Distinctive Effects between Hydrothermal and Ultrasound Synthesized SnO$_2$ Nanoparticles on Ceramic Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10+\delta}$ Superconductor

Pham The An1, Do Thi Kim Anh1, Nguyen Duy Thien1, Vu Hoang Linh1, Le Hoang Dung1, Nguyen Khac Man2, Tran Hai Duc1,*

1VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
2International Training Institute for Materials Science, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

Received 22 July 2023; Revised 16 September 2023; Accepted 18 March 2024

Abstract: The effect of additions of two series of SnO$_2$ nanoparticles synthesized using two different methods on crystal structure and superconductivity of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10+\delta}$ (BPSCCO) superconductors was investigated. Two series of spherical SnO$_2$ nanoparticles were synthesized independently by using ultra-sonication (US-SnO$_2$) and hydrothermal (HT-SnO$_2$) methods. Polycrystalline samples of (Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10+\delta}$)$_{1-x}$(SnO$_2$)$_x$, where x ranged between 0, 0.002 and 0.004, were fabricated by the solid-state reaction method. X-ray diffraction patterns showed a decrease in the volume fraction of the Bi-2223 and an increase in that of the Bi-2212 phases. Scanning electron microscopy images presented the “needle-like blossom” on the surface of the US-SnO$_2$ doped samples, while the phenomenon was not found on the HT-SnO$_2$ doped samples. The T_c was decreased extremely with US-SnO$_2$ doping while slightly HT-SnO$_2$ nanoparticle-doped samples. The field dependence of J_c, $J_c(B)$, showed the opposite tendencies on two series of samples: $J_c(B)$ was enhanced on the HT-SnO$_2$ nanoparticle-doped samples, and that was decreased on UT-SnO$_2$ nanoparticle-doped samples. The application of the Dew-Hughes model to explore the flux pinning mechanism exhibited that the point-like pinning centers were dominant on the HT-SnO$_2$ doped samples. On US-SnO$_2$ doped samples, however, the additional pinning center type was not found and could be explained by the observed over-sized SnO$_2$ nano-needle.

Keywords: BPSCCO, Bi-2223, J_c, SnO$_2$ nanoparticle, flux pinning.

* Corresponding author.
E-mail address: dhtran@hus.edu.vn

https://doi.org/10.25073/2588-1124/vnumap.4862
1. Introduction

Numerous investigations have been conducted on the Bi$_2$Sr$_2$Ca$_{n-1}$Cu$_n$O$_{2n+4+\delta}$ (BSCCO) high-temperature superconductor system since its discovery, aiming to enhance its superconducting properties [1–3]. The BSCCO system consists of three distinct superconducting phases, namely Bi-2201 (n = 1), Bi-2212 (n = 2), and Bi-2223 (n = 3), with corresponding critical temperatures (T_c) of 33 K, 80 K, and 110 K, respectively [4, 5]. Among these phases, the Bi-2223 phase has been identified as particularly significant for power-related applications. However, the fabrication of this phase has proven to be challenging, requiring precise sintering conditions in terms of temperature and duration. Previous studies have proposed that partial substitution of Pb at the Bi site within the crystal structure could lower the sintering temperature and time. It has been suggested that the presence of Ca$_2$PbO$_4$ facilitates the formation and stabilization of the Bi-2223 phase [6]. Several studies have demonstrated that an optimal Bi:Pb ratio of 1.6:0.4 is required for the formation of the Bi-2223 phase [7]. The Bi-Pb-Sr-Ca-Cu-O (BPSCCO) ceramic superconductor has faced challenges related to flux pinning and the enhancement of critical current density (J_c). To address these issues, researchers have explored various techniques and strategies to create artificial pinning centers [2, 3, 8, 9]. In recent studies, the incorporation of nanoparticles into BPSCCO has been investigated as a means to improve J_c and enhance flux pinning capabilities. Various types of nanoparticles, including Al$_2$O$_3$, Cr$_2$O$_3$, Fe$_2$O$_4$, and TiO$_2$ nanoparticles, have been employed for this purpose [10-13]. Semiconducting nanoparticles have also gained significant attention due to their favorable properties, including high stability, ease of manufacturing, and low toxicity [14, 15].

