Optimal
MAE MAE:Zpl-—pj‘ [0: inf] 0
RMSE [0: inf] 0
RMSE =
2
1 c+1)—1 -+1
MLSE MLSE — 2. (log(p; +1)~log(p ; +1)) [0: inf] 0
AN
Z(Pj _Pj)(Pi -p;)
cC cC= — —~ [-1: 1] 1
2 2
\/Z(Pj _Pj) Z(Pl' _Pi)
4. Result Slope of sub-gridscale orography (SLOR),

4.1. Results of Features Selection

The original input data of the proposed
architecture consists of 73 features: 55 derived
from Himawari-8 BT data including (10 single
IR bands and 45 band differences between them
[29, 30], and 17 meteorological features from
the ERAS5 dataset, including K-Index (KX),
Total Column Water (TCW), Total Column
Water Vapor (TCWYV), Convective Inhibition
(CIN), Instantaneous Moisture Flux (IMF),
Convective Available Potential Energy (CAPE),

Anisotropy of sub-gridscale orography (ISOR),
Relative Humidity at 850 hPa, 500 hPa, and 250
hPa (R850, R500, R250), and zonal and
meridional wind components at the same

pressure levels (UWIND850, UWINDS00,
UWIND250, VWINDS50, VWINDS500,
VWIND250), along with the ASTER DEM

feature [31]. These features are ranked based on
their importance using the RF Importance
strategy [30], with a threshold of 0.02 to select
the most relevant features for each model (M1—
Mb6) and shown in Table 3.

Table 3. Selected features for the models M1, M2, M3, M4, M5, and M6

M1 M2 M3 M4 M5 M6
irb_bl6 i2b bl6 UWINDS50 TCWV UWINDS50 bll_bl6
bll bl6 irb_b16 bl4 bl6 UWINDS50 | VWIND500 | VWIND250
b10_irb bll_i2b UWINDS500 KX UWIND250 KX
bl4_i2b wvb_bl4 CAPE R850 VWINDS50 R850
bl4 bl6 bl4 bl6 | VWIND500 | UWINDS500 TCW UWIND250
i2b bl6 UWINDS50 i2b bl6 CAPE KX CAPE
b10 bll VWINDS50 irb_b16 VWINDS50 irb_b16 b1l _bl4
UWINDS50 R850 VWIND250 bl4 bl6 i2b bl6 VWINDS50
R850 ISOR TCW ISOR bl4_i2b TCWV
DEM DEM KX DEM b10_wvb VWIND500
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From Table 3, it can be observed that the
Himawari-8 features, namely the BT differences
in IR channels, reflect key physical properties of
clouds, including cloud-top temperature, optical
thickness, cloud-top height, and cloud water
content [29]. Additionally, the ERAS features
provide supplementary information directly
related to rainfall activity in the study area.
Among them, R850 represents atmospheric
moisture in the lower troposphere. TCW and
TCWYV indicate the total column water and water
vapor content in the atmosphere. KX and CAPE
represent atmospheric instability and vertical air
motion. The UWIND and VWIND features (at
850, 500, and 250 hPa) describe the direction
and intensity of wind, while ISOR and SLOR
capture topographic characteristics such as slope
and elevation [32]. The ASTER DEM provides
detailed information on the elevation of grid
points, which is relevant to the distribution and
intensity of surface rainfall [33]. These features
are directly associated with the formation and
movement of rainfall and also reflect its
characteristics on the surface.

4.2. Results of Data Augmentation

The number of rainfall samples across the 11
intervals within the four rainfall classes, before
and after applying the RVR-based data
augmentation technique, is presented in Table 4.
As shown in Table 4, prior to data augmentation,
the majority of rainfall samples were
concentrated in the lower intensity intervals, and
the number of samples gradually decreases as
rainfall intensity increases. After performing
RVR-based data augmentation, the distribution
of samples within these three classes became
more uniform across the entire class range, with
a substantial improvement in the number of
high-intensity rainfall samples. As a result, the
disparity in sample counts between these three
classes and the weak rain class was significantly
reduced—particularly for the very heavy rain
class, the ratio improved from approximately
1:43 (before augmentation) to around 1:3 (after
augmentation).

