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Abstract: Let BH be a fractional Brownian motion with H∈ (0, 1) and g be a deterministic 

function. We study the asymptotic behaviour of the tail probability    as  for fixed x and as   for 

fixed T. Our results partially generalise those obtained by Prakasa Rao in [1]. 
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1. Introduction 

Let 
0( )H H

t tB B   be a standard fractional Brownian motion (fBm) with Hurst index  , i.e. BH is a 

centered Gaussian process with covariance function given by 
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We refer the readers to the monograph [2] for a short survey of properties of fBm. When 
1

2
H  , 

the following limit theorems were proved by Prakasa Rao in [1]. 

Theorem 1.1. Let   1

1 1 ... k k

k kg t a t a t a t

      be a polynomial of degree k with ak > 0. Then, for 

any T > 0 and k ≥ 2 we have 
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Theorem 1.2. Let   1
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     be a polynomial of degree k with ak >0. Then, for 

any x > 0 and k ≥ 1 we have 
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It is known that when 
1

2
H  , 

H

tB reduces to a standard Brownian motion. In this case, Prakasa Rao's 

results reduce to those established previously by Jiao [3]. Naturally, one would like to ask the 

following questions: 

Q1: Are Theorems 1.1 and 1.2 still true when 
1

 < 
2

H ? 

Q2: Can we remove the polynomial structure of the drift g(t)? 

The aim of this paper is to provide an affirmative answer to Q1 and Q2. Our method is different 

from Prakasa Rao's where he mainly uses the classical Slepian's lemma. In the present paper, we 

employ the techniques of Malliavin calculus which lead us to a shorter proof for more general results. 

The rest of the paper is organized as follows. In Section 2, we recall some fundamental concepts of 

Malliavin calculus. The main results of the paper are stated and proved in Section 3.  

2. Preliminaries 

It is well known that 
H

tB  admits the so-called Volterra representation (see, e.g. [4]) 

   
0

,,  , 0;

t

H

stB K t s dB t T     (2.1) 

where (Bt)t≥0 is a standard Brownian motion, K(t, s) = 0 for s ≥ t and 
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Our proofs will be strongly based on techniques of Malliavin calculus. For the reader's convenience, 

let us recall the definition of Malliavin derivative with respect to Brownian motion B, where B is used 

to present Bt
H as in (2.1). 

We suppose that [0, ]( )H

t t TB   is defined on the complete probability space ( , , )P , where 



T.N. Quynh, T.M. Cuong / VNU Journal of Science: Mathematics – Physics, Vol. 36, No. 3 (2020) 1-9 3 

[0, ]( )t Tt  is a natural filter generated by the Brownian motion B. For  2 0,h L T  we denote by 

B(h) the Wiener integral 

   
0

 .= 

T

tB h h t dB  

Let S denote the dense subset of  2 , ,L P  consisting of smooth random variables of the form 

 1 ,..( , ( ))., nF f B h B h    (2.2) 

where , ( )n

bf Cn  , h1, ..., hn ∈ L2 [0, T]. If F has the form (2.2), we define its Malliavin 

derivative as the process  }: 0;{ ;tDF D F t T   given by 

 1

1
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k

f
D F B h h

x
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We will denote by 1,2 the space of Malliavin differentiable random variables, it is the closure of S 

with respect to the norm 

2 2 2

1,2

0

: .

T

tF E F E D F dt
 

   
 
  

The next Proposition is a concrete version of Corollary 4.7.4 in [5]. 

Proposition 2.1. Let F be in 1,2. Assume that 

 

2

0

( ) . .

T

D F d a s        (2.3) 

for some 0  . Then, for all x > 0, we have 

2

) - 
2

( ( .) e
x

P F E F x xp


 
  
 

    (2.4) 

Remark 2.1. The random variable -F also satisfies the conditions of Proposition 2.1. We therefore 

obtain the same bound for the left tail 

2

 -  - .( ( ) ) ,( 0)
2

( ) 
x

P F E F x P F E F x xp xe


 
  





       (2.5) 

3. The main results 

We firstly establish the following technical result which plays a key role in this paper. 

