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Abstract: Based on nonlocal strain gradient theory approach, we have analyzed the nonlinear 

dynamic response and vibration of sandwich thick plates with functionally graded (FG) face sheets 

and FG porous core subjected to mechanical, thermal and blast loads on elastic foundations. Three 

types of porosity, including symmetric porosity distribution, non-symmetric porosity distribution, 

uniform porosity distribution have been considered of sandwich plate. The system of dynamic 

governing equations of motion is obtained by utilizing Hamilton’s principle and solved by Bubnov-

Galerkin method for a case of simply supported sandwich plate. Numerical results are presented and 

verified with other studies. The influence of nonlocal and strain gradient parameters, materials and 

porosity volume fraction, geometrical characteristics and parameters of elastic foundations on 

fundamental frequencies and dynamic response of the sandwich plates are elucidated. 

Keywords: Sandwich Functionally Graded Materials (FGM) plates; Porous material; Dynamic 

response and Vibration; Nonlocal strain gradient theory. 

1. Introduction 

Sandwich structures are potential classes of composites consisting of a thick core layer and a thin 

cover layer for light weight and low flexural rigidity. Recently, academic works on the sandwich 

structures have been increasing rapidly in the light of its advanced mechanical properties and their wide 

application range in aviation, machinery, aerospace, medical, etc. Singh and Harsha [1] investigated the 

dynamic characteristics of a new sigmoid law based sandwich Functionally Graded Materials (FGM) 
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plate plates resting of Pasternak elastic foundation in the thermal environment based on stress-function 

Galerkin method. Adhikari et al. [2] proposed a higher order shear deformation theory to study the effect 

of porosity type defect and analyze the consequences of porosity on the buckling characteristic of 

various types of FGM sandwich combinations. Tomar and Talha [3] used Reddy's higher order shear 

deformation theory to  investigate the influence of material uncertainties on vibration and bending 

behavior of skewed sandwich FGM plates. Research on the mechanics of structures containing 

porosities has been interested in recent years by other researchers. Rezaei et al. [4] dealt with the 

investigation of the free vibration analysis of rectangular plates composed of functionally graded 

materials with porosities by using a simple first order shear deformation plate theory. The nonlinear 

buckling and post-buckling characteristics of micro/nano-plates made of a porous FGM in the presence 

of non-locality and strain gradient size dependencies is analyzed in the work of  Fan et al., [5]. 

Currently, various theoretical methods were conducted to study the linear and nonlinear stability, 

vibration, and dynamic responses of plates such as, the classical plate theory [6-7], the shear deformation 

theory [8-10], and the finite element theory [11-12]. Further, the non-classical continuum theories have 

been commonly used to investigate stability and dynamic response of micro/nanostructures. Hossein 

and Shirko [13] pointed out free vibration and wave propagation of thick plates based on the framework 

of the higher-order generalized nonlocal strain-gradient theory. Ebrahimi and Barati [14] presented a 

theoretical study on buckling analysis of graphene sheets under hydrothermal environments by a 

nonlocal strain gradient plate model. 

Based on careful investigation in the available literature, most of the studies using the subject of the 

nonlocal gradient theory are focused on plates, beams and shell. It can be concluded that no study on 

sandwich thick plates with FG face sheets and porous core in thermal environments using nonlocal strain 

gradient theory approach has been conducted regardless of the high demand for understanding. This 

research considers effect of geometric parameter, material properties, foundation parameter, mechanical 

and thermal loads on the dynamic response of the sandwich plates. 

2. Analytical Solution 

2.1. Model Description and Material Properties 

a

b

h

z

y

x

shear layer

  
a) The whole view b) Cross- section view 

 

Type 1 (symmetric porosity 

distribution) 

 

c) Type 2 (non-symmetric 

porosity distribution) 
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Figure 1. The model of porous functionally graded sandwich plate on elastic foundations. 
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Consider a rectangular porous sandwich plate resting on elastic foundations as shown in Fig. 1a. The 

sandwich plate is composed of an FG-porous core and two similar FG face sheets that are assumed to 

be perfectly bonded to the core. The thickness of whole plate, top and bottom FGM face sheet and FG 

porous core are denoted by ; fh h  and coreh ,   respectively (Fig. 1b). The symbols a  and b represent the 

length and width of the sandwich plate. A Cartesian coordinate system is established on the middle 

surface of the sandwich plate. 

The variation of Young's modulus ( )E z , thermal expansion coefficient ( )z  and density ( )z  

through the thickness direction of the sandwich plate are described by function as: 
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where subscripts “m” and “c” represent for the metal and ceramic constituents, respectively. k   is 

volume fraction index ( 0 k   ). cE  and mE are elasticity modulus of ceramic and metal, and c ,

m  are thermal expansion coefficient of ceramic and metal, respectively. 

