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research results show high agreement in comparison with other studies. The results demonstrate 

the effect of shape parameters, material properties, foundation parameters and the mechanical load 

on the nonlinear dynamic response of 2D penta-graphene plates. The study also investigates the 

effect of the thermal environment on the behavior of 2D penta-graphene plates. 
Keywords: Dynamic load, 2D penta-graphene composite plate, thermal environment, classical 

plate theory, stress function.  

________ 
Corresponding author. 

  Email address: ducnd@vnu.edu.vn 

  https//doi.org/ 10.25073/2588-1124/vnumap.4371 

mailto:ducnd@vnu.edu.vn


N.V. Quyen et al. / VNU Journal of Science: Mathematics – Physics, Vol. 35, No. 3 (2019) 14-29 

 

15 

1. Introduction 

Graphene like one 2D allotrope of carbon was have been known in 2004 [1]. It has shown that 2D 

single-layer structure has many outstanding advantages. Hence, scientists have been attracted 

considerable attention to these materials in the last decade. Computation or experimental methods 

have been used to investigate various types of 2D monolayer [2–7]. In 2015, Zhang et al. [8] proposed 

a new 2D carbon allotrope that is penta-graphene (PG). PG unit cell consists entirely of carbon pentagons.  

As a highly stable 2D allotrope of carbon, scientists have been attracted to this material in recent 

years. In [9], Sun et al. investigated the thermal transport property of penta-graphene which is affected 

by grain boundaries. A highlight point in [10] shown that the thermal conductivity of graphene is 

higher than that of penta-graphene. Tien et al. [11] studied the transport and electronic properties of 

sawtooth PG nanoribbons. Tien et al. figure out that the electronic and the transport properties of 

sawtooth PG nanoribbons can effectively modulate when doping by N and H. Alborznia et al. [12] 

examined the electronic and optical properties of 2D penta-graphene when this material is affected by 

vertical compressive strain using density functional theory. In [13], the effect of temperature on 

mechanical properties investigated using simulation method. The mechanical properties of penta-

graphene were compared with pentaheptite, graphane, and graphene in [14]. The mechanical 

properties of penta-graphene when this material is rolled into penta-graphene nanotubes was examined 

by Chen et al. [15]. Previous studies mainly focus on the material properties of penta-graphene. We 

can see that the number of studies on 2D penta-graphene application in the field of structure is still 

limited. Thus, this research decided to investigate the composite plate structure which reinforced by 

2D penta-graphene. 

The structures, in reality, face various types of dynamic loads such as wind, wave, earthquake, 

vehicle, blast, etc. Therefore, it is necessary to study the behavior of structures subjected to dynamic 

loads. Zhang et al. [16] use analytical and numerical methods to analyse the effect of blast loading on 

the behavior of plate structure which has three layers with faces made from fiber-metal and core made 

from metal foam. Blast loading effect on the dynamic response of plate structures with two layers 

sandwich was investigated [17]. Song et al. [18] studied the effect of moving to load on the dynamic 

response of sandwich plates base on the first-order shear deformation theory. In [19], Duc et al. 

presented nonlinear dynamic response and vibration of plate. The plate made from functionally 

material with piezoelectric layer, and outside stiffeners. In [20], dynamic response and vibration of 

double-curved shells which made from functionally graded nanocomposite have been studied base on 

higher-order shear deformation theory. Li et al. [21] investigated the nonlinear dynamic response sheet 

with triple-layer. The behavior of the composite plate reinforced by CNT under impact loading was 

studied using analytical method [22]. There are many studies on the behavior of structure when 

subjected to dynamic loads. But the number of research on structures made from 2D penta-graphene 

has not been paid attention to far. So this study decided to carry out the investigation Nonlinear 

dynamic response and vibration of 2D penta-graphene composite plates resting on elastic foundation 

in thermal environments. 