Proposition 3.1. Suppose that f is a continuously differentiable function on ℝ with bounded derivative 

and g is a continuous function on [0, T]. Let 
H

tB  be a fBm with  0,  1H  , it holds that 
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and  
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Proof. If sup '( ) 0
x

f x


 , then the estimates (3.1) and (3.2) are trivial. Hence, we can and will assume 

that sup '( ) 0.
x

f x


  

Consider a countable and dense subset 
0 },{   1nS t n  of [0, T]. Define 

1 2
 , , ..{ },.,

nn t t tM sup X X X  

where  :  + .( )H

t tX f B g t  Because f  is continuous differential with bounded derivative, we know 

from Proposition 1.2.3 in [4] that 1,2

tX D and 

     ,' ' ,   .H H H

t t t tD X f B D B f B K t t       

It is known from Proposition 2.1.10 in [4] that Mn ∈ D1’2 and Mn converges in L2(Ω) to 
[0, ]

sup t
t T

X


. In 

order to evaluate the Malliavin derivative of Mn, we introduce the following sets: 

1

1 1
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By the local property of the operator D; on the set Ak the derivatives of the random variables Mn  and 

X
kt

coincide. Hence, we can write 
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             (3.3) 

Denote by F(t, .) the antiderivative of K2 (t, .). Since K(t, θ) = 0 for θ ≥ t we can obtain 
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Combining (3.3) and (3.4) yields 
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     (3.5) 

The inequalitiy (3.5) shows that the random variable Mn satisfies the condition (2.3) of Proposition 2.1. 

Consequently, we can get 
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Then, by Fatou's lemma we deduce 
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which gives us (3.1). Similarly, we can obtain (3.2) by using the estimate (2.5). 

So the proof of Proposition is complete. 

Remark 3.1. We state Proposition 3.1 in a general form because it can be useful for the other 

researches. Let us give here an example. Consider the fractional stochastic differential equation 

0
0

( ) , [0, ].
t

H

t s sx x x dB t T    

Under suitable assumptions on σ and H, the Doss-Sussmann representation of xt is given by (see, e.g. 

[6, 7]) 

 ,   H

t tx f B  

where f (x) solves the ordinary differential equation: 

       0.,'    0   xf x f x f   

Thus f (x) will satisfy the condition of Proposition 3.1 if σ(x) is continuous and bounded on ℝ. 

We now are in a position to formulate and prove the first main result which generalises and improves 

Theorem 1.1. 
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Theorem 3.1. Let 
H

tB be a fBm with H ∈ (0, 1). Fixed T > 0, let g be a continuous function on [0, T]. 

It holds that 
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Proof. Obviously, we have 
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Since 
H

tB  is a normal random variable with mean zero and variance T2H, we can obtain 
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  (3.7) 

where Z has a standard normal distribution. Since 
( )

1
H

x g T

T


  for sufficiently large x, we can apply 

Lemma 1 in [2] to get 
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for sufficiently large x. 

As a consequence, 
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On the other hand, we obtain from Proposition 3.1 that 
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   is finite because 

   
[0, ] [0, ] [0,1] [0, ]

[ sup ] sup ] [sup ] sup ]. [  [H H H

t t
t T t T t t T

Tc E g t E g tB B T
   

    

Taking the limit x→∞ we get 
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So we can finish the proof by combining (3.8) and (3.9).   □ 
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The second main result of this paper is the following theorem. 

Theorem 3.2. Let 
H

tB  be a fBm with H ∈ (0, 1) and g be a continuous function on [0, 1). Assume 

that there exists a positive constant k > H such that 
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g T

T



   

Then, for any x > 0 we have 
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Proof. It is clear that    
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     as T→∞. 

Hence x < cT for sufficiently large T. Once again, we apply Proposition 3.1 to get 
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which leads us to the following 
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Since 
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    This, together with (3.12), yields 
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Thus the estimate (3.10) was proved. 

The remaining of the proof is to show (3.11). Because αk > 0 and k > H, we have 
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HT
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for any x>0. Hence,  

( ) 1 ( )

2H H

x g T g T x
P Z P Z

T T

    
      

   
 

for sufficiently large T. Recalling (3.7) and using Lemma 1 in [3], we have 
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 for sufficiently large T. 

We therefore obtain 
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The proof of Theorem is complete. 

We end up this paper with a remark. 

Remark 3.2. The method used in the paper can be applied to a larger class of Gaussian processes of 

form 

0
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t

t sY k t s dB t T   

where the Volterra kernel k(t, s) is continuous and satisfies the function  
2 2

0
,  

t

tt E Y tk s ds   is 

non-decreasing. Here we note that the non-decreasing property of 
2
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   is an Ornstein-Uhlenbeck process we have 
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3. Conclusion 

Thus, we have generalized Rao's studies of fractional Brownian motion with continuous drift, H ∈ 

(0, 1). And we got the answers to question 1 one and question 2 who are the two issues raised in the 

introduction. In these proofs we also use images of the Malliavin’s calculus, which are quite different 

from Rao's. 
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