
VNU Journal of Science: Mathematics – Physics, Vol. 37, No. 1 (2021) 12-20 

 12 

  

Original Article

 

Some Preliminary Results of the Synthesis and Investigation 

of the Glass/FTO/Si/Au/ Embedded Thin Film for Application 

in the Modified Plasmonic Solar Cell 

Nguyen Tien Thanh3, 2, Dao Khac An1, 2, *, Nguyen Si Hieu2, Nguyen Thi Mai Huong4 

1Institute of Theoretical and Applied Research (ITAR), Duy Tan University, Hanoi, Vietnam 
2Institute of Materials Science, Vietnam Academy of Science and Technology (VAST), 

 18 Hoang Quoc Viet, Hanoi, Vietnam 
3Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam 

4Institute of Applied Physics and Scientific Instruments, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam 

Received 03 August 2020 

Revised 27 October 2020; Accepted 15 November 2020 

Abstract: This paper outlines the synthesis of the glass/FTO/Au/ and of the glass/FTO/Si/Au/ 

multilayers and some obtained experimental results. Based on the measured results we observed that 

the structure of the sputtered Si layer is an amorphous phase meanwhile the structure of the sputtered 

Au layer is a crystallized phase. Depending on the sputtered layers (Si, Au) thicknesses and thermal 

annealing conditions the different surface morphologies of the Au layer with different sizes of 

clusters are formed on both the FTO and Si layers. Notably, the optical absorption spectra of the 

glass/FTO/Si/Au film in both cases of thermal annealing and without thermal annealing are 

significantly enhanced in comparison with the optical absorption spectra of the glass/FTO/Au film. 

These enhanced optical absorptions are explained by the absorption role of the amorphous Si film 

and/or the amorphous Si/Au Schottky layers/nanoparticles barrier configurations caused. The 

glass/FTO/Si/Au layer/nanoparticles thin films could be used for integration with the core structure 

(Au/TiO2) of plasmonic solar cell to form the modified plasmonic solar cells for aiming to enhance 

the solar cell performance. 

 Keywords: glass/FTO/Au multilayers, glass/FTO/Si/Au multilayers; amorphous Si layer; Au 

nanoparticles /cluster; photo absorption enhancement. 
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1. Introduction 

Recently the energy security problem is one of the biggest challenges for mankind to face and solve. 

Scientists have to extensively focus on researches for using solar energy in the forms of thermal and 

electrical energy. So far there are four solar cell generations that have been developing, among them the 

Dye-Sensitive Solar Cell (DSSC) including the plasmonic solar cell (PSC) belonging to the thin films 

solar cells generation, which are very interested. The operating principle of DSSC and PSC can be 

distinguished in more detail in the works [1, 2]. In 1991, Brian O'Regan and Michael Grätzel [1] 

published firstly the paper in the Nature journal of a low-cost, high-efficiency solar cell based on dye-

sensitized colloidal TiO2 films, so-called DSSC [1]. The DSSC is operating on the base of a suitable 

semiconductor formed between a photo‐sensitized anode and a cell electrolyte, a photoelectrochemical 

system. In contrast to the conventional solar cell system, here the light radiation is absorbed by a 

sensitizer, which is anchored to the surface of a wideband semiconductor then separated to the electrodes 

generating electrical current, meanwhile, the PSC is the use of scattering from metal nanoparticles 

(MNPs) excited at their surface Plasmon resonance with manipulation of electromagnetic signals by 

coherent coupling of photons to free electron oscillations at the interface between a conductor and a 

dielectric to form the localized surface plasmon resonances (LSPRs), this phenomenon is observed 

mainly in MNPs/semiconductor, for example in Au (Ag)/TiO2 (ZnO) and the PSC operation depends 

strongly on the size and shape of the nanoparticles (NPs) [1-4]. So far, many problems concerning the 

DSSC and PSC have been intensively studying. Each component in the DSSC (Dyes, semiconductor 

type, electrolyte, photoconductor, electrodes) and in PSC (MNPs, solid state dye- sensitizer, 

semiconductor quantum dots, high band gap semiconductors (TiO2, ZnO,…) has been developing both 

in manufacturing methods as well as searching new substitution materials for production of the different 

DSSCs and PSCs with the aims to produce the higher efficiency, larger area, low cost, stable operation, 

long life [2-13]. In order to increase the performance of DSSCs and PSCs, the scientists have been 

developing and integrating different additional layers into the initial core structures of DSSC and PSC 

[5-10]. Here it is worth noting that there is a very interesting research orientation that is the integration 

of the different structures of Si materials (Si substrate, Si thin film, amorphous silicon (a-Si), 

Hydrogenated amorphous silicon (a-Si:H) and SiO2 layers) into the initial PSCs to form so called the 

modified PSCs such as the Surface Plasmon enhanced silicon solar cells, Au–Si plasmonic platforms 

[14-17]. Although so, the ideal concerning the research work of the integration of the a-Si/Au NPs 

Schottky barriers  structure into the core Au/TiO2 plasmonic structure to form the modified PSCs has 

not been studying more in detail.    

