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Abstract: Landslides pose significant risks to infrastructure and human safety, especially in areas 

characterized by steep terrain and unstable geological conditions. This study explores the application 

of machine learning (ML) models for predicting landslides in Lac Duong Town, Lam Dong 

Province, Vietnam, with a particular focus on the influence of rainfall and pore water pressure 

(PWP). The dataset comprises hourly rainfall, pore water pressure (PWP), and soil displacement 

records collected by an automatic monitoring system from 2020 to 2024. Three ML models, 

Decision Tree (DT), Random Forest (RF), and Long Short-Term Memory (LSTM), were employed 

to examine the relationship between cumulative rainfall, soil displacement, and landslide 

occurrence. The analysis identified critical cumulative rainfall thresholds (Rx3d, Rx5d, Rx7d, and 

Rx10d) as key indicators of landslide events. Among the models, the RF algorithm achieved the 

highest predictive performance, with an R² of 0.6406 and an RMSE of 0.0393, outperforming both 

DT and LSTM. The findings underscore the importance of cumulative rainfall in landslide 

forecasting and demonstrate the potential of ML, particularly RF, to enhance early warning systems. 

The study also proposes data-driven rainfall thresholds validated against historical landslide records. 

Recommendations include implementing real-time monitoring systems, refining threshold-based 

models, integrating landslide risk into urban planning, and including additional hydrogeological 

variables in future research. This work highlights the promise of ML-based approaches in improving 

landslide prediction and risk mitigation in vulnerable regions.  

Keywords: Machine learning (ML), rainfall thresholds, early warning systems, pore water pressure, 

soil displacement. 
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1. Introduction 

Landslides are complex phenomena posing 

significant threats to lives and infrastructure in 

vulnerable regions [1]. In 2019, the urban area of 

Lac Duong Town, Lam Dong Province, 

experienced a major landslide following surface 

modifications, causing extensive damage and 

highlighting the need for robust warning 

systems. Rainfall is a primary landslide trigger, 

with its impact varying based on intensity and 

duration. Short, intense rainfall typically triggers 

shallow landslides, whereas prolonged rainfall 

promotes deep-seated failures [2]. 

Current warning systems often rely on 

generalized rainfall thresholds that fail to 

account for local geological and topographical 

specifics, such as soil permeability or PWP, 

which are critical for accurate risk assessment 

[3]. The Lac Duong landslide underscored the 

role of rainfall-induced PWP in triggering 

events. Advances in sensor technology and ML 

offer pathways to develop more adaptive, 

multivariate thresholds by integrating real-time 

data [4]. 

Figure 1. Study area and geological settings.  

This study addresses these gaps by analyzing 

the Lac Duong landslide area (Fig. 1) and 

proposing an improved monitoring framework. 

By leveraging automated monitoring systems 

and machine learning-driven data integration, 

the research aims to enhance the accuracy of 

landslide prediction and support more effective 

risk management strategies. The specific 

objectives of this study are to: i) Establish 

quantitative relationships among rainfall, pore 
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water pressure, and displacement; ii) Evaluate 

the performance of three machine learning 

models-Decision Tree (DT), Random Forest 

(RF), and Long Short-Term Memory (LSTM)-in 

landslide forecasting; and iii) Propose data-

driven rainfall thresholds for early warning of 

deep-seated landslides. 

2. Landslide Monitoring and Prediction: A 

Brief Overview  

Landslide early warning systems are crucial 

for risk mitigation. Monitoring techniques range 

from ground-based tools like extensometers and 

tiltmeters to remote sensing methods such as 

satellite positioning and Interferometric 

Synthetic Aperture Radar (InSAR) [5]. 

Meteorological and hydrological monitoring, 

particularly of rainfall and PWP, is essential for 

prediction [6]. 

The concept of rainfall intensity-duration (I-

D) thresholds, foundational in landslide 

forecasting, helps differentiate triggers for 

shallow versus deep-seated landslides [3]. 

However, these thresholds vary significantly 

across regions due to differing meteorological 

conditions, soil properties, and vegetation. For 

regional-scale monitoring, landslide inventory 

maps, enhanced by LiDAR and high-resolution 

satellite imagery, are indispensable for 

identifying vulnerable areas [7]. 

