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Abstract: In this paper, we investigate numerically wave propagation and localization in a 

complex random potential with power-law correlations. Using a discrete stationary Schrӧdinger 

equation with the simultaneous presence of the spatial correlation and the non-Hermiticity of the 

random potential in the diagonal on-site terms of the Hamiltonian, we calculate the disorder-

averaged logarithmic transmittance and the localization length. From the numerical analysis, we 

find that the presence of power-law correlation in the imaginary part of the on-site disordered 

potential gives rise to the localization enhancement as compared with the case of absence of 

correlation. Depending on the disorder's strength, we show that there exist different behaviors of 

the dependence of the localization on the correlation strength. 

 Keywords: Non-Hermitian Hamiltonian, complex disordered potential, spatial correlated disorder, 

Anderson localization. 

1. Introduction 

Although Anderson localization of quantum particles and classical waves has been extensively 

studied over the last 60 years, it is still attracting the interest of many researchers in various areas of 

physics [1-6]. New aspects of localization phenomena have been discovered continually in diverse 

systems characterized by different kinds of wave equations or random potentials. Among them, the 

combined influence of the spatial correlation and the non-Hermiticity of the random potential is the 

main focus of this study. 
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During the recent few decades, the influence of spatially correlated disorder on the wave 

propagation and localization properties has been attracted much attention from theoretical as well as 

experimental researchers [7-23]. It has been demonstrated that some special kinds of short-range 

correlated disorder can produce delocalized eigenstates even in one dimension [7, 8]. More 

interestingly, it was predicted that the introduction of long-range correlations into a disordered system 

would suppress localization and give rise to a continuum of delocalized states [9, 10]. At first, this 

prediction caused some controversy [9, 11]. However, it was experimentally verified later by a 

measurement of microwave transmission spectra through a single-mode waveguide with artificially 

introduced correlated disorder [12]. There is a common point of view that the strongest localization is 

obtained for strongly disordered uncorrelated potentials, which is based on the prediction that 

correlations suppress, rather than enhance, localization. In some specific situations [24-27], however, a 

strong decrease of the localization length and therefore a strong enhancement of localization has been 

observed, when the long-range correlated disorder is introduced into the Hermitian Hamiltonian 

system. In spite of a large number of publications devoted to this topic, the problem of understanding 

the effects of spatial correlations on Anderson localization has not been completely resolved yet.  

In recent years, there has been considerable attention devoted to studying transport and 

localization properties in physical systems which are described by non-Hermitian Hamiltonians [28-

39]. These kinds of Hamiltonians are usually regarded as effective Hamiltonians for which the non-

Hermitian part can serve for different purposes. The possibility for the potential to possess an 

imaginary part makes these non-Hermitian Hamiltonians having many unique features such as non-

Hermitian delocalization transition [28, 29], a transition from ballistic to diffusive transport [30], one-

way scattering and transport [33, 34] and topological phase transitions [35, 36]. Basically, there are 

two classes of problems associated with non-Hermitian Hamiltonian: one in which the non-Hermitcity 

arises from the off-diagonal elements such as the Hatano-Nelson model, where an imaginary vector 

potential is applied to the Hamiltonian [28] and the other in which the non-Hermitcity originates from 

the complexity of on-site potentials [31, 37-39]. For the latter, a one-dimensional (1D) non-Hermitian 

lattice model with randomness only in the imaginary part of the on-site potential has been studied, 

with the result that the eigenstates of such a model are localized, but the properties of localization are 

attributed to be qualitatively different from those of the usual Anderson model [31]. The 2D non-

Hermitian square lattice model was proposed in a recent work by Tzortzakakis and co-workers [38]. 

They demonstrated that the complex disordered potential acts in a dual way: its time-reversal 

symmetry breaking favors more delocalized states, while its disorder nature favors more localized 

ones. Very shortly after, Huang and Shklovskii extended the 2D square lattice model to 3D cubic one 

[39]. The authors showed that there exists a transition from delocalized to localized states as in the 

usual 3D Anderson model. However, this transition happens at a substantially lower critical value of 

the disorder strength than that of the Hermitian case ( 6.1cW   vs 16.5cW  ). 

