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Abstract: Landslides pose significant risks to infrastructure and human safety, especially in areas
characterized by steep terrain and unstable geological conditions. This study explores the application
of machine learning (ML) models for predicting landslides in Lac Duong Town, Lam Dong
Province, Vietnam, with a particular focus on the influence of rainfall and pore water pressure
(PWP). The dataset comprises hourly rainfall, pore water pressure (PWP), and soil displacement
records collected by an automatic monitoring system from 2020 to 2024. Three ML models,
Decision Tree (DT), Random Forest (RF), and Long Short-Term Memory (LSTM), were employed
to examine the relationship between cumulative rainfall, soil displacement, and landslide
occurrence. The analysis identified critical cumulative rainfall thresholds (Rx3d, Rx5d, Rx7d, and
Rx10d) as key indicators of landslide events. Among the models, the RF algorithm achieved the
highest predictive performance, with an R? of 0.6406 and an RMSE of 0.0393, outperforming both
DT and LSTM. The findings underscore the importance of cumulative rainfall in landslide
forecasting and demonstrate the potential of ML, particularly RF, to enhance early warning systems.
The study also proposes data-driven rainfall thresholds validated against historical landslide records.
Recommendations include implementing real-time monitoring systems, refining threshold-based
models, integrating landslide risk into urban planning, and including additional hydrogeological
variables in future research. This work highlights the promise of ML-based approaches in improving
landslide prediction and risk mitigation in vulnerable regions.
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1. Introduction

Landslides are complex phenomena posing
significant threats to lives and infrastructure in
vulnerable regions [1]. In 2019, the urban area of
Lac Duong Town, Lam Dong Province,
experienced a major landslide following surface
modifications, causing extensive damage and
highlighting the need for robust warning
systems. Rainfall is a primary landslide trigger,
with its impact varying based on intensity and
duration. Short, intense rainfall typically triggers
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shallow landslides, whereas prolonged rainfall
promotes deep-seated failures [2].

Current warning systems often rely on
generalized rainfall thresholds that fail to
account for local geological and topographical
specifics, such as soil permeability or PWP,
which are critical for accurate risk assessment
[3]. The Lac Duong landslide underscored the
role of rainfall-induced PWP in triggering
events. Advances in sensor technology and ML
offer pathways to develop more adaptive,
multivariate thresholds by integrating real-time
data [4].
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Figure 1. Study area and geological settings.

This study addresses these gaps by analyzing
the Lac Duong landslide area (Fig. 1) and
proposing an improved monitoring framework.
By leveraging automated monitoring systems
and machine learning-driven data integration,

the research aims to enhance the accuracy of
landslide prediction and support more effective
risk management strategies. The specific
objectives of this study are to: i) Establish
quantitative relationships among rainfall, pore
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water pressure, and displacement; ii) Evaluate
the performance of three machine learning
models-Decision Tree (DT), Random Forest
(RF), and Long Short-Term Memory (LSTM)-in
landslide forecasting; and iii) Propose data-
driven rainfall thresholds for early warning of
deep-seated landslides.

2. Landslide Monitoring and Prediction: A
Brief Overview

Landslide early warning systems are crucial
for risk mitigation. Monitoring techniques range
from ground-based tools like extensometers and
tiltmeters to remote sensing methods such as
satellite  positioning and Interferometric
Synthetic  Aperture Radar (InSAR) [5].
Meteorological and hydrological monitoring,
particularly of rainfall and PWP, is essential for
prediction [6].

The concept of rainfall intensity-duration (I-

D) thresholds, foundational in landslide

forecasting, helps differentiate triggers for

[3].

shallow versus deep-seated landslides

and Environmental Sciences

However, these thresholds vary significantly
across regions due to differing meteorological
conditions, soil properties, and vegetation. For
regional-scale monitoring, landslide inventory
maps, enhanced by LiDAR and high-resolution
satellite imagery, are indispensable for
identifying vulnerable areas [7].