This paper outlines the technological process for the synthesis of two groups: the glass/FTO/Au (FA 

group) and the glass/FTO/Si/Au/ multilayers configurations (SA group) using sputtering technology for 

deposition of Si layer onto the surface of the FTO/glass substrates and then deposition of Au layers with 

different thicknesses, after that a samples group are thermally annealed at 350oC for 30 minutes in the 

low vacuum (10-1 torr) to form the a-Si/Au NPs embedded configurations, the rest samples group are 

without thermal annealing remaining the a-Si/Au multilayers configurations. Their properties of the 

surface morphologies, their structural and chemical compositional properties as well as the optical 

absorptions have been investigated, showed and discussed in the comparison between two sample 

groups based on the measured results of SEM, EDX, XRD and optical absorptions spectra. The 

application ability of the glass/FTO/Si/Au NPs embedded thin film configuration for integrating into the 

conventional Au/TiO2 core plasmonic structure to form, so called the modified PSCs will also be 

discussed. 
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2. Materials and methods 

Materials used in our experiments are fluorine doped tin oxide coated on a glass slide (glass/FTO) 

which has the sheet resistivity is about ~7 Ω/square (from Aldrich Inc). Samples are divided into two 

groups: in the first group, Au layers are sputtered onto the glass/FTO substrate directly with the sputtered 

times are 10 s, 20 s, 30 s and 40 s, the obtained Au layer thicknesses are 30 nm, 60 nm, 90 nm and 120 

nm, respectively; in the second group, the Si layers are sputtered onto the glass/FTO substrate, following 

the Au layers are sputtered with the same sputtering times and layers thicknesses obtained as in above 

mentioned. The sputtering conditions occurred in 0.5 Pa pressure and 50 W power conditions. The 

samples’ labels, technological conditions and their features can be seen in Table 1. 

Table 1. Samples labels, the Au sputtered times and Au layers thicknesses obtained on  

the glass/FTO/Au and glass/FTO/Si (~200 nm)/Au thin films 

Sample’s configuration Glass/FTO/Au/ samples 

(FA group) 

Glass/FTO/Si(200nm and ~500 nm)/Au/ 

samples (SA group ) 

Samples’ labels FA-10 FA-20 FA-30  FA-40 SA-10 SA- 20 SA-30 SA- 40 

 Sputtering time of Au  10 s 20 s 30 s 40 s 10 s 20 s 30 s 40 s 

The Au layer thickness 30 nm 60 nm 90 nm 120 nm 30 nm 60 nm 90 nm 120 nm 

 

After that, one group was thermally annealed at 350 oC for 30 min in the low vacuum (10-1 torr) 

condition; another group was not thermally annealed. The synthesized samples were investigated by 

SEM, EDX, XRD techniques and measured the photo absorption spectra on the UV-VIS spectroscopy. 

Figure 1 shows the draft structural scheme of the modified PSC expected after integration where there 

is so called the front layer that is glass/FTO/Si/Au/ nanoparticles embedded thin film that is belonging 

to the investigating survey in this paper. 

 

Figure 1. The draft structure scheme of the modified plasmonic solar cell expected to do where the front layer of 

glass/FTO/Si/Au nanoparticles embedded thin film will be synthesized and investigated  

3. Results and Discussion 

3.1. The Surface Morphology and the Au Nanoparticles-clusters Formation on the Glass/FTO/Au/ and 

glass/FTO/Si/Au/ Embedded Thin Films 

In order to use the photo effect of the sputtered Si/Au NPs Schottky barriers configurations for 

aiming integration with the Au/TiO2 core structural plasmonic solar cell as expected, the FA and SA 

samples have to thermally annealed at certain conditions to form Au NPs on the Si layer, and then 

investigate the Au NPs - clusters formation at different Au layers thicknesses. 
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Figure 2. SEM micrographs of the top view surface morphologies of FA-30 sample without annealing (a); and of 

SA -30 sample without thermal annealing (b); the cross-section SEM image of SA-30 (c)  

Figure 2a,b show SEM images of the surface morphologies of the FA-30 and SA-30 samples without 

thermal annealing where the Au (90 nm) layers are being on different thin films of FTO and Si. The top 

view surface situations here are fine flats without any Au droplets-clusters formed. The grain sizes of 

the FTO layer being on FTO/glass (FA-30) thin film (Figure 2a) and the grain sizes of the sputtered Si 

layer being on Si/FTO/glass (SA-30) thin film (Figure 2b) are shown very clearly. Figure 2c shows the 

cross-section SEM of SA-30 sample, as an example, with the sizes of the thicknesses of the different 

layers where from the top to the bottom: Au layer thickness is about 90 nm, Si layer thickness is about 

200 nm, the FTO layer thickness is about 370 nm and the next to FTO layer is glass layer. 

