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Abstract: This study proposes a multi-layer machine learning architecture for multi-class rainfall 

estimation in Central Vietnam. The input data includes Himawari-8 satellite imagery, ERA5 
reanalysis data, ASTER DEM, and rain gauge observations. Four regional satellite-based rainfall 

products, including IMERG Final Run V07, IMERG Early Run V07, GSMaP_MVK_Gauge V08, 

and PERSIANN_CCS, were used as comparative datasets. Three machine learning algorithms, 

including Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGB), and 

Random Forest (RF), were employed within the proposed architecture. Performance evaluation 

based on rain gauge observations showed that the LGBM-based rainfall product achieved the highest 

classification performance among the three surveyed products, with a Probability of Detection 

(POD) of 0.80, a Critical Success Index (CSI) of 0.54, a Matthews Correlation Coefficient (MCC) 

of 0.59, and a Symmetric Extremal Dependence Index (SEDI) of 0.58. Compared to the best-

performing rainfall product (GSMaP_MVK_Gauge V08), the LGBM-based product demonstrated 

significant improvements in classification performance, with increases of 6.67% in POD, 8.00% in 

CSI, 11.32% in MCC, and 20.83% in SEDI. In terms of rainfall regression performance, the LGBM-
based product also outperformed the other evaluated products, exhibiting the lowest errors, with a 

Mean Absolute Error (MAE) of 2.91 mm/h, Root Mean Square Error (RMSE) of 5.81 mm/h, and 

Mean Logarithmic Squared Error (MLSE) of 0.47. 
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1. Introduction 

The central region of Vietnam frequently 

experiences extreme weather events, including 

prolonged heavy rainfall events that cause 
serious consequences. Therefore, developing a 

highly accurate rainfall dataset for this region is 

of great significance, not only to support 

economic development but also to enable the 
government to formulate effective response 

strategies to rainfall-induced extreme weather 

events [1, 2]. 
Machine learning (ML) has emerged as an 

effective approach for rainfall estimation, 

capable of processing large-scale, multisource 
datasets and modeling complex nonlinear 

relationships [3]. Min et al., (2018) employed the 

Random Forest (RF) algorithm to estimate 

summer rainfall across East Asia, using infrared 
(IR) band data from the Himawari-8 satellite 

combined with digital elevation model (DEM) 

data and numerical weather prediction (NWP) 
data as input features for model training. Rainfall 

data from the IMERG product were used as 

labels during the training process. Their 
proposed model outperformed the IMERG 

rainfall product, achieving a rain/no-rain 

classification accuracy (Acc) of 0.87, an MAE of 

0.51 mm/h, and an RMSE of 2.0 mm/h [4]. 
Similarly, Putra et al. (2024) conducted rainfall 

estimation for six different regions in 

Indonesia—Bandar Lampung, Banjarmasin, 
Pontianak, Deli Serdang, Gorontalo, and Biak—

using the XGB model. The input data consisted 

of brightness temperature (BT) from the 

Himawari-8 satellite’s IR band 13 (10.4 µm), 
along with weather radar data, which were used 

as training features. Rainfall data from the 

IMERG Early Run product served as the training 
label, while measurements from Automated 

Weather Observing System (AWOS) rain gauge 

stations were used for validation. The results 
demonstrated that the XGB model outperformed 

the IMERG Early Run product in rainfall 

classification, with  Acc values of 0.89, 0.91, 

0.89, 0.90, 0.92, and 0.90 for the respective 
regions, and corresponding RMSE values of 

2.75 mm/h, 2.57 mm/h, 3.08 mm/h, 2.64 mm/h, 

1.85 mm/h, and 2.48 mm/h [5]. In the study by 

Giang et al., (2023), the LGBM model was 
employed to estimate daily-scale rainfall over 

South Korea using three satellite precipitation 

products: the Climate Hazards Group InfraRed 
Precipitation with Station data (CHIRPS), the 

Global Satellite Mapping of Precipitation 

(GSMaP), and the Tropical Rainfall Measuring 

Mission (TRMM). Rainfall observations from 
Automatic Weather Stations (AWS) were used 

as training labels, while DEM data and 

Euclidean Distance (ED) between stations 
served as supplementary inputs. An independent 

dataset from the Automated Synoptic 

Observation System (ASOS) was used for 
validation. The results indicated that the rainfall 

estimates produced by their proposed model 

outperformed the original satellite precipitation 

products, achieving a correlation coefficient 
(CC) of 0.944, an MAE of 1.18 mm/day, and an 

RMSE of 4.55 mm/day [6]. Nevertheless, 

accurately estimating heavy rain events in 
mountainous regions remains a significant 

challenge and limitation in these studies. 