Table 4. The number of rainfall samples class before and after augmentation using the RVR technique

Rainfall class Value ranging .Rate of Number of samples
(mm/h) increase Before After
Weak 0.1-1.0 1.0 77,176 77,176
1.0-2.0 1.0 21,285 21,285
Moderate 20-3.5 1.3 14,450 18,785
3.5-5.0 1.8 9,765 17,577
5.0-8.0 1.9 10,303 19,576
Heavy 8.0-12.0 2.5 6,462 16,155
12.0-20.0 3.0 5,765 17,295
20.0-30.0 5.0 2,655 13,275

30.0 —40.0 7.0 1,030 7,210

Very heavy 40.0 —50.0 15.0 430 6,450
> 50.0 20.0 338 6,760

4.3. Rain Classification Performance

In this section, models M1 and M2 are
independently evaluated using the F1-score
classification metric at first. After that, the
classification performance of the final proposed
rainfall products using the three algorithms (RF,

XGB, and LGBM) is assessed and compared
with the four comparative rainfall products,
including IMERG Final Run V07, IMERG Early
Run V07, GSMaP MVK Gauge V08, and
PERSIANN_CCS, according to metrics of the
POD, CSI, FAR, BIAS, SEDI, and MCC.
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4.3.1. Two-class Rainfall Classification Results

The classification results of rain and no-rain
events using model M1 with RF, XGB, and
LGBM algorithms, in both cases without/with
using the RVR-based balancing technique, are
presented in Figure 3. As shown in Figure 3, the
classification performance of model M1
improves after applying data balancing,
particularly in terms of the F1-score for the rain
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4.3.2. Four-classs Rainfall Classification
Results

The four-class rainfall classification results of
the M2 model are shown in Figure 4.
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The red and green colors represent the use of
data balancing with CW and the absence of data
balancing, respectively. As illustrated in this
figure, the classification performance for the
minority classes improved significantly after
applying CW-based balancing techniques. In
particular, the models were nearly incapable of
classifying the very heavy rain events in the
imbalanced scenario, with test F1-scores close to
zero (Figure 4d). However, after balancing the
data, performance in this class improved
substantially, with test F1-scores reaching 0.20
for the LGBM model and 0.18 for both the XGB
and RF models. Although data balancing helps
significantly  improve the classification
performance for minority rain classes, it led to a
slight decrease (~ 0.01) in the performance of
the weak rain class (Figure 4a). However, this
reduction is negligible, as the Fl-score for the
weak rain class remains relatively high,
averaging 0.75.

4.3.3. Classification Performance of the
Proposed Rain Classification Products

The performance of proposed rainfall
products constructed from six models, Ml
through M6, in which M1 applies the RVR
technique and M2 utilizes the CW for data
balancing, is evaluated. The proposed rainfall
products based on LGBM, XGB, and RF are
denoted as LGBM-RVR-CW, XGB-RVR-CW,
and RF-RVR-CW, respectively, to highlight the
data balancing techniques applied. The proposed
rainfall products were matched with the
comparative rainfall products to a common
spatial and temporal resolution. A total of 3,332
rainfall maps were employed to evaluate their
performance. The classification performance of
these rainfall products was assessed using
rainfall data from 175 independent rain gauge
stations at five specific time intervals, based on
metrics including POD, CSI, FAR, BIAS, SEDI,
and MCC. The results are illustrated in Figure 5
and Figure 6.
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Figure 5. Overall rainfall classification performance of the proposed rainfall products, evaluated against
ground-based rain gauge observations (ground truth). The green dashed line represents BIAS,
while the black solid curve represents the CSI value.
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Based on Figure 5, the performance of the
rainfall products was evaluated using four
metrics: POD, FAR, BIAS, and CSIL
Specifically, for the POD, all three proposed
rainfall products achieved higher values
compared to the four comparative products.
Among them, LGBM-RVR-CW and RF-RVR-
CW obtained the highest POD value of 0.80,
which is 11.11% higher than XGB-RVR-CW.
Compared with the rainfall products, the POD of
LGBM-RVR-CW and RF-RVR-CW was 6.67%
higher than that of the best delayed product
(GSMaP_MVK Gauge V08) and 86.0% higher
than that of the best near-real-time product
(IMERG Early Run V07). These results show
that LGBM-RVR-CW and RF-RVR-CW are the
products with the highest rain/no-rain
classification performance, and they positively
affect the accuracy of subsequent rainfall
intensity classification in the proposed rainfall
products. In terms of the CSI metric, all three
proposed products outperformed the four
comparative rainfall products. Specifically,
LGBM-RVR-CW achieved the highest CSI
value of 0.54, followed by XGB-RVR-CW
(0.53) and RF-RVR-CW (0.52).