Recently, artificial intelligence (AI) and 

machine learning (ML) have revolutionized 

landslide monitoring and prediction. Deep-

learning models such as convolutional neural 

networks (CNNs) can interpret complex, 

multidimensional sensor data, while ensemble 

and recurrent frameworks-e.g., Random Forest 

(RF) and Long Short-Term Memory (LSTM)-

have proven effective in modeling non-linear 

rainfall-displacement relationships [8, 9]. These 

data-driven methods facilitate the dynamic 

optimization of rainfall thresholds, thereby 

enhancing the responsiveness and reliability of 

landslide early warning systems [10]. 

3. Study Area, Data, and Monitoring System  

 

Figure 2. Geological profile of the landslide. 
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L   D       w  (12°2′3″N, 108°25′40″E) 

is located in a mountainous basin in Lam Dong 

Province, Vietnam. The area experiences annual 

rainfall of 1,940-2,000 mm, and rapid 

urbanization has increased landslide frequency. 

The geology is dominated by Late Jurassic and 

Late Cretaceous formations, with a weathering 

crust of 5-20 m. Large rotational landslides are 

common in the weathered crust of Cretaceous 

rhyolite and tuffs (K2đd) (Fig. 1, 2). 

An automated monitoring station was 

installed at a critical landslide site. The system 

includes: 

Rainfall Gauge: A TE525 MM tipping 

bucket rain gauge measures hourly precipitation.  

Displacement Sensors: Five MEMS 

horizontal displacement sensors (Geokon) 

installed in a borehole at depths from -6.0 m to -

17.5 m to monitor soil movement across 

different layers (Fig. 3).  

Pore Water Pressure Sensors: Two vibrating-

wire piezometers (Geokon) installed at depths of 

-8.0 m and -15.0 m to measure PWP.  

Data Logger: A Campbell Scientific CR1000 

data logger records all sensor data at one-hour 

intervals and transmits it to a remote server. 

Data was collected from November 2020 to 

October 2024. Manual displacement 

measurements were also taken periodically to 

calibrate and verify the automated sensor 

readings. 

 

Figure 3. Design and installation of the sensor system. 
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4. Methodology  

This study employed a data-driven approach 

to develop a landslide prediction framework. 

The methodology involved data collection, 

preprocessing, and the development and training 

of three ML models. 

4.1. Data Preprocessing 

A wide range of parameters were monitored 

during this study to capture the complex 

interactions that influence deep-seated 

landslides. These parameters included 

meteorological, hydrological, geotechnical, and 

environmental variables, as well as device status 

indicators such as battery voltage, temperature, 

rainfall, displacement measurements (DIFL1-

DIFL5), accumulated displacements 

(ACCDIFL1-ACCDIFL5), water pressure (P1, 

P2), soil moisture (VWC), electrical 

conductivity (EC), and soil temperature 

(SOILTEMP). For model development, the 

analysis focused on three key variables directly 

related to landslide initiation and progression: 

rainfall (TE525, mm), water pressure (P1, m 

 ₂O),                       m  t (DIFL1-

DIFL5, mm, and their cumulative values). 

Rainfall acts as a primary triggering factor, water 

pressure represents subsurface hydrological 

response, and displacement serves as a direct 

indicator of slope deformation. The raw dataset, 

comprising hourly rainfall, pore water pressure 

(P1 - measured at a depth of -15 m), and 

cumulative soil displacement (ACCDIFL4), 

which reached a maximum of approximately 

60mm over the entire 4-year monitoring period, 

with individual rainfall-triggered events 

producing 5-25mm displacement increments, 

underwent rigorous preprocessing. Missing 

values were imputed using linear interpolation, 

and outliers were identified and removed 

through the interquartile range (IQR) method. 

Time-lagged features were introduced to account 

for the lag in the hydrological response between 

rainfall infiltration and slope displacement. 

