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1. Introduction

In 1934, the concept of a semiring was first introduced by Vandiver. Semirings were studied as a
generalization of rings by removing the requirement for the existence of additive inverses. Semirings
have appeared in coding theory and fuzzy logic, as well as in problems of dynamic programming and
optimization. By the 21* century, semirings have been widely used in various fields such as computer
science, optimization and graph theory, algebraic modeling, game theory, and several other areas.
Some semirings that have attracted research interest in recent years include the tropical semiring, the
boolean semiring, and the min-plus semiring.

In semiring theory, idempotent matrices play an impotant role and are known as matrices E that
satisfy the condition E* = E . The structure and characteristic properties of idempotent matrices over
specific semirings have been considered. Bapat et al., [1] described the structure of nonnegative
idempotent matrices with a given rank r (see [1, Theorem 2]). Kang et al., [2] provided the
characteristic properties of idempotent matrices over general Boolean algebras and chain semirings
(see [2, Theorems 2.11 and 3.1]). Beasley et al., [3] provided a new structural characterization of
idempotent Boolean matrices to describe all Boolean matrices that are majorized by a given
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idempotent (see [3, Theorem 4.16]). DolZzan and Oblak [4] given a characterization of idempotent
matrices by digraphs over a commutative antiring. Theorem 3.8 in [5] described the structure of
triangular idempotent matrices over a given commutative semiring.

To enrich the study of idempotent matrices over semirings, in this work, we provide several
characteristic properties of e-idempotent matrices over commutative semirings. The paper is
organized as follows: In Section 2, we present some defintions and related results concering matrices
over semirings. In Section 3, we investigate several characteristic properties of e -idempotent matrices
over commutative semirings and establish a formula to calculate the number of e-idempotent
triangular matrices over fintite commutative semirings.

2. Preliminaries

Semiring [6] R is a non-empty set equipped with two operations, addition (+) and multiplication
(.), such that:

i) (R, +) is a commutative monoid with the identity element 0.

i1) (R,.) is a monoid with the identity element 1.

i) (u+v).w=uw+v.w, w.(u + v) =wau+wy forall u,v,wdR.

iv) u.0=0u =0 forall u1R.

v) 0#1.

In this work, we write uv instead of u.v for all u,vOR . The semiring R is called commutative if

uv =vu for all u,vOR . The semiring R is said to be without zero divisors if it satisfies the condition:
If a#0 and b#0 then ab#0 for all a,bOR. An element u[IR is called additively idempotent if

u+u=u, we denote by E, (R) the set of additively idempotent elements of R, R is called additively
idempotent semiring if E, (R) =R. An element e[IR is called multiplicatively idempotent if e’ =e,
we denote by E, (R) the set of multiplicatively idempotent elements of R, R is called multiplicatively
idempotent semiring if E (R) =R. An element u R is called invertible if there exists an element
vOR such that uv =vu =1; u is called additively invertible if there exists an element s[JR such that
u+s=0. We denote by U (R) the set of invertible elements and by V(R) the set of additively
invertible elements of the semiring R. Note that if V (R) =R, then R is called a ring.

Let R be a semiring, we denote by M (R) the set of all mXn matrices over R, and by M, (R)
the set of all nXn square matrices over R. For a matrix AUM, ( R) , we denote the entry in the i -th

row and j-th column of Aby a, ; or a;.

Now, we define an e -idempotent matrix as follows: Let R be a commutative semiring and
eOE, (R)\{0}, amatrix AOM, (R) is called e -idempotent if A*=eA.

Thus, every idempotent matrix is a 1-idempotent matrix. If A is an e -idempotent matrix, then
(eA)’ =eAeA=eA> =¢(eA)=eA, implying that eA is both an idempotent matrix and an e -

idempotent matrix. However, if eA is an idempotent matrix, A is not necessarily idempotent.
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Furthermore, if A is an e -idempotent matrix, A is not necessarily idempotent. For example, consider
the semiring R = [0,1] OR with addition and multiplication defined by a+b= max{a,b} and
05 1

ab:min{a,b} for all a,pOR. For the matrix A=
03 0.8

j and e¢=0.8, we see that

05 0.8 o , (0.5 0.8 . . . .
A = satisfies (eA) = =e¢A, so eA is an idempotent matrix. However, since
03 0.8 0.3 0.8

o o[05 08
0,3 08

Let R be a semiring and a matrix A= (al_.,.) UM, (R) We denote by [A’] the i -th column of the

j =eA# A, A is an e -idempotent matrix but not an idempotent matrix.

