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Abstract: The problem of optical character and handwriting recognition has been interested by 

researchers in long time ago. It has obtained great results in theory as well as practical applications. 

However, the accuracy of identification is still limited, especially in the case of low-quality input 

images. In this article, we propose an efficient method to recognize information fields for 

identification in ID card using Convolutional Neural Network (CNN) and Long Short-Term 

Memory networks (LSTM). The proposed method was trained in a large, various quality dataset 

including over three thousands ID card image samples. The implementation achieved better results 

compare to previous studies with the precision, recall and f-measure from over 95 up to over 99% 

out of all information fields to be recognized. 
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1. Introduction 

Identification (ID) Card is a personal card, providing basic information of citizen such as full name, 

date of birth, place of origin, place of permanent residence, nationality, religion, date and place of issue. 

In almost daily business, those information are required and usually extracted manually. It is not efficient 

process because we need a lot of time to input data one by one. Therefore, we need a method that 

processes automatically known as Optical Character Recognition (OCR) [1],[2].  
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A Vietnamese ID card usually contains text fields with different font styles and size. In many cases, 

the characters and also the other parts like rows, the seal, the signature was not well printed which cause 

the inaccurate information, like the overlap of characters [3]-[5]. In addition, by the time, the card is 

normally faded and blurred. In the literature, there are already existing works to improve the accuracy 

of ID card reading by different techniques before the recognition of optical characters. But for the 

Vietnamese ID Card, especially with the old form, it still lacks an efficient method to improve the quality 

of input data, reduce noise or time for the recognition task. In this paper, we propose an efficient method 

to recognize information fields for identification in ID card using Convolutional Neural Network (CNN) 

and Long Short-Term Memory networks (LSTM) [6],[7]. 

The paper is organized as follows: Section 2 presents our proposed method for automatic recognition 

of all personal information on the Identification Card. Section 3 provides the experimental evaluation; 

Section 4 is our conclusion and further work. 

2. Computational methods 

2.1. Details 

We propose an adaptive method, as illustrated in the Fig.1 for automatic recognizing text fields from 

the Vietnamese ID, includes [8]: 

 Image pre-proceeding. 

 Analysis of table structure. 

 Text zones detection 

 Text lines segmentations. 

 Text line recognition. 

Image pre-proceeding: enhancing the quality of input data: As mentioned above, ID cards can be 

stained, moldy, crumpled and worn out over time [9],[10]. Therefore, improving and enhancing the 

quality of input image is necessary and important. Pre-processing was done in both front and back side 

of the card. It includes basic steps: Convert the color image to the gray-scale one; align tilt, smooth and 

create the binary image. Detecting and separating the ID card number: For the front side, the important 

information we need is the ID card Number, so that with this side we firstly detect and separate the ID 

Card Number field. However, due to the same color among the ID card Number, wavy lines, the national 

emblem and sometimes clothes of ID card holder; therefore, firstly we highlight the ID card. 

Analysis of table structure: For the back side, the ROI is a table that contains different information. 

The table is formed by horizontal and vertical lines but those lines is usually blurred or dashed. 

Moreover, while stamping/printing and finger-print, the characters or the fingerprints may overlap with 

lines which makes it difficult to detect the table structure. Therefore, to determine table structure, the 

horizontal and vertical lines should be clearly defined. Since they have the same characteristic, we apply 

also a same algorithm to define them. 

Text zones analysis and detection: The detection and segmentation of text zones is applied on the 

binary image block after separating national emblem, portrait, headings and ID card Number in the front 

side, or the text image defined from the table in the back side. 

Text lines segmentation and normalization: The main purpose of this processing step is to 

segment blocks of text into separate text lines before recognizing them. For identification cards, text 

lines come in many different sizes, yet the relative position and scale of characters is an important feature 

for distinguishing characters in Vietnamese script and a variety of other scripts.  Our text lines detection 
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method was proposed in [11]. The main idea of the method is to group together characters with same 

properties by walking through the document to form a text-line. Text line normalization plays an 

important role in applying CNN-LSTM networks to OCR in the next step. The normalization procedure 

for text line images is based on a dictionary composed of connected component shapes and associated 

baseline and x-height information. This dictionary is pre-computed based on a large sample of text lines 

with baselines and x-heights derived from alignments of the text line images with textual ground-truth, 

together with information about the relative position of Vietnamese characters to the baseline and x-height. 

 

 

Figure 1. Automatic recognizing information fields on Identification Card. 

When the baseline and x-height of a new text line need to be determined, the connected components 

are extracted from that text line and the associated probability densities for the baseline and x-height 

locations are retrieved. These densities are then mapped and locally averaged across the entire line, 

resulting in a probability map for the baseline and x-height lines across the entire text line. The resulting 

densities are then fitted with curves and used as the baseline and x-height for line size normalization. In 

line size normalization, the (possibly curved) baseline and x-height lines are mapped to two straight 

lines in a fixed size output text line image, with the pixels in between them rescaled using spline 

interpolation. 

 Text line recognition: The input of this step is the image of the text lines detected in the previous 

step. For recognition, we use the CNN-LSTM model. Our approach is purely data-driven and can be 

adapted with minimal manual effort not only to Vietnamese but also to different languages and scripts. 

Feature extraction from text images is realized using convolutional layers. Using the extracted features, 

we analyze the ability to model local context with both recurrent and fully convolutional sequence-to-

sequence architectures. The alignment of the extracted features with ground-truth transcripts is realized 

via a CTC layer. This LSTM model will be presented more detail in the follow section. 
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2.2. Text line recognition model 

The architecture of hybrid CNN-LSTM model for text line recognition is depicted in Fig. 2. 