Specifically, cumulative rainfall over 3, 5, 7, and 

10 days (Rx3d, Rx5d, Rx7d, and Rx10d) was 

computed to represent short- and long-term 

precipitation effects. Shorter lags (3-5 days) 

characterize rapid infiltration influencing near-

surface layers, while longer lags (7-10 days) 

reflect deeper saturation and pore pressure 

buildup leading to deep-seated slope 

movements. 

Figure 4. Observed precipitation, cumulative displacement and pore water pressure.  
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The selection of the 7, 10-day cumulative 

rainfall windows (Rx7d, Rx10d) is crucial for 

deep-seated landslide prediction. Unlike shallow 

landslides that respond to short-duration rainfall 

(typically 1-3 days), deep-seated failures require 

prolonged rainfall to infiltrate through thick soil 

layers and raise pore water pressure at depth. In 

our study area, the weathering crust extends to 

depths of 5-20 m, and pore water pressure 

sensors are installed at -8.0 m and -15.0 m. Water 

infiltration to these depths requires extended 

periods, making longer accumulation windows 

(7-10 days) more relevant for capturing the 

hydrological processes that trigger deep-seated 

movements. This approach is consistent with 

studies of deep-seated landslides that commonly 

use 7-14 day rainfall accumulation periods 

(Iverson, 2000; Bordoni et al., 2015). 

This approach allows the models to capture 

the temporal dynamics of rainfall-induced 

landslide processes. The dataset was then 

divided into training (80%) and testing (20%) 

subsets, maintaining temporal continuity to 

prevent data leakage. The testing subset was 

manually curated to include both landslide 

(30%) and non-landslide (70%) periods. The 

primary datasets-hourly rainfall, pore water 

pressure, and displacement measurements - are 

summarized in Supplementary S1 and Fig 4. 

4.2. Model Development and Training 

Three machine learning models were 

developed using Python Scikit-learn and 

TensorFlow/Keras libraries: 

DT: A simple, interpretable model that 

partitions data based on feature thresholds. It 

was trained to full depth to capture all possible 

data splits.  

RF: An ensemble model that builds multiple 

DT on bootstrapped data samples and averages 

their predictions to improve robustness and 

reduce overfitting. The model used the default of 

100 estimators.  

LSTM: A recurrent neural network (RNN) 

designed to model temporal dependencies. The 

architecture consisted of a single LSTM layer 

(50 units) and a dense output layer, trained for 50 

epochs with the Adam optimizer. 

The performance of each model was 

evaluated using the coefficient of determination 

(R²) and Root Mean Squared Error (RMSE). 

The DT model (Fig. 5a) demonstrated 

moderate predictive accuracy, effectively 

capturing key trends in landslide displacement 

(RMSE = 0.0438, R² = 0.5746). However, its 

reliance on a single-tree structure limited its ability 

to generalize complex patterns within the data. 

   

a b c 

Figure 5. Comparison of Model Performance in Predicting Landslide Displacement. 
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The LSTM model (Fig. 5c) exhibited higher 

RMSE and lower R² compared to the other 

models (RMSE = 0.0561, R² = 0.5077). While 

LSTM is adept at modeling temporal 

dependencies, its performance suggests potential 

underfitting or limitations in capturing short-

term variations in the dataset. 

By combining these models, the study aimed 

to leverage the interpretability of DTs, the 

ensemble robustness of RFs, and the temporal 

learning capabilities of LSTM to develop a 

comprehensive framework for landslide 

prediction. 

5. Results and Discussion  

5.1. Application of ML Models for Landslide 

Prediction 

Rainfall is a primary trigger of landslides, 

particularly in areas with steep slopes and 

vulnerable geological formations, such as those 

found in Lac Duong, Lam Dong Province. To 

establish robust predictive relationships between 

precipitation and landslide occurrence, we 

analyzed both hourly rainfall data and 

cumulative precipitation over multiple time 

intervals. This study employed three ML 

models: DT, RF, and LSTM to evaluate the 

correlation between rainfall patterns and 

landslide initiation. 