2. Analytical solution 

2.1. Basic formulas 

Figure 1 shown the 2D penta-graphene composite plate model in the Cartesian coordinate system 

, ,x y z  on Pasternak foundation.  
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With xy  is the mid-plane of the plates. z  is the axis along with the thickness of the plate, (

/ 2 / 2h z h   ). h is the thickness of the plate. ,a b  are the length and width of the plate, 

respectively. 

 

Figure 1.  Geometry and coordinate system of the plate resting on Winkler and Pasternak foundations. 

The reaction–deflection relation of the elastic foundation is expressed in Eq. (1): 

2
1 2eq k w k w    (1) 

with 
2 2
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  

 
. w  is the deflection of the plate. 2k  and 1k  are stiffness of Pasternak 

foundation and Winkler foundation, respectively. 

The classical plate theory is used to build the compatibility, motions equations and examine the 

nonlinear dynamic response of the 2D penta-graphene composite plates in this research. 

The relation strain-displacement base on classical plate theory is: 
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in which the normal strains in the middle plane of the plate are 
0
x  and 

0
y  . The shear strain of 

the plate is 0
xy inthemiddle plane of theplate. The displacement long ,x y  and z  axes are

, ,u v w , respectively. , ,x y xyk k k  are the curvature and twisted of the plates. 

The relationship between stress and strain in the thermal environment is expressed 

through Hooke's law in Eq. (4) 
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The elastic modulus of 2D penta-graphene obtained by fit the strain energy equation and the 

density functional theory energies.   

The relationship between forces, moments and stress of the penta-graphene plates are given by  

Eq. (5) 
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Substituting Eqs. (2) into Eqs. (4) and the result into Eqs. (5) give the constitutive relations as 
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The motion equations of plates supported by elastic foundations base on classical plate theory are  

, , 0x x xy yN N   (8a) 

, , 0xy x y yN N   (8b) 
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where q  is an external pressure uniformly distributed on the surface of the plate and 
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The stress function  , ,f x y t  is established as                                       
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From Eqs. (6), we get 
0 0 0, ,x y xy    as follows 
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                         (11) 

In which the coefficients 
* * *, ,ij ij ijA B D  are explained in the Appendix. 

With the stress function as in Eq. (10), Eqs. (8a-8b) are always satisfied. By substituting Eq. (11) 

into moment equations in Eq. (6). Finally, use the obtained moment equations instead of ijM  in Eq. 

(8c). After reduction, Eq. (8c) has the following form 
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In which the coefficients Pi ( i =1-10) are given in the Appendix. 

In this study, the imperfection is also considered. The equation to show the imperfections of the 

plate is w*. From Eq. (12) for the perfect plate, we obtain Eq. (13) for imperfect plates. 
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The deformation compatibility equation of the perfect plates and imperfect plates are Eq. (14) and 

Eq. (15), respectively. 

                                         
0 0 0 2
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N.V. Quyen et al. / VNU Journal of Science: Mathematics – Physics, Vol. 35, No. 3 (2019) 14-29 

 

19 
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Substitution Eq. (10) and Eq. (11) into the deformation compatibility Eq. (15) leads to 

    
 
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In which Ei ( i =1-4) are given in the Appendix. 

The Eq. (13) and Eq. (16) accompany with initial conditions and boundary conditions are used to 

investigate the nonlinear dynamic response of 2D penta-graphene plates. 

2.2. Boundary conditions  

In this study, the 2D penta-graphene composite plate is assumed to be simply supported. Two 

boundary conditions, labeled as Case I and Case II are considered 

Case I. Four edges of the plate are simply supported and freely movable (FM) 
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(17) 

Case II. Four edges of the plate are simply supported and immovable (IM) 

0

0

0, 0, ,

0, 0, .
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y y y
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    
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(18) 

in which 0 0,x yN N  are compressive force along the direction ,x y , respectively. 