One important application of Anderson localization in optical systems is to develop random lasers 

[40, 41], where an optical cavity is formed not by mirrors but by multiple scattering in a random gain 

medium. To achieve high-efficiency output from a random laser, it is crucial to produce strongly 

localized states. To do this, in our very recent work [42], we studied the effects of spatial correlations 

on the transverse localization of waves in 1D lattices with randomly distributed gain and loss. In the 

short-ranged case and when the correlation length is sufficiently small, we find that there exists a 

critical value of the disorder strength, below which enhancement and above which suppression of 

localization occurs as the correlation length increases. In the region where the correlation length is 

larger, localization is suppressed in all cases. Similar behavior is obtained for long-range correlations 

as the disorder strength and the correlation exponent are varied. In the region where localization is 
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enhanced in the presence of long-range correlations, we find that the enhancement occurs in the whole 

energy band, but is strongest near the band center.  

In this paper, we study the effects of power-law correlations on the transmission and the 

longitudinal localization of plane waves in a 1D disordered lattice chain characterized by a random 

non-Hermitian Hamiltonian, where the imaginary part of the on-site potential is a correlated random 

function of the position. Using a calculation scheme for solving a disordered version of the stationary 

discrete Schrӧdinger equation, we calculate the disorder-averaged logarithmic transmittance and the 

localization length, when the intensity of the incident wave is held fixed. From the numerical results, 

we find that the presence of power-law correlation in the disorder distribution gives rise to the 

localization enhancement as compared with the case of absence of correlation. Specifically, in the 

region where the correlation is relatively weak, it is shown that the localization is enhanced rapidly 

with increasing the correlation strength. In the region where the disorder strength is weak, a non-

monotonic dependence of the localization length on the correlation strength is found. This behavior is 

held in the entire energy band but is more pronounced at the band center than near the band edges. In 

the region where the disorder strength is large enough, the localization length is a monotonic 

decreasing function of the correlation strength.  

The rest of this paper is organized as follows. In section 2, we describe the theoretical model and 

the method within the nearest-neighbor tight-binding approximation. The physical quantities of 

interest are also described briefly in this section. In section 3, we present our numerical results. 

Finally, in section 4, we conclude the paper. 

2. Theoretical Model and Method 

2.1. Model 

We are interested in the stationary propagation of extended excitations through a 1D lattice chain 

of length L described by a discrete stationary Schrӧdinger equation 

1 1( )n n n n nJ E      (1) 

This is an open quantum system which is coupled to the external world through two identical 

semi-infinite perfect leads on either side. Here n is the wave function amplitude at the nth lattice site, 

E is the energy of the incident wave, and J is the constant nearest-neighbor hopping term. It is well-

known that when the on-site potential n are assumed to be real, random, uncorrelated, and uniformly 

distributed in the interval [ / 2, / 2W W ] with W being the disorder strength, we have the usual 

Anderson model [1]. 

In the present work, the on-site potential n is considered to be complex. Specifically, it takes the 

form, 

    
R I

n n ni        (2) 

where the real part 
R

n  is assumed to be the same for all lattice sites (below we put 0R

n for 

simplicity), whereas the imaginary part 
I

n  is considered to be a sequence of random variables with 

power-law correlations. One of the most popular ways to numerically generate such a sequence is to 

consider the trace of the fractional Brownian motion defined by [9, 19] 
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where where the number of sites L is an even number and k ’s are L/2 random phases uniformly 

distributed in the interval [ 0, 2 ]. The Fourier transform of the two-point correlation function ,i j

( ),S k is proportional to a power-law spectrum .k  The exponent  determines the roughness of 

potential landscapes and characterizes the power-law correlation strength. When is zero, we recover 

an uncorrelated random sequence. In order to study the dependence on the strength of disorder 

properly, we need to normalize the generated sequence n  by multiplying a suitable normalization 

constant [14] 

    
12

I n
n

W

C
       (4) 

where W measures the disorder strength and C is the normalization constant which is obtained by the 

condition 
22 1.n n

 In Figure 1, we show an example of typical random configurations of 
I

n

corresponding to 2.0W  and 0, 1.5, 2.5. It is clearly that the normalization effectively modifies 

the local disorder strength while keeping the global disorder strength the same for any .   