The ML models were trained using datasets 

that incorporated cumulative rainfall metrics 

(Rx3d, Rx5d, Rx7d, Rx10d) alongside hourly 

precipitation measurements. Our analysis 

identified rainfall as the predominant triggering 

factor for landslides, especially when combined 

with soil saturation conditions during prolonged 

wet periods. The investigation of rainfall 

accumulation thresholds revealed several critical 

patterns: 

+ Rx3d (3-day cumulative rainfall): 

Thresholds between 75-100 mm proved crucial 

to triggering landslides, particularly in areas 

characterized by thinner weathering crusts where 

water infiltration rapidly affects slope stability. 

+ Rx5d (5-day cumulative rainfall): 

Accumulations exceeding 100 mm frequently 

corresponded with landslide events in zones with 

moderately saturated soil conditions, indicating 

the progressive buildup of destabilizing pore 

pressure. 

+ Rx7d and Rx10d (7- and 10-day 

cumulative rainfall): Higher thresholds of 130-

150 mm were strongly associated with increased 

landslide susceptibility, especially in areas with 

deeper soil layers where prolonged infiltration 

processes gradually compromise slope integrity. 

  

Figure 6. ML models performance. 

These findings highlight the critical 

importance of lag effects in cumulative rainfall 

for understanding and predicting slope failures. 

The research demonstrates that gradual 

precipitation accumulation over extended 

periods significantly influences pore-water 
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pressure dynamics and overall slope stability, 

underscoring the necessity of incorporating 

cumulative rainfall metrics into effective early 

warning systems. 

When comparing model performance, the 

RF algorithm demonstrated superior predictive 

performance, with an R² of 0.6406 and an RMSE 

of 0.0393, outperforming both the DT (R² = 

0.5746, RMSE = 0.0438) and the LSTM (R² = 

0.5077, RMSE = 0.0561) (Fig. 6). The 

ensemble-based RF approach effectively 

captured the complex, non-linear relationships 

between precipitation patterns and landslide 

initiation, while maintaining robustness across 

diverse rainfall scenarios. 

The DT model, while offering greater 

interpretability through explicit threshold 

identification, showed limitations in 

generalizing complex rainfall-landslide 

interactions. Meanwhile, the LSTM network, 

despite its theoretical advantage in modeling 

temporal dependencies, exhibited higher error 

rates, suggesting potential challenges in 

capturing the short-term variations critical for 

precise landslide prediction. 

These results validate the critical role of 

cumulative precipitation metrics in landslide 

forecasting and demonstrate the potential of 

machine learning, particularly ensemble methods, 

to enhance the accuracy and reliability of early 

warning systems in landslide-prone regions. 

5.2. Data-driven Warning Thresholds  

Based on model insights, new rainfall 

thresholds were proposed to assess landslide 

risk. For Alert Level 1, the threshold is exceeded 

when Rx3d exceeds 75 mm or Rx5d exceeds 100 

mm. Alert Level 2 is triggered when Rx7d 

exceeds 130 mm or Rx10d exceeds 150 mm 

(Fig. 7).  

 
(a) 

 
(b) 

 
(c) 

Figure 7. Rainfall Threshold Correlation with Landslide Displacement, (a) DT, (b) RF, (c) LSTM.  
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A Critical Alert is issued when both Rx3d 

and Rx10d thresholds are exceeded 

simultaneously, accompanied by significant 

cumulative displacement (ACCDIFL4 > 20 

mm). These thresholds were validated against 

observed landslide events, confirming their 

reliability and practicality in operational 

settings. The study also investigated seasonal 

variations and environmental factors influencing 

landslide susceptibility. Landslide frequency 

was highest during the monsoon season (June-

October), which coincided with periods of heavy 

rainfall. Areas with fine-grained soils and deep 

weathering crusts were found to be particularly 

vulnerable to prolonged rainfall. At the same 

time, urbanization and slope modifications 

further increased instability, highlighting the 

importance of integrated land-use planning. 