Recently, artificial intelligence (AI) and
machine learning (ML) have revolutionized
landslide monitoring and prediction. Deep-
learning models such as convolutional neural
networks (CNNs) can interpret complex,
multidimensional sensor data, while ensemble
and recurrent frameworks-e.g., Random Forest
(RF) and Long Short-Term Memory (LSTM)-
have proven effective in modeling non-linear
rainfall-displacement relationships [8, 9]. These
data-driven methods facilitate the dynamic
optimization of rainfall thresholds, thereby
enhancing the responsiveness and reliability of
landslide early warning systems [10].

3. Study Area, Data, and Monitoring System
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Figure 2. Geological profile of the landslide.
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Lac Duong Town (12°2'3"N, 108°25'40"E)
is located in a mountainous basin in Lam Dong
Province, Vietnam. The area experiences annual
rainfall of 1,940-2,000 mm, and rapid
urbanization has increased landslide frequency.
The geology is dominated by Late Jurassic and
Late Cretaceous formations, with a weathering
crust of 5-20 m. Large rotational landslides are
common in the weathered crust of Cretaceous
rhyolite and tuffs (K.dd) (Fig. 1, 2).

An automated monitoring station was
installed at a critical landslide site. The system
includes:

Rainfall Gauge: A TES525 MM tipping
bucket rain gauge measures hourly precipitation.

Displacement  Sensors: Five MEMS
horizontal displacement sensors (Geokon)
installed in a borehole at depths from -6.0 m to -
17.5 m to monitor soil movement across
different layers (Fig. 3).

Pore Water Pressure Sensors: Two vibrating-
wire piezometers (Geokon) installed at depths of
-8.0 m and -15.0 m to measure PWP.

Data Logger: A Campbell Scientific CR1000
data logger records all sensor data at one-hour
intervals and transmits it to a remote server.

Data was collected from November 2020 to
October  2024. Manual displacement
measurements were also taken periodically to
calibrate and verify the automated sensor
readings.
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4. Methodology

This study employed a data-driven approach
to develop a landslide prediction framework.
The methodology involved data collection,
preprocessing, and the development and training
of three ML models.

4.1. Data Preprocessing

A wide range of parameters were monitored
during this study to capture the complex
interactions  that influence  deep-seated
landslides.  These  parameters  included
meteorological, hydrological, geotechnical, and
environmental variables, as well as device status
indicators such as battery voltage, temperature,
rainfall, displacement measurements (DIFL1-
DIFLY5), accumulated displacements
(ACCDIFL1-ACCDIFL5), water pressure (P1,
P2), soil moisture (VWC), electrical
conductivity (EC), and soil temperature
(SOILTEMP). For model development, the
analysis focused on three key variables directly
related to landslide initiation and progression:
rainfall (TE525, mm), water pressure (P1, m
H>0), and landslide displacement (DIFLI1-
DIFL5, mm, and their cumulative values).

Frecipitation {mm)

