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Abstract: This work deals with the nonlinear buckling and post-buckling of stiffened
nanocomposite plates reinforced functionally graded carbon nanotubes (FG CNTRC) resting on
elastic foundation in thermal environment. Obtained results showed that the properties of the
nanocomposited plates embedded with single-walled carbon nanotubes are dependent on
temperature and altered according to linear functions of the thickness. The governing equations are
derived by the third-order shear deformation plate theory taking into account von Karman
geometrical nonlinearity and solved by both the Airy’s stress function and Galerkin method. In
numerical results, the influences of various types of distribution and volume fractions of carbon
nanotubes, geometrical parameters, elastic foundations on the nonlinear buckling and post-
buckling behaviour of stiffened FG-CNTC plates subjected mechanical, thermal loading and both
are demonstrated.

Keywords: Stiffened FG CNTRC plates; Buckling and Post buckling analysis; Third-order shear
deformation theory; Thermal environment; Galerkin method.

1. Introduction

Carbon nanotubes (CNTSs) were first discovered by Sumio lijima in 1991 which have valuable
properties such as incredible strength, lightweight, super-high stiffness, unique electrical properties
and thermal conductivity [1-5]. CNTs are the ideal reinforcement material for a variety of new
composites with metal, polymer, rubber, epoxy matrices. Therefore, there are many proposed papers
of applying CNTs on the nanocomposite plates to investigate the buckling and post-buckling
behaviour.
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Shen [6] first presented the nonlinear bending behaviour of functionally graded carbon nanotubes
(FG-CNT) reinforced composite plates in thermal environments. After that, Shen and Zhu [7]
presented the results of buckling and post-buckling behaviour of FG-CNT reinforced composite plates
in thermal environment based on a third-order shear deformation plate theory (TSDT) and taking the
von Karman’s geometrical nonlinearity into account. Using the first-order shear deformation theory
(FSDT), Kiani presented the shear buckling behaviours [8] and the thermal post-buckling behaviours
[9] of FG-CNT reinforced composite plates in the thermal environment subjected to uniform
temperature rise loading; Zhang et al., [10-11] applied the element-free approach to investigate the
buckling and post-buckling behaviours of FG-CNT reinforced composite plates resting on Pasternak’s
elastic foundation; The FG-X type of CNTSs reinforced the composite plates has the highest critical
mechanical and thermal buckling load reported by Mizaei and Kiani [12-13].

Stiffeners are often used to increase the load carrying capacity and avoid instability of the
structure. There are some results of the buckling and post-buckling behaviours and vibration for
stiffened composite structures. Duc et al., [14] presented the analytical solutions to study nonlinear
buckling behaviours of imperfect stiffened composite cylindrical panels reinforced by CNTs resting on
elastic foundations in thermal environments. Avramov et al., [15] presented the mathematical model of
transient response of functionally graded carbon nanotubes reinforced conical shell with ring-stiffeners
based on the TSDT. Maji et al., [16] studied the thermo-elastic vibration of graphene reinforced
composite stiffened plate with general boundary conditions using FEM based on first-order shear
deformation theory. Davar et al., [17-18] presented the dynamic response and free vibration of a grid-
stiffened composite cylindrical shell reinforced by CNTs subjected to the radial impulse load. Bo et al.
[19] investigated the nonlinear dynamic investigation of the perovskite solar cell with GPLR-FGP
stiffeners under blast impact based on the von-Karman geometric nonlinearity and the first-order shear
deformation theory. Fu et al., [20] applied the analytical approach for sound transmission through stiffened
double laminated composite sandwich plates. Bakshi [21] presented the nonlinear vibrations of laminated
composite singly curved stiffened shells using FEM. Liu et al., [22] developed the unified method for the
vibration analysis of stiffened plate subjected to moving loads traveling along arbitrary paths.

This paper presents the buckling and post-buckling behaviours of stiffened nanocomposite plates
reinforced by FG-CNTs subjected to mechanical, thermal loading and both. The results obtained from
buckling and post-buckling analysis of FG CNTRC plates using the analytical method will support
scientific foundations for structural designers, manufacturers and for building projects for FG CNTRC
structures. Our aim is to study an analytical approach to obtain the mechanical and thermal buckling
and post-buckling behaviours of stiffened nanocomposite plates based on the third-order shear
deformation plate theory.