 

 

Figure 1. Typical random configurations of ,I

n  when 2.0W  and the power-law correlation exponent 

0, 1.5, 2.5.  It is clearly that the normalization effectively modifies the local disorder strength while keeping 

the global disorder strength the same for different values of .  

2.2. Method 

We assume that a plan wave is incident from the right onto the disordered sample of L lattice sites 

and define the transmission problem by using 

    

1 1

( ) ( )

0 1

( ) , 0

,

, 0

n n n n

iq L n iq n L

n

iqn

n

E n L

r e re n L
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     (5) 
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where the wave number q is related to the energy of the incident wave E by 2cos ;E q 0 ,r  1r  and t 

are the complex amplitudes of the incident, reflected and transmitted waves, respectively. Since our 

model is non-Hermitian, the conservation of probability current is not satisfied, therefore 
2 2 2

1 0 .r t r  The wave number q is assumed to be the same inside and outside the medium. This 

restriction corresponds to the case where the creation of other harmonics is neglected. 

      For the transmission problem, in principle, there are two cases for which we need to be carefully 

distinguished. The case where the value of 
2

t is fixed is called the fixed output case, while that with a 

fixed value of 
2

0r is called the fixed input case.  In actual experiments, however, one usually fixes the 

incident wave intensity while varying other parameters. Therefore, we developed a reliable theoretical 

method for solving Eqs. (4) and (5) numerically in the situation where the incident wave intensity, 
2

0 ,r  is fixed [43-45]. In particular, we first assume that t is a certain positive real number. Using the 

relationships 1 ,iqte 0 t  and 1 0 1E and solving the first of Eq. (5) iteratively, we 

obtain L and 1L for a given L. Next, using the relationships 0 1L r r and 1 0 1 ,iq iq

L r e re we 

express 0r  and 1r  as 

    1

0

iq

L L

iq iq

e
r

e e
  and 1

1

iq

L L

iq iq

e
r

e e
   (6) 

And then the expressions for the transmittance T and the reflectance R are given by 
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In order to calculate T and R in the fixed input problem, we first choose the values of E (or q), 
2

0r and 

a random configuration of .n  Then we solve Eq. (1) repeatedly for many different initial values of t

( 0, , 2 , 3 ,...)t  until we obtain the final value of 
2

0r sufficiently close to the chosen value. The 

step size needs to be chosen appropriately to achieve desired accuracy. 

 

Figure 2. In the absence of power-law correlation ( 0) :  Disorder-averaged logarithmic transmittance lnT  

versus L at 0E  for various values of the disorder strength W. 
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      In the study of the Anderson localization phenomenon of waves in disordered media, the 

localization length  is the central quantity which is defined by [2] 

    lim ln
L

L
T       (8) 

where  denotes averaging over a large number of random configurations of .n  The localization length 

measures the exponential decay rate of a localized state in the thermodynamic limit ( L  or 0T ). 

3. Numerical Results 

In our calculations, the disorder-averaged quantities are obtained by averaging over 410 distinct 

disorder configurations. Although the chosen system sizes are finite, they are large enough so that the 

asymptotic behaviors in the thermodynamic limit should be achieved. Indeed, as seen below that the 

exponential decay of T  (or the linear decay of lnT ) with L approaches to some very small values 

( 0T ) when the calculations were performed for the system size 100L  up to 200.L  All of 

our results were obtained for the fixed input intensity of 
2

0 1.r  The step size for t was 610 .  

The error in the calculated value of 
2

0 1r  was smaller than 510 .  

First, we consider the problem in the case of absence of power-law correlation. In Figure 2, we 

plot lnT  versus L at the band center ( 0E ) for various values of the disorder strength W when 