In Vietnam, achieving high-accuracy rainfall 

estimation from satellite data remains a 
significant challenge, particularly for heavy and 

extreme rainfall events in mountainous regions 

[1, 7, 8]. To improve the accuracy of multi-class 
rainfall estimation, especially for heavy rainfall 

events in Central Vietnam, we propose to apply 

the multi-layer ML technique in this study. The 
input dataset comprises satellite imagery from 

Himawari-8, ground-based rainfall observations 

from meteorological stations, and auxiliary data 

sources including ERA5 reanalysis and the 
ASTER Digital Elevation Model (ASTER 

DEM). The proposed model categorizes rainfall 

intensity into four distinct classes: weak rain, 
moderate rain, heavy rain, and very heavy rain 

[9, 10]. Such stratification is expected to 

improve the accuracy of both classification and 
overall rainfall estimation in detail. Furthermore, 

to address the issue of class imbalance in the 

input data—particularly the underrepresentation 

of very heavy rainfall samples compared to weak 
rain—two data augmentation techniques (the 
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Randomized Value-based Rainfall Augmentation 

(RVR) and Class Weighting (CW)) were applied 
for the two-class classification model and the four-

class classification model, respectively. 

The remainder of this paper is structured as 
follows. Section 2 describes the datasets and 

research methodology. Section 3 presents the 

results and evaluation. Section 4 provides the 

conclusions and future research directions.  

2. Case Study and Datasets 

2.1. Case Study 

The study area extends from Quang Binh to 

Da Nang. This region experiences a very high 
average annual rainfall, with the majority 

occurring from August to December. The terrain 

is predominantly mountainous, with elevation 

increasing significantly from east to west. As a 
result, rainfall in this area tends to be locally 

distributed, primarily concentrated in 

mountainous regions [11]. The climate is 
influenced by both the southwest and northeast 

monsoons [12]. Monthly rainfall statistics for the 

years 2019–2020 in the study area are presented 

in Figure 1. 

2.2. Datasets 

The data used in this study were collected 

from various sources. The datasets used for 

model training include satellite data from 
Himawari-8, provided by the Japan 

Meteorological Agency (JMA), with a spatial 

resolution ranging from 0.5 to 2 km and a 

temporal resolution of 10 minutes [4]. In this 
study, BT data extracted from 10 infrared bands 

of Himawari-8 served as the primary input 

features for model training. In addition, the 
ERA5 reanalysis dataset, developed by the 

European Centre for Medium-Range Weather 

Forecasts (ECMWF) [13], provides climate, 

meteorological, and geophysical variables for 
the region and was used as supplementary input 

to improve model accuracy [14] The ASTER 

DEM, developed by NASA with a spatial 
resolution of 30 meters, was also integrated as an 

additional input to enhance the model's 

performance [15].  

 

Figure 1. Monthly rainfall statistics for the study area in 2019–2020. 

To evaluate the model's performance, four 

comparative precipitation products at the study 

area were used. Among them, the Integrated 
Multi-satellite Retrievals for GPM (IMERG) 

products, including IMERG Early Run (V07) 

and IMERG Final Run (V07), were developed 

by NASA and JAXA to monitor global 
precipitation. Both products offer data at a 
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spatial resolution of 0.1° × 0.1° and a temporal 

resolution of 30 minutes. IMERG Early Run 
V07 is a near-real-time product, available from 

2023, with a latency of approximately six hours, 

whereas IMERG Final Run Version 07 is a post-
processed product with a latency of about 3.5 

months [16, 7]. The Global Satellite Mapping of 

Precipitation – Microwave–Infrared Combined 

Product with Kalman Filter 
(GSMaP_MVK_Gauge V08), developed by 

JAXA, provides hourly global precipitation 

estimates at a spatial resolution of 0.1° × 0.1° 
with a latency of approximately three days, 

covering the period from 1988 to 2022 [18]. 

Additionally, the Precipitation Estimation from 
Remotely Sensed Information using Artificial 

Neural Networks - Cloud Classification System 

(PERSIANN_CCS), developed by the Center for 

Hydrometeorology and Remote Sensing 
(CHRS), provides near-real-time precipitation 

estimates at a higher spatial resolution of 0.04° × 

0.04° and a temporal resolution of one hour, with 
very low latency [19]. 

Rain gauge data provided by the National 

Centre for Hydro-Meteorological Network 

(NCN) during the period 2019–2020 were used 
as ground-truth labels for model evaluation and 

training. Specifically, rainfall data recorded at 

five time points of the day (00:00, 06:00, 12:00, 
16:00, and 21:00) were used to construct the 

evaluation and reference dataset, while the 

remaining time points were used to build the 
training dataset. 