+ Type1: symmetric porosity distribution 
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(2) 

+ Type 2: non-symmetric porosity distribution 
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 + + Type 3: uniform porosity distribution 

( )max 0 01 ,coreE E e = − ( )max 0 01 ,core e  = −  (4) 

where z is the coordinate in the thickness direction; 00 1e   is porosity parameter and can be obtained 

by min
0

max

1
E

e
E

= − ; min

max

1me



= − ; 0 ≤ me  ≤1. 

min max min max; ; ;E E    are respectively the minimum, maximum 

values of Young's modulus and mass density in the thickness direction of the plate, respectively. 

The porous sandwich plate is assumed to rest on Pasternak – type elastic foundations. The interaction 

between the sandwich plate and elastic foundations is given as   
2 2
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(5) 

in which  1K  and  2K  are respectively Winkler foundation modulus and the shear layer foundation 

stiffness of Pasternak model. 

2.2. Theory and Formulations 

The nonlocal strain gradient theory for sandwich plate 

The constitutive relationship corresponding to the total nonlocal strain gradient stress tensor 

considering thermal effects are given by [14-17]: 

(1) (2)

ij ij ij  = − , 
(6) 

where   is the gradient symbol; and 
(1)

ij and
(2)

ij  are the nonlocal stress and the higher-order nonlocal 

stress tensors, respectively. 

The following expression of constitutive equation for nonlocal strain gradient theory [15]: 

2 2 2 2 2 2 2 2 2 2
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where 2 is the Laplace operator. 

When e1=e2=e, Eq. (7) is rewritten [14-17]: 

( ) ( )
2 2 2 21 1ij ijkl klea l C  −  = − 

 
 (8) 

where ea  represents the nonlocal parameter. 

The classical plate theory  

In this research, the system of governing equations is established according the classical plate theory. 

The strain-displacement relations are defined as 
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(9) 

The stress–strain relations including temperature effects, and the resultant moments and forces of 

the sandwich plate are expressed as:  
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The governing system of motion of the sandwich plate via Hamilton’s principle can be defined as 

the following form [16, 17]: 
2
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where the mass inertia term is determined as 
2
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−

=  and sin( )q Q t=  (Q is the amplitude of 

uniformly excited load,  is the frequency of the load). 

The equations of motion of sandwich plate resting on elastic foundation can be derived in terms of 

displacement components u, v and w according to nonlocal strain gradient theory as follow 
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2.3. Closed- form Solutions 

Boundary conditions and solution procedure 

Four edges of the porous sandwich plate are simply supported or clamped. The displacement and 

force boundary conditions are described as [17]: 

- For simply supported 

 
00,0  ,  x x xw M N N== =  at ,  0x x a= =       (17) 

00,0  ,  y y yw M N N== =  at ,  0y y b= =   

- For clamped 

 0, 00   , 0, 
w

u v w
x


= =


= =  at ,  0x x a= =                (18) 

0, 00   , 0, 
w

u v w
y


= =


= =  at ,  0y y b= =  

In this research, the analytical solutions satisfying the boundary conditions are assumed in the 

following forms: 

( )cos sin
m x n y

u U t
ba

 
= , ( )sin cos

m x n y
v V t

ba

 
= , ( )sin sin

m x n y
w t

b
W

a

 
= , 

(19) 

where m and n are the number of half-waves in the orthogonal directions ,x y  and  U(t), V(t) , and W(t)  

are the time - dependent amplitudes.  

By substituting Eq. (30) into Eqs. (14-16), then applying Galerkin’s method, we have: 

2

11 12 13 1 2

U
h h W

t
h U V 


+ + =


, 

2

21 22 23 1 2

V
h h W

t
h U V 


+ + =


, 

2
0

31 32 33 34 35 1 36 2 37 1 2
( )xh

W
h h h N K h K W hU V h q

t



+ + =++ + +


 

(20) 

 

(21) 

 

(22) 
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where the details of coefficients ( 1,3; 1,7)ijh i j= =  and ( 1,3)k k =  may be found in Appendix 3. 

Natural frequency  

Considering linear terms of the system Eqs. (31) and setting q=0, three values of natural frequencies 

of the porous sandwich plate can be determined by solving following equation: 

0

33 34 35

11 12 1

2

1

3

1 22 23

31 32 36 2

0

x

h h h

h h h

h h h h N K h Kh+ +

=

+

                                                                                (23) 

The smallest value of three solutions from Eq. (23) is considered. 

3. Results and Discussion  

To evaluate the reliability of the calculation, we compare the dimensionless natural frequency 

parameter 

2

0

0

b

h E


 =  with the numerical results of Li et al. [18] based on different theories 

including classical plate theory (CPT), the first order shear deformation plate theory (FSDT), sinusoidal 

shear deformation plate theory (SSDT), third order shear deformation plate theory (TSDT) and three 

dimensional linear theory (TDLT) (Table 1). 