The approximate solutions satisfying the boundary conditions are   

                                             *, , sin sin ,m nw w W h x y                                                        (19) 
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with ,m n

m n

a b

 
   , W  - the amplitudes of the deflection of the plate.   - imperfect 

parameter. The coefficients ( 1 4)iA i    found are as follow 
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With ( 1 4)iF i   are given in the Appendix. 
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Replacing Eq. (21), Eq. (20) and Eq. (19) into the Eq. (13) and then using Galerkin method we 

obtain Eq. (22) 

 
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(22) 

2.3. Plates subjected to mechanical load  

Consider the composite plates with Case I of boundary condition. The composite plates are 

assumed that subjected uniform compressive forces xP  and yP  (Pascal) on the edges 0,x a ,  and

0,y b   

0 0, .x x y yN P h N P h      (23) 

2.4. Plates with effect of temperature 

 Consider the composite plates with Case II ofboundary conditions in the thermal environment. 

The condition expressing the immovability on the edges, 0u  (at 0,x a ) and v 0  (at 0,y b ), is 

satisfied in an average sense as 

0 0 0 0

0, 0.
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From Eq. (3) and Eq. (14), we can obtain Eq. (25) 

                           

* * * * * *
11 , 12 , 16 , 11 , 12 , 16 ,

* * 2 2
11 1 12 2 , , ,

* * * * * *
12 , 22 , 26 , 21 , 22 , 26 ,

* * 2 2
21 1 22 2 , , ,

2

1
( )

2

2

1
( )

2

yy xx xy xx yy xy

x x x

yy xx xy xx yy xy

y y y

u
A f A f A f B w B w B w

x

T D D w w w

v
A f A f A f B w B w B w

y

T D D w w w

 

 


     



   


     



   

                         (25) 

   Substitution Eq. (19-20) into Eq. (25) and then results into Eq. (24), We can obtain the equation 

of Nx0, Ny0 as below 
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where ( 1 6)iJ i    are shown in the Appendix. 

By substituting Eq. (26) into Eq. (22), leads to the basic equations used to investigate the nonlinear 

dynamic response of the 2D penta-graphene composite plates in the Case II of boundary condition 
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              (27) 

Eq. (27) is used to study behavior 2D penta-graphene composite plates subject dynamic load in the 

thermal environment on elastic foundation. 

3. Numerical results and discussion 

This research studied composite plates under the present of an exciting force sinq Q t  . Q  is 

the amplitude of exciting force and   is the frequency of the force. Numerical results for dynamic 

response and vibration of the composite plates are obtained by Runge–Kutta method.  

We performed density functional theory calculations to estimate the elastic modulus of the single-

layer penta-graphene. The structure of a penta-graphene sheet was derived from T12-carbon. Using 

fitting coefficients, we have estimated 11Q  of 201.4 .GPa nmand 22Q of 208.4 .GPa nm , 12Q  of -18.6 

.GPa nm  and the 66Q  elastic constant was approximately 149.8 GPa , and thermal expansion 

coefficients of penta-graphene  1 2,   are ( 6.128,6.128) 10-6/K, respectively. 

Table 1. The elastic of the 2D penta-graphene by our calculations 

11Q  22Q  12Q  66Q  1  2  

201.4 

.GPa nm  

208.4 

.GPa nm  

-18.6 

.GPa nm  

149.8 

GPa  

6.128 

10-6/K 

6.128 

10-6/K 

(26) 
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3.1. Validation 

Park and Choi [23] studied the vibration of isotropic plates base on first-order shear deformation 

theory. In order to evaluate the accuracy of the method used in this research, we compared the value of 

the fundamental frequency parameter 2
L

h
a

D


   of plates in case of homogeneous plates without 

elastic foundations with results of Park and Choi [23]. 

Table 2 presents the influence of ratio length to thickness and ratio length to width on the 

fundamental frequency of the isotropic plates. From Table 2, the values of the fundamental 

frequencies obtained in this study very close to the results of Park and Choi [23]. The biggest 

difference is only 1.456%. This confirms that the method used in this study is completely reliable. 