 

Figure 2: Recognizing information fields on ID card 

The bottom part consists of convolutional layers that extract high-level features of an image. 

Activation maps obtained by the last convolutional layer are transformed into a feature sequence with 

the map to sequence operation. Specifically, 3D maps are sliced along their width dimension into 2D 

maps and then each map is flattened into a vector. The resulting feature sequence is fed to a bidirectional 

recurrent neural network with 256 hidden units in both directions. The output sequences from both layers 

are concatenated and fed to a linear layer with soft ax activation function to produce per-time step 

probability distribution over the set of available classes. The CTC output layer is employed to compute 

a loss between the network outputs and the ground truth transcriptions. During inference, CTC loss 

computation is replaced by greedy CTC decoding [12].  

Table 1.Structure of CNN-LSTM model 

Layers Output volume size 

Conv2d (3×3,64; stride: 1×1 32×W×64 

Max pooling (2×2; stride: 2×2) 16×W/2×64 

Conv2d (3×3,128; stride: 1×1) 16×W/2×128 

Max pooling (2×2; stride: 2×2) 8×W/4×128 

Map to sequence W/4×1024 

Dropout (50%) ─ 

Bidirectional LSTM (units: 2×256) W/4×512 

Dropout (50%) ─ 

Linear mapping (units: num classes) W/4×num classes 

CTC output layer Output sequence 

length 
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Table 1 show more detail of the CNN-LSTM model. The model was trained via minibatch stochastic 

gradient descent using the Adaptive Moment Estimation (Adam) optimization method. The learning rate 

is decayed by a factor of 0.99 every 10000 iterations and has an initial value of 0.0001 for the model. 

Batch normalization [13] is applied after every convolutional block to speed up the training. The model 

was trained for approximately 300 epochs. 

3. Results and discussion 

To train and evaluate our ID Card OCR system we prepared several datasets, consisting of both real 

and synthetic documents. This section describes each in detail, as well as the preparation of training, 

validation, and test samples, data augmentation techniques, and the geometric normalization procedure. 

The experiments are carried out using 3256 ID Card images, in which there are 1628 front-side-

images and 1628 back-side images of ID cards. ID cards were collected from many provinces, in various 

qualities, font sizes, printing style and scanned at resolutions of 200dpi, 300dpi and 400dpi. Details of 

the experiments data are given in Table 1. The text lines were normalized to a height of 32 in 

preprocessing step. 

Table 2. Experiment datasheet 

Information fields #Text lines # Characters 

ID card No. 1628 17908 

Full name  1628 35216 

Date of birth  1628 16280 

Place of origin 2156 75460 

Ethnic group  1628 6712 

Religion  1628 1057 

Date of issue  1628 37444 

Place of issue 1628 19536 

Total: 13552 209613 

 

In order to evaluation of the result, we based on Precision, Recall and F-measure Error! Reference 

source not found., which are calculated as following: 

Precision = (Number of correct text line Recognized)/ /[Number of correct text line recognized + 

Number of incorrect text line recognized] 

Recall = (Number of correct text line recognized)/ [Number of correct text line recognized + Number 

of unrecognizable text lines] 

F-Measure =(2*Precision*Recall)/ (Precision+Recall) 

The experimental results on the real datasheet are described more detail in Table 3.  

We compare the text line recognition error rates of our system with two established commercial 

OCR products: ABBYY FineReader 11 [14] and with a popular open-source OCR library – Tesseract 

versions 4 [15] and Ocropus [16]. Recognition is performed at the text line level. The ground truth layout 

structure is used to crop samples from document images. The experiment results are showed on Figure 3. 
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Table 3. Accuracy of text line recognition 

Information 

field 

 

#Text 

lines 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

ID card No. 1628 98.8 98.62 97.7 

Full name  1628 97.9 97.40 97.53 

Date of birth 1628 98.57 98.13 98.21 

Place of origin 2156 96.09 95.60 95.86 

Ethnic group  1628 99.24 99.02 99.11 

Religion  1628 99.1 98.93 99.01 

Date of issue 1628 96.53 96.08 96.21 

Place of issue 1628 95.71 95.44 95.59 

 

The results presented in this paper show that the CNN-LSTM model yields good OCR results for 

Vietnamese ID card recognition. Our benchmarks suggest that error rates for CNN-LSTM based OCR 

without a language model are considerably lower than those achieved by segmentation based approaches. 

 

Figure 3. Compare text line error rates of systems. 

A common and valid concern with OCR systems based on machine learning or neural network 

techniques is whether they will generalize successfully to new data.  

We would ordinarily determine the error rate of a system by taking a data set, dividing it into training 

and test sets, train the system on the training set and evaluate on the test set. 

There are several indications that LSTM-based approaches generalize much better to unseen 

samples than previous machine learning methods applied to OCR.  

During LSTM training, we often observe very low error rates long before even one epoch of training 

has been completed, meaning that there has likely not been an opportunity to “overtrain”. LSTM-based 

systems have been found to generalize well to novel data by other practitioners. 
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4. Conclusions 

The article proposed a solution for recognition the text fields, which is suitable for identification 

automatic data input) of personal information on Vietnamese ID card. Based on its specific feature, the 

detection and segmentation are divided into two separated step for the back side and the front side. Ours 

recognition engine has built based on the CNN and multidimensional LSTM networks.  

The implementation achieved better results compare to previous studies with the precision, recall 

and f-measure from over 95 up to over 99% out of all information fields to be recognized. 
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