3. Methodology 

3.1. Proposed Architecture 

The proposed architecture for rainfall 

estimation is illustrated in Figure 2. The input 
data, collected from multiple sources, were 

preprocessed to ensure consistency in both 

spatial and temporal resolutions while capturing 
the detailed variability of rainfall in the study 

area and optimizing computational resources. 

Specifically, the data were standardized to a 

spatial resolution of 4 km and a temporal 

resolution of 1 hour. For temporal resolutions, 

the Himawari-8 satellite data, originally 
available at 10-minute intervals, were 

aggregated by averaging six consecutive 

observations per hour to match the 1-hour 
temporal resolution of the ERA5 reanalysis data, 

ASTER DEM, and rain gauge measurements. 

For spatial resolutions, the ERA5 data, originally 

at a coarse resolution of 25 km, were resampled 
to 4 km using the nearest neighbor interpolation 

technique [20]. The Himawari-8 data, with an 

original resolution of 2 km, and the ASTER 
DEM data, originally at 30 m, were both 

resampled to 4 km using the average pooling 

technique [21].  
The data input to model M1 is classified as 

either rain or no-rain events using a rainfall 

threshold of 0.1 mm/h. Model M2 then classifies 

the identified rain events into four intensity 
categories: weak (0.1–1.0 mm/h), moderate 

(1.0–5.0 mm/h), heavy (5.0–30.0 mm/h), and 

very heavy (> 30.0 mm/h). The division of 
rainfall into four classes with corresponding 

intensities is intended to reflect the 

characteristics of precipitation in the study area, 

where rapid changes in intensity and spatial 
extent occur due to variations in topography and 

complex, localized climatic conditions [22]. 

Models M3 to M6 are then used to perform 
regression on rainfall amounts for each 

corresponding rainfall category classified by 

M2. The outputs of these regression models are 
then combined based on the predicted rainfall 

classes to construct the final rainfall products. 

Subsequently, the proposed rainfall product was 

matching in both spatial and temporal resolution 
with the four comparative rainfall products, 

namely GSMaP_MVK_Gauge V08, IMERG 

Final Run V07, IMERG Early Run V07, and 
PERSIANN_CCS. The classification and 

regression performance of these rainfall products 

was then evaluated against rain gauge 
observations (ground truth) using the metrics 

detailed in Section 3.3.  

To address data class imbalance in the 

classification models, the RVR technique is 
applied to the model M1, while a CW strategy is 
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used for the model M2. The RVR technique 

randomly augments rainfall samples based on 
intensity intervals. Specifically, the entire range 

of rainfall values recorded from rain gauge 

stations, ranging from 0.1 to 95.2 mm/h, was 
divided into 11 narrower sub-ranges, including: 

0.1–1.0 mm/h, 1.0–2.0 mm/h, 2.0–3.5 mm/h, 

3.5–5.0 mm/h, 5.0–8.0 mm/h, 8.0–12.0 mm/h, 

12.0–20.0 mm/h, 20.0–30.0 mm/h, 30.0–40.0 
mm/h, 40.0–50.0 mm/h, and > 50.0 mm/h. The 

objective of the RVR technique is to balance the 

distribution of samples within the moderate, 
heavy, and very heavy rain classes, thereby 

increasing the number of rainfall samples in 

these classes and reducing the disparity with the 

majority class (weak rain). For instance, the 

number of samples within each sub-range was 
randomly increased at different rates, with the 

criterion that sub-ranges with higher rainfall 

intensity values (fewer samples) were 
augmented at higher rates compared to those 

with lower rainfall intensity values (more 

samples). On the other hand, the CW strategy 

enhances the models’ sensitivity to minority 
classes by assigning them higher weights during 

training. To enhance model performance and 

reduce computational complexity during 
training, feature selection and hyperparameter 

optimization techniques are employed for all ML 

models from M1 to M6 (refer to [9] for detail). 

Figure 2. Proposed model architecture for rainfall estimation. 
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 3.2. Machine Learning Algorithms 

The RF algorithm, introduced by Breiman in 

2001, builds an ensemble of decision trees using 

bootstrap aggregation [23]. The trees are trained 
in parallel on random subsets of the input data. 

The final predictions are made by majority 

voting for classification or averaging for 

regression [4]. During the training process, the 
decision trees are grown simultaneously in a 

level-wise manner. Deeper trees tend to provide 

more detailed learning and higher accuracy; 
however, they are also more prone to overfitting 

and require longer training time [24]. 

 The XGB is an optimized implementation of 
the Gradient Boosting framework, which 

constructs an ensemble of weak learners, 

typically decision trees, to minimize a 

predefined loss function and enhance predictive 
performance [25]. XGB employs a level-wise 

tree growth strategy (breadth-first expansion), 

where each subsequent tree is built to correct the 
residuals (errors) from previous trees, thereby 

iteratively enhancing model accuracy [5]. 