0.  From the numerical results we find that for a given W, lnT decays linearly as L increases to 

infinity. This is a signature of Anderson localization. We have also verified and found that this 

behavior is held for all values of E in the entire energy band. Similarly to the usual Anderson model 

where the real part of the on-site potential is random, in the model under consideration, the decay rate 

of lnT  increases, hence the localization is enhanced as the disorder strength W increases. These are 

in good agreement with the results of previous studies [31, 37-39], in which the transverse localization 

of waves in 1D, 2D and 3D optical waveguide arrays with non-Hermitian disorder has been 

investigated in details. 
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Figure 3. In the presence of power-law correlation ( 0) :  Disorder-averaged logarithmic transmittance 

lnT  versus L at 0E  for various different values of   when 1.0.W   

Next, we study the effects of spatially correlated disorder on the longitudinal localization of waves 

for which the amplitude of the wave decays exponentially along the propagation direction. This is the 

main goal of the present work. In Figure 3, we plot lnT  versus L at 0E  when 1.0W for various 

values of the power-law correlation exponent .  We find that in the presence of power-law 

correlation, the linear decay of lnT  with L is maintained. The decay rate of lnT  is increased, 

hence the behavior of localization is enhanced as  increases. Remarkably, in the correlation region 

with 2, lnT decays more and more rapidly with L as  increases. However, if we keep 

increasing  further, the decay rate of lnT slows down and stops at a certain critical value .c  

The next question we ask is how this behavior changes as  is increased beyond the critical value 

of .c  The answer is shown clearly in Figure 4, which plots the inverse localization length 1/  as a 

function of the correlation parameter  at 0E  for several different values of the disorder strength 

W. In the parameter region under consideration, we find that the behavior of localization is always 

enhanced in the case of 0  as compared with the case of 0.  When W is small, we find that the 

inverse localization length 1/  shows a non-monotonic dependence on .  Particularly, in the region 

where  is relatively small, 1/  increases rapidly with increasing .  However, increasing 1/  with 

 will slow down and 1/  attains a maximum value at a critical value .c  If we continue increasing 

 further, 1/  returns to decrease slowly with .  This implies that the correlation-induced 

localization enhancement is the strongest at .c  It is clearly seen that the value of c  strongly 

depends on the disorder strength W, specifically, c  increases with increasing W. As a result, when W 

is sufficiently large ( 4:W  bandwidth), the localization length  would be a monotonic decreasing 

function of .  These results are completely consistent with those presented in our recent work [42], in 

which the effects of spatially correlated disorder on the transverse localization of waves in a 1D array 

of optical waveguides have been studied. 

 

Figure 4. Inverse localization length 1/  versus power-law correlation strength ,  when 0E  for various 

values of the disorder strength W. 
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Finally, in Figure 5, we depict the inverse localization length 1/  as a function of the correlation 

parameter  at 1.0W for three typical values of the energy of the incident wave, 0, 1E  and 3.   

We find that the behavior of non-monotonic dependence of the inverse localization length on the 

correlation strength is held in the whole energy band. It appears to be more pronounced at the band 

center than near the band edges. 

It is important to mention that although it is not presented in this paper, we have checked 

numerically that all the results reported above are also valid in the situations where the average value 

of the imaginary part of the on-site potential 
I

n  takes any nonzero value. These include the cases 

where I

n  takes only positive or negative random values. 

 

Figure 5. Inverse localization length 1/  versus power-law correlation strength ,  when 1.0W  for several 

typical values of the incident wave energy E. 

4. Conclusion  

In summary, we have studied the effects of power-law correlations on the transmission and the 

Anderson localization of plane waves in a 1D disordered lattice chain characterized by a random non-

Hermitian Hamiltonian, where the imaginary part of the on-site potential is a correlated random 

function of the position. Using a calculation scheme for solving a disordered version of the stationary 

discrete Schrӧdinger equation, we have calculated the disorder-averaged logarithmic transmittance and 

the localization length, when the intensity of the incident wave is held fixed. From the numerical 

results, we have found that the presence of power-law correlation in the disorder distribution gives rise 

to the localization enhancement as compared with the case of absence of correlation. Specifically, in 

the region where the correlation is relatively weak, we have found that the localization is enhanced 

rapidly with increasing the correlation strength. In the region where the disorder strength is weak 

( 4),W  a non-monotonic dependence of the localization length on the correlation strength has been 

found. This behavior is held in the entire energy band but is more pronounced at the band center than 

near the band edges. In the region where the disorder strength is large enough ( 4),W  the localization 

length is a monotonic decreasing function of the correlation strength. Devices such as random lasers utilize 
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highly disordered gain materials. Our results can provide a useful guideline for achieving correlation-

enhanced localized states in such structures, thereby enhancing the device efficiency. 
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