Rainfall acts as a primary triggering factor, water
pressure represents subsurface hydrological
response, and displacement serves as a direct
indicator of slope deformation. The raw dataset,
comprising hourly rainfall, pore water pressure
(P1 - measured at a depth of -15 m), and
cumulative soil displacement (ACCDIFLA4),
which reached a maximum of approximately
60mm over the entire 4-year monitoring period,
with  individual rainfall-triggered events
producing 5-25mm displacement increments,
underwent rigorous preprocessing. Missing
values were imputed using linear interpolation,
and outliers were identified and removed
through the interquartile range (IQR) method.
Time-lagged features were introduced to account
for the lag in the hydrological response between
rainfall infiltration and slope displacement.
Specifically, cuamulative rainfall over 3, 5, 7, and
10 days (Rx3d, Rx5d, Rx7d, and Rx10d) was
computed to represent short- and long-term
precipitation effects. Shorter lags (3-5 days)
characterize rapid infiltration influencing near-
surface layers, while longer lags (7-10 days)
reflect deeper saturation and pore pressure
buildup leading to deep-seated slope
movements.
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Figure 4. Observed precipitation, cumulative displacement and pore water pressure.
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The selection of the 7, 10-day cumulative
rainfall windows (Rx7d, Rx10d) is crucial for
deep-seated landslide prediction. Unlike shallow
landslides that respond to short-duration rainfall
(typically 1-3 days), deep-seated failures require
prolonged rainfall to infiltrate through thick soil
layers and raise pore water pressure at depth. In
our study area, the weathering crust extends to
depths of 5-20 m, and pore water pressure
sensors are installed at -8.0 m and -15.0 m. Water
infiltration to these depths requires extended
periods, making longer accumulation windows
(7-10 days) more relevant for capturing the
hydrological processes that trigger deep-seated
movements. This approach is consistent with
studies of deep-seated landslides that commonly
use 7-14 day rainfall accumulation periods
(Iverson, 2000; Bordoni et al., 2015).

This approach allows the models to capture
the temporal dynamics of rainfall-induced
landslide processes. The dataset was then
divided into training (80%) and testing (20%)
subsets, maintaining temporal continuity to
prevent data leakage. The testing subset was
manually curated to include both landslide
(30%) and non-landslide (70%) periods. The
primary datasets-hourly rainfall, pore water
pressure, and displacement measurements - are
summarized in Supplementary S1 and Fig 4.

Random Forest

4.2. Model Development and Training

Three machine learning models were
developed wusing Python Scikit-learn and
TensorFlow/Keras libraries:

DT: A simple, interpretable model that
partitions data based on feature thresholds. It
was trained to full depth to capture all possible
data splits.

RF: An ensemble model that builds multiple
DT on bootstrapped data samples and averages
their predictions to improve robustness and
reduce overfitting. The model used the default of
100 estimators.

LSTM: A recurrent neural network (RNN)
designed to model temporal dependencies. The
architecture consisted of a single LSTM layer
(50 units) and a dense output layer, trained for 50
epochs with the Adam optimizer.

The performance of each model was
evaluated using the coefficient of determination
(R?) and Root Mean Squared Error (RMSE).

The DT model (Fig. 5a) demonstrated
moderate predictive accuracy, effectively
capturing key trends in landslide displacement
(RMSE = 0.0438, R? = 0.5746). However, its
reliance on a single-tree structure limited its ability
to generalize complex patterns within the data.
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Figure 5. Comparison of Model Performance in Predicting Landslide Displacement.
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The LSTM model (Fig. 5¢) exhibited higher
RMSE and lower R? compared to the other
models (RMSE = 0.0561, R? = 0.5077). While
LSTM is adept at modeling temporal
dependencies, its performance suggests potential
underfitting or limitations in capturing short-
term variations in the dataset.

By combining these models, the study aimed
to leverage the interpretability of DTs, the
ensemble robustness of RFs, and the temporal
learning capabilities of LSTM to develop a
comprehensive  framework for landslide
prediction.

5. Results and Discussion

5.1. Application of ML Models for Landslide
Prediction

Rainfall is a primary trigger of landslides,
particularly in areas with steep slopes and
vulnerable geological formations, such as those
found in Lac Duong, Lam Dong Province. To
establish robust predictive relationships between
precipitation and landslide occurrence, we
analyzed both hourly rainfall data and
cumulative precipitation over multiple time
intervals. This study employed three ML
models: DT, RF, and LSTM to evaluate the

Model Performance - RMSE

0.0561

Lower values indicate better performance

0.05 0.0438
0.0393

Root Mean Squared Error

0.01

0.00

Random Forest

Decision Tree

Coefficient of Determination (R?)

correlation between rainfall and
landslide initiation.