The LGBM is an optimized Gradient 
Boosting framework that enhances efficiency 

and scalability. It grows trees leaf-wise, uses 

histogram-based learning to reduce memory 

usage, and applies Exclusive Feature Bundling 
(EFB) to lower feature dimensionality. 

Additionally, it employs Gradient-based One-

Side Sampling (GOSS) to prioritize samples 
with large gradients, preserving key training 

information while reducing sample size [6]. 

3.3. Training and Evaluation  

The input dataset is divided into training 
(80%) and testing (20%) subsets. This study 

applied 5-fold cross-validation on the training 

set using the Scikit-learn library to optimize the 

training process. Subsequently, the classification 
performance was evaluated using the F1-score, 

CSI, POD, FAR (False Alarm Ratio), BIAS 

(Bias Score), MCC [26], and SEDI [27], and the 
results are presented in Table 1. Meanwhile, the 

regression performance was assessed using 

metrics of the CC, MAE, RMSE, and MLSE [28], 

and is presented in Table 2.  In these two tables, 
TP- denotes the number of rainfall samples 

correctly classified as rain; FP - represents the 

number of non-rain samples incorrectly 
classified as rain; TN - indicates the number of 

non-rain samples correctly classified as non-

rain; and FN - refers to the number of rainfall 
samples incorrectly classified as non-rain; and N 

- the total number of samples; ,i jp p  represent 

the estimated and observed rainfall values, 

respectively. 

Table 1. Basic classification metrics 

Name Equation Range Optimal 

F1-score 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = (2𝑇𝑃)/(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)   [0, 1] 1 

CSI 𝐶𝑆𝐼 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)⁄    [0, 1] 1 

POD 𝑃𝑂𝐷 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)   [0, 1] 1 

MCC 𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 [−1, 1] 1 

SEDI 

ln( ) ln( ) ln(1 ) ln(1 )

ln( ) ln( ) ln(1 ) ln(1 )

F H H F
SEDI

F H H F

− + − − −
=

+ + − + −
 

Here: ;
TP FP

H F
TP FN FP TN

= =
+ +

 

[-1,1] 1 

FAR 𝐹𝐴𝑅 =  𝐹𝑃/(𝐹𝑃 + 𝑇𝑃) [0, ∞) 0 

BIAS 𝐵𝐼𝐴𝑆 = ( 𝑇𝑃 + 𝐹𝑃)/(𝑇𝑃 + 𝐹𝑁) (-∞, ∞) 1 
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Table 2. Basic regression metrics 

Name Equation Range Optimal 

MAE 
p pi j

MAE
N

−
=  [0: inf] 0 

RMSE ( )
2

p pi j
RMSE

N

−
=  

[0: inf] 0 

MLSE 

2(log( 1) log( 1))p pi j
MLSE

N

+ − +
=  [0: inf] 0 

CC 

( )( )

2 2
( ) ( )

p p p pj j i i
CC

p p p pj j i i

− 
− −

=
− 

− − 

 [-1: 1] 1 

4. Result 

4.1. Results of Features Selection 

The original input data of the proposed 

architecture consists of 73 features: 55 derived 
from Himawari-8 BT data including (10 single 

IR bands  and 45 band differences between them  

[29, 30], and  17 meteorological features from 

the ERA5 dataset, including K-Index (KX), 
Total Column Water (TCW), Total Column 

Water Vapor (TCWV), Convective Inhibition 

(CIN), Instantaneous Moisture Flux (IMF), 
Convective Available Potential Energy (CAPE), 

Slope of sub-gridscale orography (SLOR), 

Anisotropy of sub-gridscale orography (ISOR), 

Relative Humidity at 850 hPa, 500 hPa, and 250 
hPa (R850, R500, R250), and zonal and 

meridional wind components at the same 

pressure levels (UWIND850, UWIND500, 

UWIND250, VWIND850, VWIND500, 
VWIND250), along with the  ASTER DEM 

feature [31]. These features are ranked based on 

their importance using the RF Importance 
strategy [30], with a threshold of 0.02 to select 

the most relevant features for each model (M1–

M6) and shown in Table 3. 