2. Material Properties

The effective mechanical properties of FG CNTRC plates are estimated by the extended rule of
mixture as follows [6]:
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where ECN, ESYT GOV are the Young and shear moduli of (10,10) single-walled carbon nanotubes

(SWCNTs) with values EY = 5.6466 (TPa), E,'" =17.08(TPa), G, =1.9445(TPa) and also

vf;NT =0.175. The nanocomposites are considered to be embedded in the amorphous polymer matrix

Poly Methyl Methacrylate (PMMA) with the elastic modulus and Poisson’s ratio are
E =(3.52-0.0034T)GPa,c, =45 (1 + 0.0005A T) x10°/ K,v =0.34. The efficiency

parameters 7. (i = 1,_3) calculated by molecular dynamics simulation have been shown in Table 1
[6-7].

Table 1. Efficiency parameters for CNT reinforced composite plates (after [6, 7])

Vs m ", 1,

0.12 0.137 1.022 0.715
0.17 0.142 1.626 1.138
0.28 0.141 1.585 1.110

Poisson’s ratio (v,, ) and thermal expansion (&, ,«,,) are calculated as:

117

_y/* ,CONT
Uy = VCNTUH + va'm’ )
ONT _ ONT
o = ‘/mEmam + VCNTEH all
11 CNT ’
‘/mEm + VCNTEH (3)
_ ONT ONT _

Fyy = (1 to, ) Vmam + (1 T, )VCNTa22 V-

where, V.., v, a," and V., v  a are the volume fractions, Poisson’s ratios and

thermal expansion of CNTs and the polymer matrix, respectively.

The FG CNTRC materials were made by various polymer matrices reinforced by (10,10)
SWCNTSs which are assumed to be graded through the thickness direction of the plates. Three types of
CNT’s distribution are considered: uniform distribution (UD) and two types of functionally graded
distribution of CNTs (FG-X and FG-O) having maximum volume fraction: i) At the upper and lower
external surfaces of the plate; and ii) at the mid height of the plate thickness respectively.

VCNT = VgNT UD
.
VCNT = 4EVCNT FG-X (4)
V.. =21 2‘2‘ V. FG-O
ONT — - h_]‘ CNT -
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3. Theoretical Formulations

Consider a FG CNTRC plate with length of edges @, &, and thickness %, s ,s,are spacing of the
longitudinal and transversal stiffeners, respectively; z , z, are the eccentricities of stieners with respect
to the middle surface of plate, respectively; d ,h and d,,h, are the width and thickness of longitudinal
and transversal stieners, respectively. A coordinate system (x y, z) is derived in which (J:y) plane on the

middle surface of the shell and 2 on thickness direction (—h /2<z<h/ 2) as shown in Figure 1.
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Figure 1. A plate resting on elastic foundations.

The governing equations of nanocomposite plates reinforced by CNTs are derived by TSDT. The
strain components taking into account von Karman nonlinear terms are given by [24]:
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The strain-stress relations are defined as [24]:
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The force and moment components can be given by:
h/2 —h/2 dt
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The force and moment results are obtained by Eq. (10) in terms of the stress components as:
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R =12By" +12.B k"
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with B, (1,7 =1+ 8) are given in Appendix

The nonlinear strain fields ¢, ¢, 7, in Eq.(11) can be expressed as :
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and Airy’s stress function f (33, y) is determined as:
82 2 2
N = f,N—afN =—af
ey Y oot ox0y
The nonlinear equilibrium equation of the nanocomposite plates are shown as:
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(12)

(13)

(14a)

(14b)

(14c)

(14d)

with & is Winkler foundation modulus, £, is the shear layer foundation stiffness of Pasternak model.
Substituting Eq. (12) with Airy’s stress function into Eq. (11), results in Eq. (114-14d) are as

follows:
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W)+ L,(® )+ L, (P )+ L,(f)+L.(w,f)=0

Ln ) + 12 z 13 Yy 15

Ly(W) + Ly (@) + Ly () + L, (f) = 0 (15)
L, (W) + Ly (®@,) + L, (@) + L, (£)=0

with L, (z =1+3,j=1+ 5) that are given in Appendix.

In this work, the edges of the stiffened plates were assumed to be simply supported. Depending on
the in-plane restraint at the edges, two cases of boundary conditions are considered as follows [24]:

Case 1: The edges are simply supported and freely movable. The associated boundary conditions
are:
w=N =(0y=M1.=RD=O,N1:=N1:O at z=0a

Ty

w=N_=¢ =M :P=0,NU=N?/U at x=0,b

zy y y

(16)

Case 2: The edges are simply supported and immovable. The associated boundary conditions are:
W=U=¢y =M =P =0, N =N, at z=0,a,

B a7
W=U—¢Z=My=PI=O, N, =N, at y=0, b,

where Nxo, NyO are pre-buckling compressive force resultants in directions z, i, respectively.