The ML models were trained using datasets
that incorporated cumulative rainfall metrics
(Rx3d, Rx5d, Rx7d, Rx10d) alongside hourly
precipitation measurements. Our analysis
identified rainfall as the predominant triggering
factor for landslides, especially when combined
with soil saturation conditions during prolonged
wet periods. The investigation of rainfall
accumulation thresholds revealed several critical
patterns:

+ Rx3d (3-day cumulative rainfall):
Thresholds between 75-100 mm proved crucial
to triggering landslides, particularly in areas
characterized by thinner weathering crusts where
water infiltration rapidly affects slope stability.

+ Rx5d (5-day cumulative rainfall):
Accumulations exceeding 100 mm frequently
corresponded with landslide events in zones with
moderately saturated soil conditions, indicating
the progressive buildup of destabilizing pore
pressure.

+ Rx7d and Rx10d (7- and 10-day
cumulative rainfall): Higher thresholds of 130-
150 mm were strongly associated with increased
landslide susceptibility, especially in areas with
deeper soil layers where prolonged infiltration
processes gradually compromise slope integrity.
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Figure 6. ML models performance.

These findings highlight the critical
importance of lag effects in cumulative rainfall
for understanding and predicting slope failures.

The research demonstrates that
precipitation accumulation over
periods significantly influences

gradual
extended
pore-water



pressure dynamics and overall slope stability,
underscoring the necessity of incorporating
cumulative rainfall metrics into effective early
warning systems.

When comparing model performance, the
RF algorithm demonstrated superior predictive
performance, with an R? of 0.6406 and an RMSE
of 0.0393, outperforming both the DT (R?
0.5746, RMSE = 0.0438) and the LSTM (R? =
0.5077, RMSE 0.0561) (Fig. 6). The
ensemble-based RF approach effectively
captured the complex, non-linear relationships
between precipitation patterns and landslide
initiation, while maintaining robustness across
diverse rainfall scenarios.

The DT model, while offering greater

interpretability through explicit threshold
identification, showed limitations in
generalizing complex rainfall-landslide

interactions. Meanwhile, the LSTM network,
despite its theoretical advantage in modeling
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temporal dependencies, exhibited higher error
rates, suggesting potential challenges in
capturing the short-term variations critical for
precise landslide prediction.

These results validate the critical role of
cumulative precipitation metrics in landslide
forecasting and demonstrate the potential of
machine learning, particularly ensemble methods,
to enhance the accuracy and reliability of early
warning systems in landslide-prone regions.

5.2. Data-driven Warning Thresholds

Based on model insights, new rainfall
thresholds were proposed to assess landslide
risk. For Alert Level 1, the threshold is exceeded
when Rx3d exceeds 75 mm or Rx5d exceeds 100
mm. Alert Level 2 is triggered when Rx7d
exceeds 130 mm or Rx10d exceeds 150 mm

(Fig. 7).
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A Critical Alert is issued when both Rx3d
and Rx10d thresholds are exceeded
simultaneously, accompanied by significant
cumulative displacement (ACCDIFL4 > 20
mm). These thresholds were validated against
observed landslide events, confirming their
reliability and practicality in operational
settings. The study also investigated seasonal
variations and environmental factors influencing
landslide susceptibility. Landslide frequency
was highest during the monsoon season (June-
October), which coincided with periods of heavy
rainfall. Areas with fine-grained soils and deep
weathering crusts were found to be particularly
vulnerable to prolonged rainfall. At the same
time, urbanization and slope modifications
further increased instability, highlighting the
importance of integrated land-use planning.