In this work, we focussed on investigating the effects of additions of two series of SnO$_2$ nanoparticles synthesized using two different methods on crystal structure and superconductivity of Bi$_{1.6}$Pb$_0.4$Sr$_2$Ca$_n$Cu$_n$O$_{10+\delta}$ (BPSCCO) superconductors. The ultra-sonication (US-SnO$_2$) and hydrothermal (HT-SnO$_2$) methods offer distinct advantages in terms of control over the size, morphology, and crystalline structure of the nanoparticles [15]. By comparing the subsequent incorporation of the SnO$_2$ nanoparticles into the (BPSCCO) system, this work aims to elucidate their influence on the crystalline structure, critical properties, and flux pinning mechanism of the superconductor. Preliminary results indicated that the two different fabrication methods yield SnO$_2$ nanoparticles with distinct morphologies and crystal structures, which in turn influence their interaction with the BPSCCO superconductor. Understanding the underlying mechanisms behind these observed effects is crucial for tailoring the synthesis and addition strategies of SnO$_2$ nanoparticles in the Bi-Pb-Sr-Ca-Cu-O system. Furthermore, these findings provide valuable insights into optimizing the superconducting performances of the material, which are crucial for practical applications.

2. Experiment

2.1. Preparations of Two Series of SnO$_2$ Nanoparticles

In this work, SnO$_2$ nanoparticles were chosen for doping in the BSCCO system. They were prepared via two different methods: the ultrasonic and the hydrothermal methods those are noted as US-SnO$_2$ and HT-SnO$_2$, respectively.

The precursor of the US-SnO$_2$ nanoparticles was SnCl$_2$.5H$_2$O and dissolved in distilled water. The NH$_4$O$_4$ 25% solution was added till the pH of the mixture reached 9 with ultrasonic stirring for 3 hours. After a day, the precipitate was sintered at 400 °C for 2 hours.

The HT-SnO$_2$ was prepared with ZnSO$_4$.7H$_2$O and SnCl$_4$.5H$_2$O mixed with the distilled water with ultrasonic stirring. After that, the polyvinylpyrrolidone and NaOH solution was added separately to
adjust pH 12.2. The mixture of solution was hydrothermally sintered at 200 °C for 12 hours. The solvent was removed by centrifugation. Finally, the powder was dried for 24 hours.

2.2. Fabrication of Bi₁₋₁.₆Pb₀.₄Sr₂Ca₂Cu₃O₁₀₊δ Ceramics

The Bi₁₋₁.₆Pb₀.₄Sr₂Ca₂Cu₃O₁₀₊δ ceramic samples doped with SnO₂ nanoparticles were fabricated by the conventional solid-reaction method. The 99.9% purity precursors of Bi₂O₃, PbO, SrCO₃, CaCO₃, and CuO were prepared with the stoichiometric ratio of the samples, then thoroughly mixed and ground. The ground mixture was pressed into pellets and calcinated in the air in four stages. Each stage was sintered for 48 hours at 670 °C, 750 °C, 800 °C and 820 °C with the grinding–pressing intermediate process. After that, the superconductor powder was mixed with US-SnO₂ and HT-SnO₂ separately for 0.002 g and 0.004 g for each 1 g of sample. The pure sample was noted as S0, US-SnO₂ doped samples were noted as US2 and US4, and the HT-SnO₂ doped samples were noted as HS2 and HS4, respectively.

The crystalline structure of the samples was investigated using the X-ray diffraction technique with Bruker D8 Advance. The surface morphology of the samples was examined by using scanning electron microscopy with Nova NanoSEM 450. The Tc of the samples was investigated via the temperature dependence of electrical resistivity measurement performed by the four-probe method. The Jc of the samples was calculated via the Bean model from the magnetization curves measured by Quantum Design PPMS EverCool II at 65 K.

3. Results and Discussion

3.1. Crystal Structure

The X-ray diffraction (XRD) analysis of the fabricated samples is presented in Figure 1. The majority of the indexed peaks in the samples corresponded to the Bi-2223 (high Tc) and Bi-2212 (low Tc) superconducting phases. The labels "H" and "L" in the patterns were assigned to distinguish these peaks. In the pure sample, the Bi-2223 phase was predominantly observed. However, as the concentration of SnO₂ nanoparticles increased, the intensity of the Bi-2223 peaks decreased. Conversely, the SnO₂-doped samples exhibited a higher proportion of the Bi-2212 phase. The computed results are summarized in Table 1, which shows the percentage of Bi-2212 and Bi-2223 phases based on the volume fraction values. It can be observed that the percentage of Bi-2212 increases monotonically, while the percentage of Bi-2223 decreases monotonically with increasing content of SnO₂ nanoparticles, regardless of the type of SnO₂ nanoparticles used.

Figure 1. XRD pattern of S0, HT2, HT4, US2, US4 samples.
3.2. Surface Morphology

Surface morphologies of the samples were investigated by SEM images (Figure 2). On the non-doped sample, the crystalline grain is mostly in the plate-like form and composes a dense surface as reported in [5, 16]. Two types of SnO₂ nanoparticle doping conduct different variations on the surface morphology of the samples. Regarding HS2 and HS4 samples, the surface morphology is not changed significantly.