The approximate solutions of Egs. (15) satisfied the boundary conditions can be determined as
seen in [23]:

(w.w* ) (z, y) = (W, ,uh) sin az sin Sy,
P, (:zr,y) =@ cosawxsin By,
¢y (a:, y) = CDy sin azcos Sy, (18)

1 1
f(:p,y) = A cos2azx + A, cos2By + A, sin ax sin By + EwaQ + ENyOxQ,

inwhich « =mx /a, 8 =nx/b,and m,n are the numbers of half waves in the = and y directions,
respectively. 4 is imperfection parameter of the plates, and A1, A2, As are expressed as following:

A
32B o

W (W +2uh), A, = o A W(W+2yh),A3=%W+%® g

32B_p° ©H Y

22 1 1 1

4=p
Replacing solutions from Egs. (18) into Egs. (15) to obtain the resulting equations and then

applying Galerkin method yields:

LW+ 1, ® + L, @+ 1, (W+ uh)+ 1@ (W+ uh)+ 1, W (W-uh)
_ azb( N,a + N, ) (W ph) =0
LW +1,® +1L,® +1,W (W +2uh)=0 (19)

+1, W (W + 2ph) + L W (W b)) (W + 241

LW +1,®, +1,D> + 134W(W + 2,uh) =0

in where, the detail of coefficients L (z =1+3,j=1=+ 8) are given in Appendix.

Using the second and third equations of the Egs. (19) system leads to:
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d = 123l31 — l:ssl21 W+ l23l34 _l33124 W(W n Q,Uh)
' l33122 - 123l32 l33l22 =yl

O = bylsy = Lply, W+ bylsy =yl W(W i Zﬂh) (20)
! gl = Tyl Lgly = ol

3.1. Mechanical Loading

Consider a FG CNTRC plate with the edges which is simply supported and freely movable (Case 1
of boundary conditions) subjected to compressive load:

N, =-FhN =-Fh (21)

20
For the plate under axial compression with F° = 0, the equation for the investigation of the
mechanical buckling behaviour of nanocomposite plates is obtained as follows:

W — W(W—I—Zu) .
1_—+92W+g3_—+g4W(W+2ﬂ) (22)
(W+,u)

Lo (W u)

x

where W = % and the coefficients g (2 =1- 4) are given in Appendix.

3.2. Thermal loading

Consider a FG CNTRC plate with the edges supported immovably (Case 2 of boundary
conditions):

(23)

From Eq. (6) one can obtain the following expression in which Eq. (12) and without imperfection
of the plate:

@ B, o*f B, o’ f a¢y 0p, o*w o*w

o A ayQ A Or 11 Ay 12 5 13 5.2 14 ayQ 151
_ BQ8B12 o° BI8BQ2 D — l a_w 2 — a_wﬁ_w*
A A 2(er) oz o
G/U BH aZf 312 62](‘ a¢[ 8¢U a2w a?w (24)
Aol Aoy Mo oy g g
_B18B12 s B11B28 D¢ _l a_w 2 _a_wa_w*
1z A 9 oy dy oy ’

Replacing ‘;—Z and Z—;from Egs. (24) into Eq. (23), one can have:

2 s
N, =¢,®, +¢,@ +¢ W+, W +c Wuh+c¢@ +c, P, (25a)

z0
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NW =c,® + C22q)y + CQSW + (:24\7\72 + 025W/1h +¢,, @+ 627(1);,7 (25b)

Introduction of Egs. (25) and (20) into the first of the system of Egs. (19) taking into account
temperature increment AT in Eq. (7), one can obtain an equation for the thermal buckling behaviour
of the nanocomposite plate:

V_V _ V_V(V_V+2,u) - — _
AT =e ———+e,W+e, _—+64W(W+2/J)+65W +e, Wy,
(W+y) (W+,u)

with the coefficients ¢, (i = 1+ 6) given in Appendix.

(26)

3.3. Combined Mechanical and Thermal Loading
Substituting N, =—F h, Eq. (25a) and Eq. (20) into the first of the system of Egs. (19), one can
obtain an equation for the mechanical - thermal buckling behaviour of nanocomposite plates:
W _ V_V(W+2y) o I
Fo=jm 4 Whj——— 14 j4W(W+2y)+j5W 5, W+ AT
e

with the coefficients j (i = 1+ 7) that are given in Appendix.

(27)

4. Results and Discussion
4.1. Comparison

To validate the method in this work, a comparison is carried out for the critical buckling load
P (kN)of the FG CNTRC plates with Shen’s results. Table 2 shows that the obtained results are good

a

agreement with those reported in [7].