The selection of rainfall thresholds in this
study is grounded in both empirical observations
and data-driven analyses derived from Al
models performance. The cumulative rainfall
metrics (Rx3d, Rx5d, Rx7d, and Rx10d) were
selected to capture the lag effects of precipitation
on slope stability, reflecting different stages of
soil saturation and pore-pressure buildup. Short-
term accumulations, such as Rx3d and Rx5d, are
particularly sensitive to rapid infiltration
processes in areas with thin weathering crusts,
often leading to shallow slope failures. In
contrast, longer-term accumulations (Rx7d and
Rx10d) represent the gradual infiltration of
rainfall into deeper soil layers, which can
weaken internal structures and induce deep-
seated landslides. The proposed threshold values
of 75-100 mm for Rx3d, 100 mm for Rx5d, and
130-150 mm for Rx7d-Rx10d were derived from
model outputs showing the strongest correlations
between cumulative rainfall and displacement
data. The superior predictive performance of the
RF model further supports the validity of these
thresholds, as it effectively captures the non-
linear relationships between rainfall patterns and
landslide initiation. Thus, the established
thresholds not only reflect the physical
mechanisms governing slope failure but also
provide a scientifically validated framework for

operational early warning systems in landslide-
prone regions.

5.3. Discussion

Establishing rainfall thresholds for early
warning of deep-seated landslides in Lac Duong
Town, Lam Dong Province, Vietnam, represents
a significant advancement in disaster risk
management. The integration of ML models,
DT, RF, and LSTM has provided valuable
insights into the relationships between rainfall,
soil displacement, and landslide susceptibility.
This discussion evaluates the effectiveness of
these models, the identified thresholds, and their
implications for landslide prediction and
mitigation strategies.

The comparative analysis of DT, RF, and
LSTM models demonstrates distinct advantages
and limitations in predicting landslide
occurrences. The RF model emerged as the most
robust and reliable, achieving the highest
coefficient of determination (R?* = 0.6406) and
the lowest root mean square error (RMSE =
0.0393). The superior performance of RF can be
attributed to its ensemble learning approach,
which mitigates overfitting and enhances
generalization across diverse rainfall conditions.
Moreover, RF effectively identified key
predictive  variables, including cumulative
rainfall over multiple days (Rx3d, Rx5d, Rx7d,
and Rx10d), confirming the importance of
considering prolonged rainfall in landslide
forecasting.

In contrast, the DT model provided practical
interpretability, enabling the identification of
specific rainfall thresholds associated with
landslide events. However, its simplicity led to
limited generalization, making it prone to false
positives in periods of moderate rainfall. The
LSTM model, designed for sequential data,
demonstrated promising temporal dependency
modeling but underperformed RF (R? = 0.5077,
RMSE = 0.0561). These findings suggest that
while LSTM can capture long-term rainfall
effects, its application in landslide prediction
may require further optimization, such as the
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incorporation of additional geotechnical and
hydrological parameters.

These findings align with global studies on
landslide early warning, which emphasize the
role of cumulative rainfall in initiating slope
failures [11]. The moderate R* values (0.51—
0.64) reflect the complexity of the landslide
system, in which displacement is influenced by
numerous factors beyond our three input
variables, including spatially variable soil
properties, groundwater flow, temperature
effects, and limitations of point-based sensors in
capturing spatial variability. Similar studies
report comparable R? values, confirming our
results align with current prediction capabilities
using  limited variables. The  gradual
accumulation of rainfall over extended periods
was pivotal in influencing pore water pressure
and slope stability, underscoring the need for
cumulative metrics in early warning systems.

These thresholds were validated against
historical landslide events in Lac Duong,
demonstrating their reliability and practicality in
operational settings. The ability to issue timely
warnings can significantly reduce the impact of
landslides by enabling authorities and
communities to take preemptive measures, such
as slope reinforcement, evacuation, and
infrastructure adjustments.

The integration of ML models demonstrated
the potential to improve the accuracy and
reliability of landslide prediction by leveraging
rainfall thresholds. RF emerged as the most
effective model due to its balance of
interpretability, robustness, and precision. The
findings underscore the importance of considering
both the immediate and lagged effects of rainfall,
as well as the interaction between surface and
subsurface hydrological processes.