The selection of rainfall thresholds in this 

study is grounded in both empirical observations 

and data-driven analyses derived from AI 

models performance. The cumulative rainfall 

metrics (Rx3d, Rx5d, Rx7d, and Rx10d) were 

selected to capture the lag effects of precipitation 

on slope stability, reflecting different stages of 

soil saturation and pore-pressure buildup. Short-

term accumulations, such as Rx3d and Rx5d, are 

particularly sensitive to rapid infiltration 

processes in areas with thin weathering crusts, 

often leading to shallow slope failures. In 

contrast, longer-term accumulations (Rx7d and 

Rx10d) represent the gradual infiltration of 

rainfall into deeper soil layers, which can 

weaken internal structures and induce deep-

seated landslides. The proposed threshold values 

of 75-100 mm for Rx3d, 100 mm for Rx5d, and 

130-150 mm for Rx7d-Rx10d were derived from 

model outputs showing the strongest correlations 

between cumulative rainfall and displacement 

data. The superior predictive performance of the 

RF model further supports the validity of these 

thresholds, as it effectively captures the non-

linear relationships between rainfall patterns and 

landslide initiation. Thus, the established 

thresholds not only reflect the physical 

mechanisms governing slope failure but also 

provide a scientifically validated framework for 

operational early warning systems in landslide-

prone regions. 

5.3. Discussion  

Establishing rainfall thresholds for early 

warning of deep-seated landslides in Lac Duong 

Town, Lam Dong Province, Vietnam, represents 

a significant advancement in disaster risk 

management. The integration of ML models, 

DT, RF, and LSTM has provided valuable 

insights into the relationships between rainfall, 

soil displacement, and landslide susceptibility. 

This discussion evaluates the effectiveness of 

these models, the identified thresholds, and their 

implications for landslide prediction and 

mitigation strategies. 

The comparative analysis of DT, RF, and 

LSTM models demonstrates distinct advantages 

and limitations in predicting landslide 

occurrences. The RF model emerged as the most 

robust and reliable, achieving the highest 

coefficient of determination (R² = 0.6406) and 

the lowest root mean square error (RMSE = 

0.0393). The superior performance of RF can be 

attributed to its ensemble learning approach, 

which mitigates overfitting and enhances 

generalization across diverse rainfall conditions. 

Moreover, RF effectively identified key 

predictive variables, including cumulative 

rainfall over multiple days (Rx3d, Rx5d, Rx7d, 

and Rx10d), confirming the importance of 

considering prolonged rainfall in landslide 

forecasting. 

In contrast, the DT model provided practical 

interpretability, enabling the identification of 

specific rainfall thresholds associated with 

landslide events. However, its simplicity led to 

limited generalization, making it prone to false 

positives in periods of moderate rainfall. The 

LSTM model, designed for sequential data, 

demonstrated promising temporal dependency 

modeling but underperformed RF (R² = 0.5077, 

RMSE = 0.0561). These findings suggest that 

while LSTM can capture long-term rainfall 

effects, its application in landslide prediction 

may require further optimization, such as the 
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incorporation of additional geotechnical and 

hydrological parameters. 

These findings align with global studies on 

landslide early warning, which emphasize the 

role of cumulative rainfall in initiating slope 

failures [11]. The moderate R2 values (0.51–

0.64) reflect the complexity of the landslide 

system, in which displacement is influenced by 

numerous factors beyond our three input 

variables, including spatially variable soil 

properties, groundwater flow, temperature 

effects, and limitations of point-based sensors in 

capturing spatial variability. Similar studies 

report comparable R2 values, confirming our 

results align with current prediction capabilities 

using limited variables. The gradual 

accumulation of rainfall over extended periods 

was pivotal in influencing pore water pressure 

and slope stability, underscoring the need for 

cumulative metrics in early warning systems. 

These thresholds were validated against 

historical landslide events in Lac Duong, 

demonstrating their reliability and practicality in 

operational settings. The ability to issue timely 

warnings can significantly reduce the impact of 

landslides by enabling authorities and 

communities to take preemptive measures, such 

as slope reinforcement, evacuation, and 

infrastructure adjustments. 

The integration of ML models demonstrated 

the potential to improve the accuracy and 

reliability of landslide prediction by leveraging 

rainfall thresholds. RF emerged as the most 

effective model due to its balance of 

interpretability, robustness, and precision. The 

findings underscore the importance of considering 

both the immediate and lagged effects of rainfall, 

as well as the interaction between surface and 

subsurface hydrological processes. 