Table 2. Comparison of the critical buckling load P, (kN) of the FG CNTRC plates without stiffeners
(a/b=1.0,b/h=20,h=2mm)

N VCN =0.12 VCN =0.17 VCN =0.28
Ref. [7] Present study Ref. [7] Present study Ref. [7] Psr:J S;;t
The edges are simply supported and freely movable
300K 13.04 13.55 19.91 20.06 28.69 29.36
500K 11.54 12.10 17.74 18.23 25.22 24.31
700K 9.54 10.36 14.84 15.84 20.51 21.36
The edges are simply supported and immovable
300K 12.91 13.23 19.70 20.76 28.48 27.98
500K 9.95 10.39 15.16 16.34 22.63 23.67
700K 4.95 5.08 7.75 8.23 13.95 14.09




10 N. V. Thanh / VNU Journal of Science: Mathematics — Physics, Vol. 38, No. 1 (2022) 1-24

4.2. Mechanical Loading Analysis

In this section, numerical results are presented for the nonlinear mechanical buckling and post-
buckling behaviour of FG-CNTRC plates. The detailed geometrical parameters of the FG CNTRC
plates are shown in each figure.

Table 3 presents the effect of volume fractions and types of distribution of CNTs on the critical
buckling load of the nanocomposite plates. As can be seen, the value of the critical buckling load
increases when CNT volume fraction increases. This can be explained as follows. The volume
fraction of CNTSs increases, resulting in the increase of both the stiffness and buckling coefficient,
since the stiffness of CNTs is much larger than the stiffness of the surrounding matrix. Moreover, the
critical buckling load of the plates in the case of FG-X distribution is the largest among three case of
CNT’s distribution.

Figures 2 and 3 present the effect of volume fractions and types of distribution of CNTs on the
load-deflection curves of the nanocomposite plates, respectively. The same conclusion with the results
of the critical buckling load, the load-deflection curves of the nanocomposite plates increase when
CNTs volume fraction increases. Thus, the mechanical post-buckling strength of the FG-X CNT
reinfoced by stiffened composite plates is the largest. Whereas this value is the smallest in the case
FG-O CNT’s distribution.

Table 3. Effect of volume fractions of CNTSs on the critical buckling load P (GPa) of the FG CNTC plates

V. =0.12 V. =017 V. =028
ub 0.1547 0.2342 0.3409
FG-X 0.2034 0.3096 0.4399
FG-V 0.1173 0.1765 0.2595
2T —pu=0 . 7

———u=01|
(I3 v, =012

(I0: V=017
(I: V. =028

0 0.5 1 1.5 2
W/h

Figure 2. Effect of CNT’s volume fractions on the load-deflection curves of the stiffened nanocomposite plates
subjected to mechanical loading.
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e b-"h*ZD\u-"h*I\(m\n}*tl‘l)‘klfﬂ,szﬂ

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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Figure 3. Effect of various types of CNT’s distribution on the load-deflection curves of the stiffened
nanocomposite plates subjected to mechanical loading.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Wih

Figure 4. Effect of imperfection on the load-deflection curves of the stiffened nanocomposite plates subjected
to mechanical loading.

1.2

=10
— = —p=01

(I): not stiffened
(I1): stiffened

F (GPa)

#oh=20,ab =1, (mn)=(1,1), k, =0,k, =0, FG- X

o

0 05 1 15 2
Wih

Figure 5. Effect of stiffeners on the load-deflection curves of the stiffened nanocomposite plates subjected to
mechanical loading.
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——— - =0, (111)

[
n

- (L) k] =0 GPa/m, k=0 GPa/m
(IIx k] = 0.2 GPa/m, k_ =0 GPa/m
b (11I): k] =02 GPa/m, k_=0,02 G}"a.-"m/ =

[

0 0.5 1 1.5
W/h

Figure 6. Effect of the foundation model on the load-deflection curves of the stiffened nanocomposite plates
subjected to mechanical loading.

Figure 4 presents the influence of imperfection (« = 0,0.1,0.2,0.3) of the initial shape on the

load-deflection curves of the stiffened nanocomposite plates subjected to mechanical loading. It is
shown that the imperfect properties have strongly affected the post-buckling strength in the limit of
large enough.

Figure 5 compares the post-buckling strength of the FG CNTRC plates subjected to mechanical
loading with and without stiffeners. As can see that in both cases of the perfection (¢ = 0) and
imperfection (u = 0.1), the post-buckling mechanical strength of the nanocomposite plates reinforced
by stiffeners is larger than that of the nanocomposite plates without stiffeners.