The study highlights the need for continued
monitoring and model refinement to address
limitations such as data sparsity and the dynamic
nature of rainfall-landslide relationships. Future
research should incorporate additional factors,
such as soil moisture and geotechnical
properties, to further enhance predictive
capabilities.

However, limitations such as data sparsity
and the static nature of the thresholds warrant
further research. Future research should
concentrate on adding additional factors, such as
soil moisture and geotechnical characteristics,
expanding datasets, and developing dynamic
thresholds that adapt to seasonal and geological
variability.

Establishing rainfall thresholds for landslide
initiation is a complex task, as multiple
interacting  factors, including geological
structure, slope gradient, and land cover,
influence landslide occurrences. Notably,
rainfall thresholds for landslide initiation are
highly site-specific. Therefore, this study aims to
propose rainfall thresholds for the Lac Duong
area, which features relatively similar geological
and topographical conditions. Nevertheless, the
proposed approach for determining rainfall
thresholds can be applied to other regions,
provided that long-term monitoring data are
available.

6. Conclusion and Recommendation
6.1. Conclusion

This study has successfully established
rainfall thresholds for the early warning of deep-
seated landslides in Lac Duong Town, Lam
Dong Province, Vietnam. By integrating ML
models, including DT, RF, and LSTM, we
analyzed the correlation between rainfall
accumulation and slope displacement, thereby
developing more reliable predictive frameworks.
The research findings confirm that cumulative
rainfall over various periods (Rx3d, Rx5d, Rx7d,
and Rx10d) plays a significant role in landslide
initiation, with RF demonstrating the highest
predictive accuracy. The proposed warning
thresholds have been validated against historical
landslide occurrences, demonstrating their
practical applicability in real-world disaster
mitigation. Key contributions of this study
include developing data-driven thresholds for
different risk levels that define essential rainfall
thresholds and provide a scientific basis for
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landslide early warning systems. Application of
ML Models: The comparative performance
analysis shows that RF is the most effective
model, balancing interpretability and accuracy.

Implications for Risk Management: The
findings emphasize integrating real-time
monitoring, remote sensing, and geotechnical
data to refine predictions and improve early
warning capabilities. Future research should
focus on expanding datasets, incorporating
additional hydrological and geotechnical
parameters (e.g., soil moisture profiles,
groundwater levels, and detailed soil properties),
and integrating climate variability to improve
threshold adaptability and model performance.
Implementing these findings into operational
monitoring frameworks will enhance disaster
preparedness, mitigate landslide risks, and
safeguard ~ communities in  vulnerable
mountainous areas. The integration of machine
learning and real-time monitoring represents an
important step toward establishing data-driven
landslide early warning systems in Vietnam's
urbanized highland regions.

6.2. Recommendation

Based on the findings of this study, the
following recommendations are proposed to
enhance landslide early warning systems in Lac
Duong Town and other similar regions: i)
Implementation of Real-Time Monitoring
Systems: Authorities should invest in automated
rainfall and soil displacement monitoring
stations, integrating data loggers, remote
sensing, and geotechnical sensors for continuous
data collection; ii) Refinement of Threshold
Models: The established rainfall thresholds
should be periodically updated based on new
data, climate variations, and improved machine
learning models to enhance prediction accuracy;
iii) Community-Based Early Warning Systems:
Public awareness and preparedness initiatives
should be implemented to ensure local
communities understand warning alerts and take
necessary  precautionary  measures.  iv)
Integration with Land-Use Planning: Urban

planning authorities should incorporate landslide
susceptibility = maps  into  infrastructure
development policies to prevent high-risk
constructions on unstable slopes; and v) Further
Research on Hydrogeological Parameters:
Future studies should incorporate groundwater
levels, soil moisture content, and vegetation
dynamics to develop more comprehensive
predictive models for landslide initiation. These
recommendations will contribute to the
development of a more robust and efficient
landslide early warning system, ultimately
reducing risks to human lives and infrastructure.
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