Table 3. Selected features for the models M1, M2, M3, M4, M5, and M6 

M1 M2 M3 M4 M5 M6 

irb_b16 i2b_b16 UWIND850 TCWV UWIND850 b11_b16 

b11_b16 irb_b16 b14_b16 UWIND850 VWIND500 VWIND250 

b10_irb b11_i2b UWIND500 KX UWIND250 KX 

b14_i2b wvb_b14 CAPE R850 VWIND850 R850 

b14_b16 b14_b16 VWIND500 UWIND500 TCW UWIND250 

i2b_b16 UWIND850 i2b_b16 CAPE KX CAPE 

b10_b11 VWIND850 irb_b16 VWIND850 irb_b16 b11_b14 

UWIND850 R850 VWIND250 b14_b16 i2b_b16 VWIND850 

R850 ISOR TCW ISOR b14_i2b TCWV 

DEM DEM KX DEM b10_wvb VWIND500 
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From Table 3, it can be observed that the 

Himawari-8 features, namely the BT differences 
in IR channels, reflect key physical properties of 

clouds, including cloud-top temperature, optical 

thickness, cloud-top height, and cloud water 
content [29]. Additionally, the ERA5 features 

provide supplementary information directly 

related to rainfall activity in the study area. 

Among them, R850 represents atmospheric 
moisture in the lower troposphere. TCW and 

TCWV indicate the total column water and water 

vapor content in the atmosphere. KX and CAPE 
represent atmospheric instability and vertical air 

motion. The UWIND and VWIND features (at 

850, 500, and 250 hPa) describe the direction 
and intensity of wind, while ISOR and SLOR 

capture topographic characteristics such as slope 

and elevation [32]. The ASTER DEM provides 

detailed information on the elevation of grid 
points, which is relevant to the distribution and 

intensity of surface rainfall [33]. These features 

are directly associated with the formation and 
movement of rainfall and also reflect its 

characteristics on the surface. 

4.2. Results of Data Augmentation 

The number of rainfall samples across the 11 

intervals within the four rainfall classes, before 

and after applying the RVR-based data 
augmentation technique, is presented in Table 4. 

As shown in Table 4, prior to data augmentation, 

the majority of rainfall samples were 

concentrated in the lower intensity intervals, and 
the number of samples gradually decreases as 

rainfall intensity increases. After performing 

RVR-based data augmentation, the distribution 
of samples within these three classes became 

more uniform across the entire class range, with 

a substantial improvement in the number of 
high-intensity rainfall samples. As a result, the 

disparity in sample counts between these three 

classes and the weak rain class was significantly 

reduced—particularly for the very heavy rain 
class, the ratio improved from approximately 

1:43 (before augmentation) to around 1:3 (after 

augmentation). 

Table 4. The number of rainfall samples class before and after augmentation using the RVR technique 

Rainfall class 
Value ranging 

(mm/h) 

Rate of 

increase 

Number of samples 

Before After 

Weak 0.1 – 1.0 1.0 77,176 77,176 

Moderate 

1.0 – 2.0 1.0 21,285 21,285 

2.0 – 3.5 1.3 14,450 18,785 

3.5 – 5.0 1.8 9,765 17,577 

Heavy 

5.0 – 8.0 1.9 10,303 19,576 

8.0 – 12.0 2.5 6,462 16,155 

12.0 – 20.0 3.0 5,765 17,295 

20.0 – 30.0 5.0 2,655 13,275 

Very heavy 

30.0 – 40.0 7.0 1,030 7,210 

40.0 – 50.0 15.0 430 6,450 

> 50.0 20.0 338 6,760 

4.3. Rain Classification Performance 

In this section, models M1 and M2 are 

independently evaluated using the F1-score 
classification metric at first. After that, the 

classification performance of the final proposed 

rainfall products using the three algorithms (RF, 

XGB, and LGBM) is assessed and compared 
with the four comparative rainfall products, 

including IMERG Final Run V07, IMERG Early 

Run V07, GSMaP_MVK_Gauge V08, and 
PERSIANN_CCS, according to metrics of the 

POD, CSI, FAR, BIAS, SEDI, and MCC.  
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4.3.1. Two-class Rainfall Classification Results  

The classification results of rain and no-rain 

events using model M1 with RF, XGB, and 

LGBM algorithms, in both cases without/with 
using the RVR-based balancing technique, are 

presented in Figure 3. As shown in Figure 3, the 

classification performance of model M1 

improves after applying data balancing, 
particularly in terms of the F1-score for the rain 

class on the test set. Notably, the M1 model 

using LGBM achieves the highest F1-score of 
0.76, slightly outperforming RF and XGB, both 

of which yield an F1-score of 0.75. 

4.3.2. Four-classs Rainfall Classification 

Results 

The four-class rainfall classification results of 

the M2 model are shown in Figure 4.

 

Figure 3. Two-class (rain and no-rain) classification results. 