GSMaP_MVK Gauge V08 had the highest CSI
among the best delayed products but was still
8.0% lower than LGBM-RVR-CW, while
IMERG Early Run V07, the best near-real-time
rainfall product, was 54.29% lower than LGBM-
RVR-CW.

Regarding the BIAS metric, XGB-RVR-CW
achieved the best value of 1.07, followed by
GSMaP MVK Gauge V08 (1.25). Although
LGBM-RVR-CW and RF-RVR-CW showed
slightly higher BIAS than the latter, they still
performed better than the three other
comparative products. In terms of the FAR,
XGB-RVR-CW had the lowest value among the
proposed models, at 0.33, followed by LGBM-
RVR-CW (0.37) and RF-RVR-CW (0.41).
Although PERSIANN CCS had the lowest FAR
value (0.29) among the products investigated, it
exhibited the poorest CSI, POD, and BIAS
values. Compared with the other comparative
products, XGB-RVR-CW and LGBM-RVR-
CW achieved FAR values of approximately
0.35, which are comparable to those of IMERG
Final Run V07 and IMERG Early Run V07 but
12.5% better than GSMaP_MVK Gauge V08.

SEDI

-0.13

07

MCC

EIMERG Final Run V07
BELGBM-RVR-CW

® IMERG Early Run V07
EXGB-RVR-CW

EGSMaP_MVK_Gauge V08
RF-RVR-CW

PERSIANN_CCS

(@)

(b)

Figure 6. Rainfall classification performance of the proposed rainfall product: (a) SEDL (b) MCC.

To evaluate the classification performance of
the rainfall products in rare events (heavy and
very heavy rainfall), the MCC and SEDI metrics
were also used. The MCC reflects the overall

accuracy of the model and is particularly
effective for imbalanced datasets. In contrast, the
SEDI focuses on assessing the ability to
correctly classify rare rainfall samples within the
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heavy and very heavy rain class. The results in
Figure 6 indicate that the proposed rainfall
products consistently  outperform  the
comparative rainfall products in terms of these
two classification metrics. Particularly, the
LGBM-RVR-CW product achieves the highest
SEDI and MCC values of 0.58 and 0.59,
respectively. Compared with the comparative
rainfall products, it is observed that LGBM-
RVR-CW outperforms the best-performing
reference product, GSMaP_ MVK Gauge V08,
with improvements of 20.83% in SEDI and
11.32% in MCC.

From above analyses, it is concluded that the
proposed product LGBM-RVR-CW has the
highest rainfall classification performance among
the seven investigateded rainfall products,
especially effective for rare rainfall events with
heavy and very heavy rainfall intensity.

4.4. Rainfall Regression Results

It can be seen from Figure 7a that the number
of rainfall samples across the four rainfall classes
is highly imbalanced, with the “very heavy rain”
class being particularly underrepresented,
accounting for only 1.2% (1798 samples). To
evaluate the performance of the proposed
rainfall products, the assessment process was
carried out in two stages as follows.