 

    

   

Figure 3. The SEM images of the different FA (a,b,c) and SA (d, e, f)  group after thermal annealing on 350 oC for 30 

min in low vacuum. 

Figure 3 shows the surface morphologies of FA and SA samples group together with the Au NPs or 

clusters formed after thermal annealing at 350 oC temperature for 30 mins in low vacuum (10-1 torr) 

conditions. The results showed very clearly that the shape and size of Au NPs or clusters are different 

from each other sample depending on the thickness of the sputtered Au layers and the type of substrate. 

a) FA-30 unannealed  b) SA-30 unannealed c) Cross- section SEM of SA-30 

a)  FA-10 annealed  

d) SA-10 annealed   

b) FA-20 annealed  

e) SA-20 annealed 

c) FA-30 annealed  

f) SA-30 annealed  

Au nanoparticles - clusters 
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Notably, in the case of 10 s sputtering time with 30 nm Au layer thickness, the Au NPs formed with the 

size of about 20 - 40 nm (Figure 3a,d), while for the cases of the thicker Au layer thicknesses (60 nm 

and 90 nm Au layers) the bigger Au NPs or clusters were formed on samples surface, their sizes are in 

the range of about from 40 nm - 150 nm (Figure 3b,e,c,f), the sizes and forms of the Au NPs (smaller 

than 100 nm) or clusters (bigger than 100 nm) are also formed differently on the FTO/glass and  

Si/FTO/glass surfaces. 

We see that the Au NPs are mainly formed in the case of the thin 30 nm Au layer thickness for FA-10 

and SA-10 samples (Figure 3a,d). These results confirmed also the statement of Anna Gapska et al. [17] 

the formation of gold nanostructures on silicon can start below the eutectic temperature. Here two 

processes could be considered in explaining the formation of nanostructures: dewetting and directional 

solidification of a eutectic [17]. In addition, in the gold–silicon system, with the thicker Au layers, as in this 

case, an Au-rich near eutectic phase could be considered at a near eutectic temperature of 363 °C 

At this temperature, because the solubility of Au in Si is negligible, the Au–Si near eutectic phase does 

not wet the Si surface. Consequently, Si/Au NPs /droplets do not dissolve on the Si surface, forming the 

nanostructures during cooling. Unfortunately, it is not possible to clearly determine what type of 

dewetting (heterogeneous and/or spinodal) occurs for the studied samples so the consideration and 

explaination here are therefore is only qualitative. We also observed that when the thickness of the 

sputtered Au layer increased to 60 nm and 90 nm then the formed sizes of Au NPs/droplets after thermal 

annealing increased, their forms are also changed to larger, more elongated, and also more irregular as 

the mass thickness of Au is increased as in Figure 3b,e and Figure 3c,f. Here it is worth noting that the 

Au NPs/ clusters formed on the sputtered Si layer with different sizes (see on Figure 3) can be considered 

to form many Si/Au NPs Schottky barriers contacts due to Au NPs did not dissolve on the Si surface [8, 

17]. Figures 4 show the sizes distribution of the Au nanoparticles or clusters estimated by the Gwyddion 

roughness tool when analyzing the SEM images, these results are only qualitative values. 

   

   

Figure 4. The sizes distribution of the Au nanoparticles or clusters on glass/FTO surface (a, b, c), and on the 

glass/FTO/Si surface (d, e, f). 

a) FA-10 
b) FA-20 c) FA-30 

d) SA-10 e) SA-20 f) SA-30 
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3.2. The Structural Property and Chemical Composition of the Glass/FTO/Au and glass/FTO/Si/Au 

Multilayers Thin Films before and after Thermal Annealing 

Figure 5(a) shows X-ray diffraction spectra (XRD) of the SA-30 samples before and after annealing. 