The grain is gradually misoriented leading to the more frequent appearance of porosity on these samples. However, a needle-like uncorrelated phase appears on the surface of the sample and expands spacially to the relative with the superconducting grain on the US4 sample. This foreign phase looked like a blooming from a cluster, which was not found on the pure sample. This phenomenon was typically found on SnO₂ nanoparticles [17-20]. Therefore, it can be supposed as the SnO₂ nanoparticle. However, it produces a high misorientation and grain size reduction on superconducting plate-like grain. These needle-like clusters degrade the surface and influence negatively the interconnectivity of the superconducting grains, which would be investigated below. This is a special phenomenon in comparison between the additions of US-SnO₂ and HT-SnO₂ nanoparticles. The different observations between HT-SnO₂ doped and US-SnO₂ doped samples could explain partially the converse decreasing tendency in %Bi-2223, where %Bi-2223 decreases about 10% from HT2 to HT4 sample, but only 3% from US2 to US4 sample. The SnO₂ nanoparticle was undetectable on XRD or SEM results pointing out the good diffusion in the compound. However, the US-SnO₂ nanoparticles were not diffusive as HT-SnO₂ nanoparticles but clumped into needle-like clusters in certain spaces as observed by the sample’s morphology.
3.3. Superconducting Properties

To examine the superconductivity of the samples, temperature dependences of resistivity of the samples were measured and shown in Figure 3a. The metallic behavior was found a linear relation at the above transition region on all samples. However, the resistivity of the US2 and US4 samples is significantly higher than the pristine and HS2, HS4 samples. It could be appropriate that the resistivity of the SnO$_2$ nanoparticle added samples are higher than that of the pure one, and the spacious occupancy of the cluster on the US2 and US4 samples. The T_c of the sample was estimated at the maxima of the first derivatives of the resistivity as a function of temperature relation presented in Figure 3b. As the consideration about the blooming of US-SnO$_2$ nanoparticles found on SEM images, the T_c of these samples also significantly decreased to 87.74 K on the US2 sample and 86.23 K US4 sample. On the other hand, although the T_c of HS2 and HS4 samples also decreased, with $T_c \approx 99.26$ K on HS2 and ≈ 96.34 K on HS4 samples, the decrement is significantly smaller. It can be concluded that the blossom of the US-SnO$_2$ nanoparticle, from spherical to a huge needle-like cluster, affects negatively the formation of the Bi-2223 phase [21].

![Figure 3](image_url)

Figure 3. (a) The temperature dependence of resistivity (b) The first derivative of resistivity as a function of temperature of S0, HT2, HT4, US2, US4 samples.

The $J_c(B)$ of the samples at 65 K was calculated by the modified Bean model: $J_c = 20 \Delta M/[a(1 - b/3a)]$ and presented in Figure 4 [2, 5, 22]. The contrariant influences were found in the series’ two types
of SnO$_2$ nanoparticle doping. Firstly, the $J_c(B)$ was decreased on the US2 sample, and more significantly on the US4 sample. The results could be forecasted and appropriated with the SEM and R-T examinations. The J_c decrement of a superconductor at a defined temperature is an obvious consequence of the T_c decrement. Besides that, the evasion of large needle-like non-superconducting phase and the misorientation can strongly degrade the interconnectivity among the grains. Nevertheless, the J_c is enhanced on both HS2 and HS4 samples, reaching the maximum on the HS2 sample. The J_c of the HS2 sample at $B = 0$ T reaches 7179 A/cm2 in comparison with 4124 A/cm2 of the pristine. It could be explained that the partial SnO$_2$ nanoparticle could lie on the grain boundary and improve the interconnectivity of the sample, so the self-field J_c was increased. Furthermore, the value of $J_c(0.1$ T) of HS2 sample was of 4136 A/cm2 - much larger than that of the pristine in the same field (831 A/cm2). In this case, it could indicate that the HT-SnO$_2$ nanoparticle acts as the artificial additional pinning centers. On the HS2 sample, the Bi-2223 phase is dominant, while on the HS4 sample, the %Bi-2223 and %Bi-2212 are not significantly different. However, the Bi-2223 and Bi-2212 are not the same orientation, leading to the degradation of the inter-grain connectivity. Consequently, J_c is not increased effectively in the HS4 sample compared to the HS2 sample.