In the first stage, the performance of the
regression models M3 to M6, which use the
LGBM, XGB, and RF algorithms, was
independently evaluated for each rainfall class in
Section 4.4.1.

In the second stage, the final proposed
regression products were compared with the four
regional rainfall products in terms of regression
metrics in Section 4.4.2.
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Figure 7. Rainfall regression performance for each rain class: (a) Number of samples per rain class,
(b) CC, (c) MAE, (d) RMSE.
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4.4.1. Regression Results for Each Rainfall
Class

The regression performance for each rainfall
class of the three proposed rainfall products was
compared with the regression performance of the
four regional comparative rainfall products using
CC, MAE, and RMSE metrics, as illustrated in
Figures 7b-7d. For the error metrics MAE
(Figure 7c) and RMSE (Figure 7d), the three
proposed rainfall products exhibit approximately
similar values across all four-class of rainfall and
consistently outperform the comparative rainfall
products. Notably, for the very heavy rainfall
class, these metrics show substantial
improvements. Specifically, the MAE and
RMSE of the three proposed products are
approximately 8.70 mm/h and approximately
11.10  mm/h, respectively, representing
improvements of approximately 65.69% and
62.60% compared to the best-performing
delayed comparative product (IMERG Final Run
V07). To the best-performing near real-time
comparative product (IMERG Early Run V07),
the improvements in MAE and RMSE are
approximately 67.01% and 63.53%,
respectively.

Regarding the CC values (Figure 7b), for the
weak, moderate, and heavy rainfall classes, the
three proposed rainfall products consistently
outperform the comparative products. In the very
heavy rainfall class, the proposed product
LGBM-RVR-CW achieves the highest CC value
among all evaluated products, reaching 0.28,
followed by XGB-RVR-CW with a CC of 0.23.
These results are higher than those of all
comparative products. Specifically, the proposed
products LGBM-RVR-CW and XGB-RVR-CW
exhibit higher CC values compared to the best
delayed comparative product,
GSMaP_MVK Gauge V08, by factors of 3.11
and 2.56, respectively. Meanwhile, the proposed
RF-RVR-CW product records a CC of 0.03,
which is lower than GSMaP_MVK Gauge V08
but comparable to the other three comparative
products.

4.4.2. Regression Performance of the Final
Proposed Rainfall Products

The rainfall regression performance of the
three proposed products, such as LGBM-RVR-
CW, XGB-RVR-CW, and RF-RVR-CW, was
compared against four comparative products
using standard regression metrics: MAE, RMSE,
MLSE, and CC, and are illustrated in Figure 8.

As shown in Figure 8, among the evaluated

rainfall products, LGBM-RVR-CW
demonstrates overall superior regression
performance compared to the others.

Specifically, among the three proposed products,
LGBM-RVR-CW achieves an MAE of 2.91
mm/h (Figure 8a), an RMSE of 5.81 mm/h
(Figure 8b), an MLSE of 0.47 (Figure 8c), and a
CC of 0.38 (Figure 8d). LGBM-RVR-CW
outperforms RF-RVR-CW and XGB-RVR-CW,
with improvements of 24.81% and 42.38% in
MAE, 10.62% and 32.99% in RMSE, and
29.85% and 43.37% in MLSE, respectively.
Additionally, the CC of LGBM-RVR-CW also
exceeds that of these two products by 5.56%.