We observed that after thermal annealing the several XRD peaks have increased higher and their widths 

of peaks have changed due to the layers have recrystallized and better quality of layers formed after 

thermal annealing. The diffraction peaks of Si were not observed in the spectrum, this result can be 

explained by the existence of the amorphous Si (a-Si) structure, and this means that the Si crystal 

structure is not yet formed during the thermal annealing at 350 oC. There are two peaks concerning the 

metallic gold where the Au had crystal structure that detected by the diffraction peaks at 2-theta positions 

of 38° and 44.5° corresponding to (111) and (200) lattice planes, respectively. The rest other peaks 

belong to the diffraction peaks of the FTO substrate.  

 
 

Figure 5. (a) X-ray diffraction spectra of the SA-30 sample for the case of sample without annealing (red 

color) and after annealing (black color). (b) EDX measurement results of the SA-30 sample after annealing. 

The chemical compositions can be seen from the EDX measured results for the glass/FTO/Si/Au 

(SA-30) after thermal annealing in Figure 5 (b). Although the Si peaks have not found in XRD spectrum 

but in the EDX measured results we see that all elements compositions of Oxygen (O), Si, and Au and 

of the glass/FTO are presented. The Si composition here is 36.22% weight and 33.53% atomic. The Au 

composition is 11.26% weight and 1.49% atomic. The rest compositions are belonging to the glass/FTO 

substrate.   

3.3. Absorption spectra of the glass/FTO/Au and glass/FTO/Si/Au embedded thin films  before and after 

thermal annealing 

The optical absorption spectra of two FA and SA samples groups before and after thermal annealing 

have measured on the UV-VIS spectroscopy. Here it is worth noting that the glass/FTO  substrates used 

in our experiment samples have the same features. The transmission of glass is 90% and of  FTO is 80-

85% in the wavelength region from 300-1100 nm. These films have strong absorption at wavelength 

below 300 nm [18]. So the different obtained results of absorption spectra in different samples are caused 

by the different features of the sputtered Au and Si layers as well as technological conditions. Our 

obtained results of absorption spectra sometimes are different due to the effect of interference 

phenomenon arisen at multilayers thin film. Here we show two typical results of photo absorptions for 

the glass/FTO/Si/Au thin films (SA samples) in comparison with that of the thin films without the 

sputtered Si layers (FA samples).  

Element Weight % Atomic % Error % 

O  K 27.28 44.34 9.27 

Na K 10.66 12.06 7.72 

Mg K 2.85 3.05 8.09 

Al K 0.95 0.92 8.78 

Si K 36.22 33.53 4.21 

Ag L 1.1 0.27 15.02 

In L 2.76 0.63 9.57 

Sn L 1.78 0.39 15.02 

Ca K 5.15 3.34 4.28 

Au L 11.26 1.49 13.76 

 

a) 
b) 
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Figure 6 shows the photo absorption spectra of two kinds of sample groups: (a) FA-10, SA-10 and 

(b) FA-40, SA-40 samples (See Table 1). As Figure 6 shows three kinds of absorptions for three different 

samples: i) the absorption of the glass/FTO/Au samples (black color curve), these curves have a slight 

wavy form, it may be due to the effect of interference phenomenon in multilayers configuration; ii) the 

absorption of the glass/FTO/Si/Au samples without thermal annealing (red color curves) where the red 

solid curves are the measured curves which have the sine oscillation form, whereas the red dashed lines 

are averaged drawn curves. We observed that the red averaged absorption curves enhanced in the whole 

spectrum range of wavelength in comparison with the glass/FTO/Au samples (black color curves), 

especially strongly enhanced in the short wavelength from 400 nm to 600 nm; in this case the absorption 

enhancement, we think, could explain by the photo absorption role of Au thin film layer on the a-Si layer 

forming the Schottky barrier configuration via the surface interactions between the Au layer and a-Si 

layer; iii) the photo absorption of the glass/FTO/Si/Au samples with thermal annealing (blue curves) 

where the blue color solid curves are the measured curve, they have also the sine oscillation form 

meanwhile the blue dashed lines curves are averaged drawn curve. Here we observed also that the blue 

absorption curves (measured curves and averaged drawn curves) strongly enhanced with high absorption 

values, notably the absorption curves were shifted to the left due to the Au NPs absorption dominated 

in the visible spectrum wavelength [17] in comparison with the red absorption curves of the 

glass/FTO/Si/Au samples without thermal annealing. Here we think that the absorptions of the different 

Au NPs and the surface interplaying interactions between the Au NPs and a-Si forming the a-Si/Au NPs 

Schottky barrier configurations which play important role in photo absorption enhancement. 