To investigate the characteristics of the additional flux pinning centers, the Dew-Hughes model was employed using the following function:

$$f_p = Ab^p(1-b)^q$$

where $f_p = F_p/F_{p,max}$ is normalized flux pinning force density, $b = B/B_{irr}$ is the normalized field, B_{irr} is the irreversible field, and A, p, and q are fitting parameters. The q values observed in the samples at all temperatures were found to be approximately 2, indicating core interaction [23]. Consequently, the average values of p for each sample were analyzed to determine the dominant type of pinning centers present. In the undoped sample, the average value of p was determined to be 0.554, indicating the presence of normal core surface pinning centers ($p = 0.5$) [23]. Previous studies have identified the grain boundaries as the natural pinning centers in BPSCCO polycrystalline superconductors, which aligns with the characteristics of normal core surface pinning centers [23, 24]. On US-SnO$_2$ doped samples, the value of fitting parameters is not significantly changed, so the dominant pinning center in the samples keeps being the normal core surface pinning center. With the J_c decrement on these samples, the additional pinning center was not found on US-SnO$_2$ doped samples can be explained that the US-SnO$_2$ nanoparticles were precipitated into needle-like clusters instead of randomly distributed in the matrix. It was observed that the size of the cluster is about some micrometer, meaning significantly larger than the penetration depth of BSCCO, and becomes oversized of a pinning center for this superconductor. In contrast, with the addition of HT-SnO$_2$ nanoparticles, the mean values of p showed an increase. The sample with an HT-SnO$_2$ doping of $x = 0.002$ exhibited the highest p values (approximately $p = 0.84$), which closely resembled the characteristics of typical normal point pinning ($p = 1$ and $q = 0.2$) [23]. The classification of pinning types is influenced by the relative difference between the size of the pinning centers and the values of the penetration depth and coherence length of the superconductor. When the size of the pinning centers is smaller than the penetration depth, core interaction is predicted. On the other hand, if the size of the pinning centers exceeds the coherence length, normal core interaction is expected. In the case of BSCCO, the coherence length (ξ) and penetration depth (λ) are approximately 2.9 nm and 60-1000 nm, respectively [4]. Since the average size of the HT-SnO$_2$ nanoparticles is approximately 11 nm, they are expected to induce normal core interaction. Furthermore, as the size of the SnO$_2$ nanoparticles is smaller than the inter-flux-line distance $d = 1.07(\Phi_0/B)^{1/2}$, it is believed that the HT-SnO$_2$ nanoparticles effectively act as normal point pinning centers [3, 23, 24].
Figure 4. The field dependence of critical current density of S0, HT2, HT4, US2, and US4 samples at 65 K.

Figure 5. The reduced field dependence of the normalized flux pinning force density of S0, HT2, HT4, US2, and US4 samples.

Table 1. Volume fraction, critical temperature and Dew-Hughes fitting properties of S0, HT2, HT4, US2, and US4 samples

<table>
<thead>
<tr>
<th>Sample name</th>
<th>%Bi-2223</th>
<th>%Bi-2212</th>
<th>Tc (K)</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>67.09</td>
<td>32.91</td>
<td>103.34</td>
<td>0.509</td>
<td>2.013</td>
</tr>
<tr>
<td>HT2</td>
<td>64.20</td>
<td>35.80</td>
<td>99.26</td>
<td>0.835</td>
<td>2.011</td>
</tr>
<tr>
<td>HT4</td>
<td>54.47</td>
<td>45.53</td>
<td>96.34</td>
<td>0.714</td>
<td>1.999</td>
</tr>
<tr>
<td>US2</td>
<td>43.13</td>
<td>56.87</td>
<td>87.74</td>
<td>0.514</td>
<td>2.014</td>
</tr>
<tr>
<td>US4</td>
<td>40.88</td>
<td>59.12</td>
<td>86.23</td>
<td>0.508</td>
<td>2.011</td>
</tr>
</tbody>
</table>

4. Conclusion

In summary, this work presents the investigation of the effect of additions of two series of SnO2 nanoparticles synthesized using two different methods on crystal structure and superconductivity of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ (BPSCCO) superconductors. Spherical SnO2 nanoparticles were prepared through ultra-sonication (US-SnO2) and hydrothermal (HT-SnO2) methods. Polycrystalline samples with varying SnO2 doping concentrations (x = 0, 0.002, and 0.004) were fabricated using the solid-state reaction method. The analysis of X-ray diffraction patterns revealed a decrease in the volume fraction of the Bi-2223 phase and an increase in that of the Bi-2212 phase upon SnO2 adding content. SEM images demonstrated the presence of needle-like blossom structures on the surface of the US-SnO2-added samples, while this phenomenon was not observed in the HT-SnO2-added samples. In terms of critical properties, the addition of US-SnO2 nanoparticles resulted in a significant decrease in the critical temperature (Tc), while the HT-SnO2 doping led to a slight decrease in Tc. The critical current density (Jc) showed an opposite trend, with enhancements of Jc observed in the HT-SnO2 nanoparticle-added samples. The application of the Dew-Hughes model for analyzing the flux pinning mechanism revealed that the HT-SnO2 added samples exhibited contributions from point-like pinning centers. On the other hand, the US-SnO2 added samples did not show the presence of a different type of pinning center, which can be explained by the observed over-sized SnO2 nano-needle structures.
Acknowledgment

This research was financially supported by University of Science, Vietnam National University, Hanoi under project number TN.22.05.

References