  

(a) (b) 

  

(c) (d) 

Figure 4. Four-class rain classification results: (a) Weak, (b) Moderate, (c) Heavy, (d) Very heavy.  
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The red and green colors represent the use of 

data balancing with CW and the absence of data 
balancing, respectively. As illustrated in this 

figure, the classification performance for the 

minority classes improved significantly after 
applying CW-based balancing techniques. In 

particular, the models were nearly incapable of 

classifying the very heavy rain events in the 

imbalanced scenario, with test F1-scores close to 
zero (Figure 4d). However, after balancing the 

data, performance in this class improved 

substantially, with test F1-scores reaching 0.20 
for the LGBM model and 0.18 for both the XGB 

and RF models. Although data balancing helps 

significantly improve the classification 
performance for minority rain classes, it led to a 

slight decrease (∼ 0.01) in the performance of 

the weak rain class (Figure 4a). However, this 

reduction is negligible, as the F1-score for the 
weak rain class remains relatively high, 

averaging 0.75. 

4.3.3. Classification Performance of the 

Proposed Rain Classification Products 

The performance of proposed rainfall 

products constructed from six models, M1 
through M6, in which M1 applies the RVR 

technique and M2 utilizes the CW for data 

balancing, is evaluated. The proposed rainfall 

products based on LGBM, XGB, and RF are 
denoted as LGBM-RVR-CW, XGB-RVR-CW, 

and RF-RVR-CW, respectively, to highlight the 

data balancing techniques applied. The proposed 
rainfall products were matched with the 

comparative rainfall products to a common 

spatial and temporal resolution. A total of 3,332 
rainfall maps were employed to evaluate their 

performance. The classification performance of 

these rainfall products was assessed using 

rainfall data from 175 independent rain gauge 
stations at five specific time intervals, based on 

metrics including POD, CSI, FAR, BIAS, SEDI, 

and MCC. The results are illustrated in Figure 5 
and Figure 6. 

 

Figure 5. Overall rainfall classification performance of the proposed rainfall products, evaluated against  

ground-based rain gauge observations (ground truth). The green dashed line represents BIAS,  

while the black solid curve represents the CSI value. 
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Based on Figure 5, the performance of the 

rainfall products was evaluated using four 
metrics: POD, FAR, BIAS, and CSI. 

Specifically, for the POD, all three proposed 

rainfall products achieved higher values 
compared to the four comparative products. 

Among them, LGBM-RVR-CW and RF-RVR-

CW obtained the highest POD value of 0.80, 

which is 11.11% higher than XGB-RVR-CW. 
Compared with the rainfall products, the POD of 

LGBM-RVR-CW and RF-RVR-CW was 6.67% 

higher than that of the best delayed product 
(GSMaP_MVK_Gauge V08) and 86.0% higher 

than that of the best near-real-time product 

(IMERG Early Run V07). These results show 
that LGBM-RVR-CW and RF-RVR-CW are the 

products with the highest rain/no-rain 

classification performance, and they positively 

affect the accuracy of subsequent rainfall 
intensity classification in the proposed rainfall 

products. In terms of the CSI metric, all three 

proposed products outperformed the four 
comparative rainfall products. Specifically, 

LGBM-RVR-CW achieved the highest CSI 

value of 0.54, followed by XGB-RVR-CW 

(0.53) and RF-RVR-CW (0.52). 

GSMaP_MVK_Gauge V08 had the highest CSI 

among the best delayed products but was still 
8.0% lower than LGBM-RVR-CW, while 

IMERG Early Run V07, the best near-real-time 

rainfall product, was 54.29% lower than LGBM-
RVR-CW. 

Regarding the BIAS metric, XGB-RVR-CW 

achieved the best value of 1.07, followed by 

GSMaP_MVK_Gauge V08 (1.25). Although 
LGBM-RVR-CW and RF-RVR-CW showed 

slightly higher BIAS than the latter, they still 

performed better than the three other 
comparative products. In terms of the FAR, 

XGB-RVR-CW had the lowest value among the 

proposed models, at 0.33, followed by LGBM-
RVR-CW (0.37) and RF-RVR-CW (0.41). 

Although PERSIANN_CCS had the lowest FAR 

value (0.29) among the products investigated, it 

exhibited the poorest CSI, POD, and BIAS 
values. Compared with the other comparative 

products, XGB-RVR-CW and LGBM-RVR-

CW achieved FAR values of approximately 
0.35, which are comparable to those of IMERG 

Final Run V07 and IMERG Early Run V07 but 

12.5% better than GSMaP_MVK_Gauge V08. 

 

  

 
(a) (b) 

Figure 6. Rainfall classification performance of the proposed rainfall product: (a) SEDI, (b) MCC. 