 

Figure 6. The photo absorption spectra of FA-10, SA-10 samples (a), and of  FA-40, SA-40 samples (b) with and 

without annealing  in comparison in Fig. 6a, b)  where: i) the black color curves for the FA-10 and  FA-40  samples 

with 30 nm and 120 nm Au layers, respectively; ii) the red color curves for the case of  without thermal annealing 

(solid curves are the measured curves, the dashed lines curves are  the averaged drawn curves) for the SA-10 and 

SA-40) samples of glass/FTO/Si (200 nm)/Au with 30 nm and 120 nm Au layers, respectively; iii) the blue color 

curves (solid curves are the measured curves, the dashed lines curves are  the averaged drawn curves)  for the SA-

10 and SA-40 samples of the glass/FTO/Si (~200 nm)/Au in the case of  thermal annealing. In the case of FA-10 

sample in Figure 6a), the absorptions values are small that varied in the low narrow range of from 0.2 to 0.4 value 

in the absorption vertical axis, meanwhile in the case of FA-40 sample in Figure 6b) the absorptions values are 

larger that varied in the  wider range of from 0.7 to 1.5 value for whole the wavelength range. 

 Here it is worth noting that in the absorption measurements, the incident light beam came firstly 

to the glass going through the sample then the light beam comes out from the Au layer to get minimum 

reflecting-scattering. The forms of the photo absorption curves in the presence of the Si layer have strong 

sine oscillation forms as shown (Figure 6). This result can be explained by the interference phenomenon 

between the incoming and reflecting radiations during measuring photo absorption on the 

glass/FTO/Si/Au layer and/or the glass/FTO/Si/Au NPs multilayers configurations. The wavy nature in 
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the glass/FTO/Si/Au multilayers film could be formed based on the equation 2nd = mλ (where n is the 

refractive index, d is the thickness of the film, m is the interference number, λ is the interference 

wavelength). This effect could be occurred  due to the refractive index of the a-Si/Au film is low [18].  

4. Conclusion 

We have developed the technological process for synthesizing the glass/FTO/Au/ and 

glass/FTO/Si/Au/ thin films with different Au layer thicknesses from 30 nm to 120 nm. Depending on 

the technological conditions (with and without thermal annealing) and Au layers thicknesses, the 

different surface morphologies of the Au flat surface layer or the Au bumpy surface layer with different 

sizes of NPs/clusters are formed on both the samples surfaces of FTO and amorphous Si layers.  

We have investigated the surface morphologies, structural and photo absorption properties of both 

the glass/FTO/Au/ and glass/FTO/Si/Au/ samples with and without thermal annealing in comparison 

with each other based on the investigated results of SEM, XRD, EDX and UV-VIS spectroscopy 

techniques. The obtained experimental results showed that the sizes of Au NPs formed on the thin films 

are in the range of from 30 nm to 150 nm, the sputtered Si layer has an amorphous structural phase, the 

sputtered Au layer has the crystal structure with two the diffraction peaks at 2-theta positions of 38° and 

44.5° corresponding to (111) and (200) lattice planes. 

In the presence of the Au thin film layer (in the case without thermal annealing) being on the  

sputtered Si layer has absorption coefficient in the range of near IR region, the absorption curve 

enhanced in whole spectrum range of  wavelength, especially strongly enhanced in the short wavelength 

from 400 nm to 600 nm; this could explain  by  the photo absorption role of  the configuration of Au 

thin film/ a-Si layer forming the Schottky barrier configuration via  the surface interactions between the 

Au layer and  a-Si layer, while  in the presence of the Au NPs  (in the case with thermal annealing) being 

on the a-Si layer, the absorption curve also enhanced in whole spectrum range and in the short 

wavelength from 400 nm to 600 nm; this could explain  by  the photo absorption role of the configuration 

of Au NPs/a-Si layer forming the Schottky barriers configurations via  the surface plasmon resonance 

as well as the surface interactions between the Au NPs and a-Si layer forming the Schottky barriers 

configurations. However, from the variations of the photo absorptions curves are similar trends in the two 

cases of with and without thermal annealing for the thicker a-Si layers, we can conclude that the photo 

absorption of a-Si layer plays a  very important role in the glass/FTO/Si/Au multilayers configuration. 

The measured photo absorption spectra have wave oscillation form. This phenomenon could be 

explained by the interference phenomenon between the incoming and reflecting photo radiations on the 

glass/FTO/Si/Au multilayers sample based on the equation 2nd = mλ   

These obtained absorption enhancement results have significant meanings in an application for 

integrating the glass/FTO/Si/Au nanoparticles embedded thin films into the conventional Au/TiO2 core 

structural PSCs to form the modified PSC with the aims to enhance the modified PSC’s performance 

including the photo absorption and collection efficiency. These problems will be discussed in the 

forthcoming paper. 
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