Figure 6 shows the effect of the elastic foundation on the load-deflection curves of the stiffened

nanocomposite plates. The plate is considered resting on Winkler’ elastic foundation (&, # 0,k, =0)

Pasternak’s elastic foundation (k, # 0,k, #0) and without elastic foundation (k =4k, =0). It is

shown that the foundation stiffness has a positive effect, favouring the capacity load of the FG
CNTRC plates be better and the capacity load of the plates reinforced by CNTs increases when
foundation stiffness increases.

4.3. Thermal Loading Analysis

Figure 7 presents the width/thicknees (b/h) ratio effect of the post-buckling behaviour of the
stiffened nanocomposite plates. It is found that when 5 /% ratio is increased, the thermal post-
buckling load-deflection curve becomes lower, and vice versa. The post-buckling curve represents the
post-buckling strength of the plates so the thermal post-buckling strength of the plates decreases when
ratio b / h increases

Figure 8 illustrates the effect of imperfection on the load-deflection curves of the stiffened
nanocomposite plates subjected to thermal loading. As can be seen, the thermal post-buckling
behaviour is affected by imperfection of the nanocomposite plates.
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Figure 7. Effect of width to thickness ratio on the load-deflection curves of the stiffened nanocomposite plates
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Figure 8. Effect of imperfection on the load-deflection curves of the stiffened nanocomposite plates

Figure 9. Effect of stiffeners on the load-deflection curves of the stiffened nanocomposite plates subjected to

subjected to thermal loading.

W/h

thermal loading.
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Figure 10. Effect of foundation model on the thermal post-buckling behaviour
of the stiffened nanocomposite plates.

Figure 9 shows effect of stiffeners on the load-deflection curves of the stiffened nanocomposite
plates subjected to thermal loading. It can be seen that the thermal post-buckling strength of the
nanocomposite plates reinforced by stiffeners is higher than the one of the nanocomposite plates
without stiffeners.

Figure 10 compares influences of Winker foundation model and Pasternak foundation model on
the thermal post-buckling behaviour of the FG CNTRC plates. The plates are examined with three

cases: without elastic foundations (%, =k, = 0), the Winkler foundation model (% # 0,k, = 0), and

the Pasternak foundation model (% = 0,k #0). It can be seen that the elastic foundations have
significantly affected help the thermal post-buckling strength become stronger.

4.4. Combined Loading Analysis

Numerical results are presented in this section for the nonlinear buckling and post-buckling
behaviour of the stiffened nanocomposite plates subjected to thermal-mechanical loading. The
influences of various types of distribution and volume fractions of carbon nanotubes on the buckling
and post-buckling behaviour are shown in Table 4 and Figures 11-12, respectively. As can be seen, the
effect of these factors on the stiffened nanocomposite plates for the case combined thermal loading
and mechanical loading are same with results in the case the plates subjected to thermal loading or
mechanical loading. Figure 13 illustrates the effects of varying temperature on the post-buckling
behaviour of the stiffened nanocomposite plates subjected to thermal-mechanical loading. It seems
that temperature makes the loading capacity of both perfect and imperfect plates become worse.

Table 4. Effect of volume fractions of CNTs and three types of CNTSs on the critical buckling load P (GPa)
of the FG CNTRC plates subjected to thermal-mechanical loading

V;NT =0.12 VSNT =0.17 V;NT =0.28
ubD 0.1286 0.1935 0.3005
FG-X 0.1767 0.2678 0.3987
FG-V 0.0915 0.1362 0.2193
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5. Conclusion

Some results obtained from our work are following:

- The buckling and post-buckling strength of the FG CNTRC plates subjected to mechanical
loading, thermal loading and both are strongly influenced by various types of CNTs distributions. For
the FG-X CNT reinfoced composite plates they exhibited the best .

- Carbon nanotubes enhanced the stiffness of the nanocomposite plates. With the increase of CNT
volume fraction,the plates possess the better load capacity.

- The buckling and post-buckling strength of the stiffened nanocomposite plates subjected to
various types of loads resting on Pasternak’s elastic foundation is larger than the one for the plate
resting on Winkler’s elastic foundation and the plate without elastic foundation.

- The stiffeners have affected on the buckling and post-buckling behaviour of FG CNTRC plates.
Specifically, the value of buckling and post-buckling strength of the plates reinforced by stiffeners is
better than that of the plates without stiffeners.

- The material properties depending on temperature have an obvious impact on the nonlinear
buckling behaviour of the FG CNTRC plates under mechanical and thermal loads.

- The geometrical parameters have significant effects on the nonlinear buckling and post-buckling
behaviour of stiffened nanocomposite plates.
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