The study highlights the need for continued 

monitoring and model refinement to address 

limitations such as data sparsity and the dynamic 

nature of rainfall-landslide relationships. Future 

research should incorporate additional factors, 

such as soil moisture and geotechnical 

properties, to further enhance predictive 

capabilities. 

However, limitations such as data sparsity 

and the static nature of the thresholds warrant 

further research. Future research should 

concentrate on adding additional factors, such as 

soil moisture and geotechnical characteristics, 

expanding datasets, and developing dynamic 

thresholds that adapt to seasonal and geological 

variability. 

Establishing rainfall thresholds for landslide 

initiation is a complex task, as multiple 

interacting factors, including geological 

structure, slope gradient, and land cover, 

influence landslide occurrences. Notably, 

rainfall thresholds for landslide initiation are 

highly site-specific. Therefore, this study aims to 

propose rainfall thresholds for the Lac Duong 

area, which features relatively similar geological 

and topographical conditions. Nevertheless, the 

proposed approach for determining rainfall 

thresholds can be applied to other regions, 

provided that long-term monitoring data are 

available. 

6. Conclusion and Recommendation  

6.1. Conclusion  

This study has successfully established 

rainfall thresholds for the early warning of deep-

seated landslides in Lac Duong Town, Lam 

Dong Province, Vietnam. By integrating ML 

models, including DT, RF, and LSTM, we 

analyzed the correlation between rainfall 

accumulation and slope displacement, thereby 

developing more reliable predictive frameworks. 

The research findings confirm that cumulative 

rainfall over various periods (Rx3d, Rx5d, Rx7d, 

and Rx10d) plays a significant role in landslide 

initiation, with RF demonstrating the highest 

predictive accuracy. The proposed warning 

thresholds have been validated against historical 

landslide occurrences, demonstrating their 

practical applicability in real-world disaster 

mitigation. Key contributions of this study 

include developing data-driven thresholds for 

different risk levels that define essential rainfall 

thresholds and provide a scientific basis for 
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landslide early warning systems. Application of 

ML Models: The comparative performance 

analysis shows that RF is the most effective 

model, balancing interpretability and accuracy.  

Implications for Risk Management: The 

findings emphasize integrating real-time 

monitoring, remote sensing, and geotechnical 

data to refine predictions and improve early 

warning capabilities. Future research should 

focus on expanding datasets, incorporating 

additional hydrological and geotechnical 

parameters (e.g., soil moisture profiles, 

groundwater levels, and detailed soil properties), 

and integrating climate variability to improve 

threshold adaptability and model performance. 

Implementing these findings into operational 

monitoring frameworks will enhance disaster 

preparedness, mitigate landslide risks, and 

safeguard communities in vulnerable 

mountainous areas. The integration of machine 

learning and real-time monitoring represents an 

important step toward establishing data-driven 

landslide early warning systems in Vietnam's 

urbanized highland regions.  

6.2. Recommendation  

Based on the findings of this study, the 

following recommendations are proposed to 

enhance landslide early warning systems in Lac 

Duong Town and other similar regions: i) 

Implementation of Real-Time Monitoring 

Systems: Authorities should invest in automated 

rainfall and soil displacement monitoring 

stations, integrating data loggers, remote 

sensing, and geotechnical sensors for continuous 

data collection; ii) Refinement of Threshold 

Models: The established rainfall thresholds 

should be periodically updated based on new 

data, climate variations, and improved machine 

learning models to enhance prediction accuracy; 

iii) Community-Based Early Warning Systems: 

Public awareness and preparedness initiatives 

should be implemented to ensure local 

communities understand warning alerts and take 

necessary precautionary measures. iv) 

Integration with Land-Use Planning: Urban  

 

planning authorities should incorporate landslide 

susceptibility maps into infrastructure 

development policies to prevent high-risk 

constructions on unstable slopes; and v) Further 

Research on Hydrogeological Parameters: 

Future studies should incorporate groundwater 

levels, soil moisture content, and vegetation 

dynamics to develop more comprehensive 

predictive models for landslide initiation. These 

recommendations will contribute to the 

development of a more robust and efficient 

landslide early warning system, ultimately 

reducing risks to human lives and infrastructure. 
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