Table 1. Comparison study of dimensionless natural frequency parameter 

2

0

0

b

h E


 =  

k Theories 
The ratio thickness of each layer 

1-0-1 1-1-1 1-2-1 

0.5 

Present 1.46380 1.53349 1.58089 

CPT [18] 1.47157 1.54903 1.60722 

FSDT [18] 1.47157 1.51695 1.57274 

TSDT [18] 1.44424 1.51922 1.57451 

TDLT [18] 1.44614 1.52131 1.57668 

SSDT [18] 1.44436 1.59127 1.57450 

     

Geometrical parameters of sandwich plates with FGM face sheet for the investigation as follows: 
3380 , 3800 /c cE GPa kg m= = , ( )6 17.4 10c K − −=   ,

370 , 2707 /m mE GPa kg m= = ,

( )6 123 10m K − −=   , / 1, / 0.1a b h b= = ,
3

0 01 / , 1kg m E GPa = = , 0 0e = , Poisson’s ratio 

0.3. =   

As can be seen, our results are reliable with other published results ensuring the accuracy of the 

present method.  

The results below evaluate the influence of elastic foundation, geometrical parameters, material 

parameters, and temperature on the dynamic response and natural frequency of sandwich plates under 

uniformly distributed transverse load and blast load. 
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                            Figure 2. Influence of power law index k on the dynamic response. 

Figure 2 indicates the effects of the power law index k
 
on the nonlinear dynamic response of porous 

sandwich plate. The deflection amplitude of functionally graded sandwich plate increases when 

increasing the power law index. It is explained that if the value of volume fraction increases, the volume 

of ceramic component of sandwich increases. In addition, the elastic modulus of ceramic is higher than 

metal of this ones, which means that power law index increases leading to increase elastic modulus of 

structure. This reason results in the decreasing of the deflection amplitude of porous FGM plate. 

Figure 3 shows the effects of the porosity coefficient 
0e  on the nonlinear dynamic response of the 

FG sandwich plate. It is easy to see that the sandwich plate with the lower porosity coefficient has better 

stiffness. In addition, the higher porosity coefficient is, the higher deflection amplitude of the FG 

sandwich plate is. The deflection amplitude of the FG sandwich plate without porosity is smallest. 

 

                       Figure 3. Effect of coefficient of plate porosity 0e ratio on the time responses. 

Figures 4 and 5 demonstrate the impact of the geometric parameters such as the plate length to width 

ratio /a b and length to thickness ratio /a h on the behavior of sandwich plates with porous core and 

FG face layer in thermal environment. It can be seen that the /a b ratio decreases or /a b ratio increases, 

the deflection amplitude of the porous functionally graded sandwich plate increases significantly. From 
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these results, it could be deduced that the stiffness of the functionally graded sandwich plate becomes 

weaker when /a h  ratio increases or /a b ratio decreases. 

  

Figure 4. Influence of ratio a/b on the dynamic 

response. 

Figure 5. Influence of ratio a/h on the dynamic 

response. 

 
 

Figure 6. Influence of Pasternak foundation  

on the dynamic response. 

     Figure 7. Influence of Winkler foundation   

on the dynamic response. 

Figures 6 and 7 demonstrate the effect of the Winkler and Pasternak foundations on the dynamic 

response of the plate. From two figures, we can see that the modulus of the elastic foundation has 

beneficial effect on the deflection amplitude. On the other hand, it is easy to see that the plate becomes 

stiffer with support of elastic foundation.  

We consider the effects of porosity ratio on dynamic response of sandwich plate with porous core 

and FG face sheets under blast loading [19] as following function:  

( ) 1.8 1 ,max

s s

t bt
q t Ps exp

T T

   −
= −   

      

where the "1.8" factor accounts for the effects of a hemispherical blast,  maxPs  is the maximum 

static over-pressure, b is the parameter controlling the rate of wave amplitude decay and  
sT  is the 

parameter characterizing the duration of the blast pulse. 
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The influence of porosity ratio on dynamic response of sandwich plates with porous core and FG face 

sheets subjected blast loading 2
1.8.290.100. 1 .exp

0.005 0.005

t t
q

−   
= −   

   
 investigated and showed in Figure 

8. It can be seen that increase of porosity coefficient leads to increase of the dynamic deflection. 

 

Figure 8. Influence of porosity on the dynamic response of sandwich plate subjected to blast loading. 

Plots in Figure 9 reflect the influence of temperature on dynamic response of sandwich plates. This 

figure shows that with increasing the temperature changes, the dynamic deflection of the sandwich plate 

increases. 

 

Figure 9. Effect of temperature increment ΔT on the time responses. 

4. Conclusion 

This work investigated the nonlinear dynamic response sandwich thick plates with porous core and 

FG face layers under mechanical and blast loading on elastic foundations based on a non local theory. 

Numerical results for the dynamic response of the plates are obtained by using Runge-Kutta method. 

The conclusions are obtained from this study:  

• The natural frequency results of this work have been compared with other studies.  
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• The existence of porosity reduces the stiffness of FG sandwich plate. Consequently, the deflection 

amplitude increases and the natural frequency decreases as the porosity coefficient rises 

• The foundation and stiffeners have positive impact on time-amplitude response curves of the plates. 

• The temperature has significant impact on the nonlinear dynamic response of sandwich plates with 

porous core and FG face sheets. In addition, the temperature increment has negative effect on the 

amplitudes of the plates. 

• The geometrical parameter, volume ratio index, mechanical and blast loads have been conducted. 
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+) FG porous Type 3 
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