To evaluate the classification performance of 
the rainfall products in rare events (heavy and 

very heavy rainfall), the MCC and SEDI metrics 

were also used. The MCC reflects the overall 

accuracy of the model and is particularly 
effective for imbalanced datasets. In contrast, the 

SEDI focuses on assessing the ability to 

correctly classify rare rainfall samples within the 
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heavy and very heavy rain class. The results in 

Figure 6 indicate that the proposed rainfall 
products consistently outperform the 

comparative rainfall products in terms of these 

two classification metrics. Particularly, the 
LGBM-RVR-CW product achieves the highest 

SEDI and MCC values of 0.58 and 0.59, 

respectively. Compared with the comparative 

rainfall products, it is observed that LGBM-
RVR-CW outperforms the best-performing 

reference product, GSMaP_MVK_Gauge V08, 

with improvements of 20.83% in SEDI and 
11.32% in MCC. 

From above analyses, it is concluded that the 

proposed product LGBM-RVR-CW has the 
highest rainfall classification performance among 

the seven investigateded rainfall products, 

especially effective for rare rainfall events with 

heavy and very heavy rainfall intensity. 

4.4. Rainfall Regression Results 

It can be seen from Figure 7a that the number 

of rainfall samples across the four rainfall classes 

is highly imbalanced, with the “very heavy rain” 
class being particularly underrepresented, 

accounting for only 1.2% (1798 samples). To 

evaluate the performance of the proposed 

rainfall products, the assessment process was 
carried out in two stages as follows. 

In the first stage, the performance of the 

regression models M3 to M6, which use the 
LGBM, XGB, and RF algorithms, was 

independently evaluated for each rainfall class in 

Section 4.4.1.   
In the second stage, the final proposed 

regression products were compared with the four 

regional rainfall products in terms of regression 

metrics in Section 4.4.2. 

  
(a) (b) 

  
(c) (d) 

 

Figure 7. Rainfall regression performance for each rain class: (a) Number of samples per rain class,  

(b) CC, (c) MAE, (d) RMSE. 
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4.4.1. Regression Results for Each Rainfall 

Class  

The regression performance for each rainfall 

class of the three proposed rainfall products was 

compared with the regression performance of the 

four regional comparative rainfall products using 

CC, MAE, and RMSE metrics, as illustrated in 

Figures 7b-7d. For the error metrics MAE 

(Figure 7c) and RMSE (Figure 7d), the three 

proposed rainfall products exhibit approximately 

similar values across all four-class of rainfall and 

consistently outperform the comparative rainfall 

products. Notably, for the very heavy rainfall 

class, these metrics show substantial 

improvements. Specifically, the MAE and 

RMSE of the three proposed products are 

approximately 8.70 mm/h and approximately 

11.10 mm/h, respectively, representing 

improvements of approximately 65.69% and 

62.60% compared to the best-performing 

delayed comparative product (IMERG Final Run 

V07). To the best-performing near real-time 

comparative product (IMERG Early Run V07), 

the improvements in MAE and RMSE are 

approximately 67.01% and 63.53%, 

respectively. 

Regarding the CC values (Figure 7b), for the 

weak, moderate, and heavy rainfall classes, the 

three proposed rainfall products consistently 

outperform the comparative products. In the very 

heavy rainfall class, the proposed product 

LGBM-RVR-CW achieves the highest CC value 

among all evaluated products, reaching 0.28, 

followed by XGB-RVR-CW with a CC of 0.23. 

These results are higher than those of all 

comparative products. Specifically, the proposed 

products LGBM-RVR-CW and XGB-RVR-CW 

exhibit higher CC values compared to the best 

delayed comparative product, 

GSMaP_MVK_Gauge V08, by factors of 3.11 

and 2.56, respectively. Meanwhile, the proposed 

RF-RVR-CW product records a CC of 0.03, 

which is lower than GSMaP_MVK_Gauge V08 

but comparable to the other three comparative 

products. 

4.4.2. Regression Performance of the Final 

Proposed Rainfall Products  

The rainfall regression performance of the 

three proposed products, such as LGBM-RVR-
CW, XGB-RVR-CW, and RF-RVR-CW, was 

compared against four comparative products 

using standard regression metrics: MAE, RMSE, 

MLSE, and CC, and are illustrated in Figure 8. 
As shown in Figure 8, among the evaluated 

rainfall products, LGBM-RVR-CW 

demonstrates overall superior regression 
performance compared to the others. 

Specifically, among the three proposed products, 

LGBM-RVR-CW achieves an MAE of 2.91 
mm/h (Figure 8a), an RMSE of 5.81 mm/h 

(Figure 8b), an MLSE of 0.47 (Figure 8c), and a 

CC of 0.38 (Figure 8d). LGBM-RVR-CW 

outperforms RF-RVR-CW and XGB-RVR-CW, 
with improvements of 24.81% and 42.38% in 

MAE, 10.62% and 32.99% in RMSE, and 

29.85% and 43.37% in MLSE, respectively. 
Additionally, the CC of LGBM-RVR-CW also 

exceeds that of these two products by 5.56%. 