Table 2. Comparison of the fundamental natural frequencies 
2

L

h
a

D


  . 

 / 0.5b a  / 1b a  

/h a  0.01 0.1 0.2 0.01 0.1 0.2 

Park and Choi [23] 49.3045 45.5845 39.3847 19.7322 19.0840 17.5055 

Present 49.1585 45.2167 38.9544 19.6127 18.8942 17.2507 

Difference (%) 0.296 0.807 1.093 0.606 0.995 1.456 

3.2. The natural frequency and dynamic response of 2D penta-graphene plates 

Table 3. Effect of foundation and ratio b/a on natural frequencies  1s  of 2D penta-graphene plates with (

0, / 100,( , ) (1,1)b h m n    ) 

1 2( , )k k  /b a  

1 1.5 2 

(0.1, 0.02) 1629.0 1971.3 2368.9 

(0.1, 0.04) 1697.9 2063.6 2486.9 

(0.1, 0.06) 1764.1 2152.0 2599.6 

(0.3, 0.02) 1985.9 2275.2 2627.1 

(0.5, 0.02) 2287.8 2543.0 2862.2 

Table 4.Effect of thickness and foundation on natural frequencies  1s  of 2D penta-graphene plates  

with ( 0, / 2b a   ) 

/b h  1 2( , )k k  
( , )m n  

(1,1) (1,3) (1,5) (3,5) 

80 (0.1, 0.02) 1227.8 1711.0 2401.6 3353.4 

(0.3, 0.04) 1702.1 2115.8 2763.1 3708.0 

(0.5, 0.06) 2070.5 2454.7 3082.6 4031.6 

90 (0.1, 0.02) 1151.7 1564.8 2166.2 3003.4 

(0.3, 0.04) 1641.8 1985.7 2537.5 3357.1 

(0.5, 0.06) 2016.0 2331.9 2861.0 3676.9 

100 (0.1, 0.02) 1094.1 1451.1 1980.8 2725.7 

(0.3, 0.04) 1597.2 1887.2 2362.9 3081.6 

(0.5, 0.06) 1976.1 2240.0 2691.2 3400.5 
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Table 3 and Figure 2 show the effect of ratio length to width /a b  on the behavior of 2D penta-

graphene composite plate. Table 2 shows the natural frequencies of penta-graphene with three case 

ratio /b a  = (1, 1.5, 2). The natural frequencies of the plate increase significantly when the ratio of b/a 

increases. In case 1 2( , )k k  = (0.1, 0.02), respectively, the natural frequencies increase 45.4% when 

ratio b/a increase from 1 to 2. Figure 3 shows the dynamic response of penta-graphene plate with three 

cases of /b a  = (2, 2.5, 3). From Figure 3, it is noticeable that the amplitude of the fluctuation of the 

structure is larger when the ratio of b/a decreases. 

Table 4 and Figure 3 present the effect of length to thickness /b h  on the behavior of 2D penta-

graphene composite plate. A glance at Table 4 provided reveals the effect of ratio /b h  on natural 

frequencies of the penta-graphene plate. We considered three values of ratio /b h  = (80, 90, 100). It 

can see that natural oscillation frequency decrease when b/h increase. In case 1 2( , )k k  = (0.1, 0.02), 

respectively, the natural frequency decrease from 1227.8  1s  to 1094.1  1s  when b/h increase 

from 80 to 100. Figure 3 provided show the ratio length to thickness /b h  affect the dynamic response 

of penta-graphene plate. Three case of ratio b/h = (60, 80, 100).The value of the amplitude of the 

penta-graphene plates increases when the value of ratio /b h  increase. When the plate is thick, the 

structure is stronger. 

 

Figure 2. The ratio length to width /a b affect the behavior of the plate. 