In addition, when compared with the four
comparative rainfall products, LGBM-RVR-CW
also exhibits significant advantages. In terms of
MAE (Figure 8a), it improves the delayed
products IMERG Final Run V07 and
GSMaP_MVK Gauge V08 by 18.03% and
3.32%, respectively, and the near-real-time
products PERSIANN CCS and IMERG Early
Run V07 by 4.90% and 26.32%, respectively.
For RMSE (Figure 8b), LGBM-RVR-CW
outperforms the two delayed products, IMERG
Final Run V07 and GSMaP_MVK Gauge V08,
by 24.55% and 3.17%, respectively. Similarly,
LGBM-RVR-CW outperforms the two near-
real-time products, IMERG Early Run V07 and
PERSIANN CCS, by 31.73% and 7.93%,
respectively. With respect to MSLE (Figure 8c),
the proposed LGBM-RVR-CW product shows
lower values, with improvements of 10.64%
over IMERG Final Run V07 and 2.08% over
GSMaP_MVK Gauge V08, while also
achieving improvements of 21.67% and 22.95%
over the near-real-time products IMERG Early
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Run V07 and PERSIANN_ CCS, respectively.
Regarding CC (Figure 8d), LGBM-RVR-CW
shows a correlation coefficient 17.39% lower
than IMERG Final Run V07 and 7.89% lower
than IMERG Early Run V07, but equivalent to
GSMaP MVK Gauge V08 and 15.15% higher
than PERSIANN CCS. When comparing the
CC of the three proposed products, LGBM-
RVR-CW outperforms XGB-RVR-CW and RF-
RVR-CW by 5.56%. Accordingly, the proposed
LGBM-RVR-CW rainfall product demonstrates
the best rainfall regression performance among
all evaluated rainfall products.

Based on the classification and regression
performance of the evaluated rainfall products
presented in Sections 4.3 and 4.4, the LGBM-
RVR-CW product demonstrated the highest
overall performance and was consequently
selected as the final proposed rainfall product.
This finding indicates the strong capability of the
proposed model to accurately estimate rainfall
distribution. However, accurately predicting
extreme rainfall events (>30.0 mm/h) remains a
challenging task.
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Figure 8. Rainfall estimation performance of rainfall products based on regression metrics:
(a) MAE, (b) RMSE, (c¢) MLSE, (d) CC.

5. Conclusions

This study introduces a multi-layered
machine learning architecture for enhanced
rainfall estimation over Central Vietnam,
leveraging three algorithms: RF, XGB, and

LGBM. The model utilizes a combination of
input data sources, including Himawari-8
satellite imagery, ERAS reanalysis data, ASTER
DEM, and ground-based rainfall observations.
To address class imbalance, two data balancing
techniques were employed: RVR for two



V. D. Dong et al. / VNU Journal of Science: Earth and Environmental Sciences, Vol. 41, No. 4 (2025) 11-27 25

(rain/no-rain) classification and CW for four-
class classification (weak/moderate/heavy/very
heavy rain).

Three rainfall estimation products were
proposed based on the integration of
classification and regression models, which are
RF-RVR-CW, XGB-RVR-CW, and LGBM-
RVR-CW. Among these, the LGBM-RVR-CW
product demonstrated the highest overall
performance. When compared with four
benchmark rainfall products, including IMERG
Final Run V07, IMERG Early Run V07,
GSMaP_MVK Gauge V08, and
PERSIANN CCS, the LGBM-RVR-CW
product consistently outperformed them. In
terms of classification performance, the
proposed  product achieved  substantial
improvements compared to the best-performing
comparative product, GSMaP MVK Gauge
V08, with increases of 6.67% in POD, 8.00% in
CSI, 11.32% in MCC, and 20.83% in SEDI.
Regarding rainfall regression performance,
LGBM-RVR-CW produced the lowest error
values, with an MAE of 2.91 mm/h, an RMSE of
5.81 mm/h, and an MSLE of 0.47. For CC, the
proposed product, LGBM-RVR-CW, achieved a
value of 0.38, which is slightly lower than
IMERG Final Run V07 (0.46) and IMERG Early
Run Vo7 (0.41), but equal to
GSMaP_MVK Gauge V08 and higher than
PERSIANN_CCS (0.33).

However, the prediction accuracy of the
proposed products for extreme rainfall events (>
30.0 mm/h) remains a limitation. Future work
may focus on incorporating advanced deep
learning models to improve the prediction of
very heavy rainfall.
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