In addition, when compared with the four 
comparative rainfall products, LGBM-RVR-CW 

also exhibits significant advantages. In terms of 

MAE (Figure 8a), it improves the delayed 

products IMERG Final Run V07 and 
GSMaP_MVK_Gauge V08 by 18.03% and 

3.32%, respectively, and the near-real-time 

products PERSIANN_CCS and IMERG Early 
Run V07 by 4.90% and 26.32%, respectively. 

For RMSE (Figure 8b), LGBM-RVR-CW 

outperforms the two delayed products, IMERG 

Final Run V07 and GSMaP_MVK_Gauge V08, 
by 24.55% and 3.17%, respectively. Similarly, 

LGBM-RVR-CW outperforms the two near-

real-time products, IMERG Early Run V07 and 
PERSIANN_CCS, by 31.73% and 7.93%, 

respectively. With respect to MSLE (Figure 8c), 

the proposed LGBM-RVR-CW product shows 
lower values, with improvements of 10.64% 

over IMERG Final Run V07 and 2.08% over 

GSMaP_MVK_Gauge V08, while also 

achieving improvements of 21.67% and 22.95% 
over the near-real-time products IMERG Early  
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Run V07 and PERSIANN_CCS, respectively. 

Regarding CC (Figure 8d), LGBM-RVR-CW 
shows a correlation coefficient 17.39% lower 

than IMERG Final Run V07 and 7.89% lower 

than IMERG Early Run V07, but equivalent to 
GSMaP_MVK_Gauge V08 and 15.15% higher 

than PERSIANN_CCS. When comparing the 

CC of the three proposed products, LGBM-

RVR-CW outperforms XGB-RVR-CW and RF-
RVR-CW by 5.56%. Accordingly, the proposed 

LGBM-RVR-CW rainfall product demonstrates 

the best rainfall regression performance among 
all evaluated rainfall products. 

Based on the classification and regression 

performance of the evaluated rainfall products 
presented in Sections 4.3 and 4.4, the LGBM-

RVR-CW product demonstrated the highest 

overall performance and was consequently 
selected as the final proposed rainfall product. 

This finding indicates the strong capability of the 

proposed model to accurately estimate rainfall 

distribution. However, accurately predicting 
extreme rainfall events (>30.0 mm/h) remains a 

challenging task. 

 

  

(a) (b) 

  

(c) (d) 

Figure 8. Rainfall estimation performance of rainfall products based on regression metrics: 

(a) MAE, (b) RMSE, (c) MLSE, (d) CC. 

5. Conclusions 

This study introduces a multi-layered 
machine learning architecture for enhanced 

rainfall estimation over Central Vietnam, 

leveraging three algorithms: RF, XGB, and 

LGBM. The model utilizes a combination of 

input data sources, including Himawari-8 

satellite imagery, ERA5 reanalysis data, ASTER 
DEM, and ground-based rainfall observations. 

To address class imbalance, two data balancing 

techniques were employed: RVR for two 
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(rain/no-rain) classification and CW for four-

class classification (weak/moderate/heavy/very 
heavy rain).  

Three rainfall estimation products were 

proposed based on the integration of 

classification and regression models, which are 

RF-RVR-CW, XGB-RVR-CW, and LGBM-

RVR-CW. Among these, the LGBM-RVR-CW 

product demonstrated the highest overall 

performance. When compared with four 

benchmark rainfall products, including IMERG 

Final Run V07, IMERG Early Run V07, 

GSMaP_MVK_Gauge V08, and 

PERSIANN_CCS, the LGBM-RVR-CW 

product consistently outperformed them. In 

terms of classification performance, the 

proposed product achieved substantial 

improvements compared to the best-performing 

comparative product, GSMaP_MVK_Gauge 

V08, with increases of 6.67% in POD, 8.00% in 

CSI, 11.32% in MCC, and 20.83% in SEDI. 

Regarding rainfall regression performance, 

LGBM-RVR-CW produced the lowest error 

values, with an MAE of 2.91 mm/h, an RMSE of 

5.81 mm/h, and an MSLE of 0.47. For CC, the 

proposed product, LGBM-RVR-CW, achieved a 

value of 0.38, which is slightly lower than 

IMERG Final Run V07 (0.46) and IMERG Early 

Run V07 (0.41), but equal to 

GSMaP_MVK_Gauge V08 and higher than 

PERSIANN_CCS (0.33). 

However, the prediction accuracy of the 

proposed products for extreme rainfall events (> 

30.0 mm/h) remains a limitation. Future work 

may focus on incorporating advanced deep 

learning models to improve the prediction of 

very heavy rainfall. 
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