 

Figure 3. The ratio length to thickness /b h affect the behavior of the plate. 
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We can see the effect of the elastic foundation on the behavior of penta-graphene plate from Table 

3, Table 4, Figure 4 and Figure 5. Table 3 and Table 4 present the influence of the elastic foundation 

on the natural frequency of the plate. From those two tables, the frequency of plate increases 

significantly when the stiffness of the elastic foundation increases. Figures 4 and 5 show the influence 

of the foundation on the dynamic response of penta-graphene plates. Figure 4 considered three values 

of k1 = (0.1, 0.5, 0.9) (GPa/m). Figure 5 considered three values of k2 = (0.02, 0.06, 0.1) (GPa.m). 

Elastic foundation especially Pasternak foundation has a positive effect on the dynamic response of 

penta-graphene plates. When the stiffness of the elastic foundation increases, the amplitude of the 

plate will decrease. 

 

Figure 4. Winkler foundation 1k  affect the behavior of the plate. 

 

Figure 5. Pasternak foundation 2k  affect the behavior of the plate. 

Figure 6 illustrates the impact of the initial imperfection of plate on the dynamic response of 

penta-graphene plate. Three case   = (0, 0.1, 0.2) was investigated in Figure 6. The plate is perfect 

when   = 0. When the initial imperfect coefficient increase, the fluctuation range of the plate 

decreases.  
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Figure 7 demonstrates the impact of the thermal environment on the deflection amplitude – time 

curve of the plate. Three values (900,700,500)T   were investigated in Figure 7. Obviously, the 

thermal environment has a negative effect on the nonlinear dynamic response of penta-graphene plate. 

The temperature of the environment causes the amplitude fluctuation of the plate to increase. 

 

Figure 6. Imperfect coefficient  affects the behavior of the plate. 

 

Figure 7. Thermal environment affects the behavior of the plate. 

Figure 8 shows the effect of exciting force amplitude on the dynamic response of penta-graphene 

plates. In Figure 8, three cases of the excitation force amplitude

 2 2 2500 / ,400 / ,300 /Q kN m kN m kN m were considered. The amplitude of the excited force has a 

clear negative impact on the dynamic response of penta-graphene plate. 

Figure 9 demonstrates the impact of pre-loaded axial compression xP  on the behavior of penta-

graphene plates. From Figure 9, the value of the amplitude fluctuation of the plate to increase when 

the value of pre-loaded axial compression increase from 0 GPa to 0.6 GPa. 

Figure 10 introduces the effect of the amplitude Q on the graph of the frequency and amplitude. 

Obviously, the frequency – amplitude curve in the middle of the frequency – amplitude curves of 

forced vibration. When the value of the amplitude Q increase, the frequency – amplitude curves of 

force vibration and free vibration are farther apart. 
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Figure 8. The amplitude Q  affects the behavior of plate. 

 

Figure 9. The pre-loaded axial xP  affect the behavior of plate. 

 

Figure 10. The amplitude Q  affects the frequency – amplitude curves of plate 
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4. Conclusions 

This research analysed the behavior of penta-graphene composite plates on elastic foundation 

based on the classical plate theory and Airy stress function. The elastic modulus of 2D penta-graphene 

obtained by fit the strain energy equation and the density functional theory energies. 

One highlight in this study was the study of the effect of the thermal environment on the behavior 

of penta-graphene plate. From the results of the study, the conclusions obtained are: 

- The value of the natural frequency of the penta-graphene plate affected by geometrical 

parameters and elastic foundations has been examined. 

- The influences ofgeometrical parameters on the nonlinear dynamic response curves of the penta-

graphene plate are examined. 

- The elastic foundations have a positive effect while excitation force and mechanical loads have 

negative effect on the nonlinear dynamic response curves of the penta-graphene plates. 

- The influence of temperature field on the nonlinear dynamic response curves of penta-graphene 

plates are investigated. Specifically, increasing temperature of the environment adversely affects the 

behavior of the penta-graphene plates. 
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