matrix A and by I:AJ.J the j-th row of the matrix A. The matrices

a,  a; a,
a, a a, G, - a
11 12 21 22 2 . . . . .
(all ), ( j,..., : . " | are called the principal submatrices of A. The matrix A is
4y 4y : oo
anl anZ ann

called (upper) triangular matrix if a =0 for all i,jD{l,Z,...,n} with > j. The set of nxn
triangular matrices over the semiring R is denoted by TM, (R), if a; =0 for all i,jD{l, 2,...,n} JAZ
then A is called a diagonal matrix, denoted as diag (a1 l,azz,...,ann). Furthermore, if the diagonal
matrix  diag (all,azz,...,am) has a; =0 for all jD{l,Z,...,n},jii, we write it as
diag, (0,...,0,(1,.,.,0,...,0). The matrix A is called invertible if there exists a matrix BUOM, (R) such
that AB=BA=1.

Proposition 2.1 ([7, Lemma 2.2]). Let R be a semiring, if a matrix A= (ai/.) UM, (R) is invertible,
then a,a;,a,q; DV(R) forall i, j,k D{I,Z,...,n} with i £ j .

Recall from [8] that for a semiring R and eUE, (R)\{O}, a matrix AOM, (R) is called e -
invertible if there exists a matrix BOM, (R) such that AB=BA=el,. Note that every invertible

matrix is a I-invertible matrix. However, if AOM (R) is e -invertible, it is not necessarily invertible.

Recall from [6, p. 8] that a non-empty set S is totally ordered by the relation "< " such that 01§
is the smallest element and 10S is the largest element. Then S, together with the operations of
addition and multiplication defined as a+b :max{a,b},ab :min{a,b} for all ¢,b0S, forms a
semiring called a bottleneck algebra.

Example 2.2. Given the set S :{0,0.5,1} O R with the total order relation "<" on R, S together

with the operations a +b = max{a,b} ,ab= min{a,b} forms a bottleneck algebra.
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3. Main Results

In this section, we investigate several characteristic properties of e -idempotent matrices and e -
idempotent triangular matrices over general semirings. We provide a formula to determine the number
of e -idempotent triangular matrices over finite semirings with no zero divisors. Note that the
semirings discussed in this section are commutative semirings.

Proposition 3.1. Let R be a semiring, e, f UE, (R) \{0} ,and let AUM, (R) be an e -idempotent
matrix. Then, the following statements hold:

i) If the matrix eA is invertible, then A=1,.

ii) The matrix feA is idempotent.

iii) If ¢f =0 and A is an f -idempotent matrix, then the matrix (e+ f )A is idempotent.
Furthermore, if R is an additively idempotent semiring, then A is an (e +f ) -idempotent matrix.
iv) A*=A? forall kON,k>2.

v) If R is a semiring without zero divisors and A is an f -idempotent matrix, then A is an ef -
idempotent matrix.

vi) Let SE, (R) denote the set of e -idempotent matrices over R, and SE, (R ) denote the set of f

-idempotent matrices over R . Then, if R is an additively idempotent semiring without zero divisors,
SE, (R) n SE, (R) U SE,, (R) , equality occurs if and only if e = f .

Proof.

i) Since eA is an invertible matrix, there exists a matrix BUM, (R) such that
(eA)B=B(eA)=¢(AB)=e(BA)=1,. Then, eI, =ee(AB)=e(AB)=1,, which implies that e=I.
Therefore, A is an idempotent matrix. Furthermore, /, = BA = BA® = (BA) A= A=A.

ii) Since A is an e-idempotent matrix, we have ( feA)2 = feA’ = feeA = feA . Thus, the matrix
feA is idempotent.

iii) Since ef =0, we have (e+f)2 =e’+ef +ef + f2=e+ f, this implies that e+ fOE, (R).
Then, ((e + f)A)2 = (e + f)A2 =eA’ + fA’ =eeA+ ffA=eA+ fA= (e + f)A . Therefore, the matrix
(e +f )A is idempotent. Furthermore, if R is an additively idempotent semiring then
A=A +A =eA+ fA=(e+ f)A. Moreover, if e+f=0, then e=e+0=e+e+f=e+f=0,
which contradicts e #Z0. Therefore, e+ f #0. Hence, A is an (e +f ) -idempotent matrix.

iv) Suppose A= A7 for kONk=2. Then, we have
A = AAY = AA = AeA =eA’ = e(eA) =eA=A’. Therefore, by induction, A" =A> for all
nON,n=22.

v) Since R is a semiring without zero divisors, we have ef #0. By iv), we obtain
A*=A’=A’A=eAA=eA’ =¢fA . Thus, A isan ef -idempotent matrix.
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vi) Since R is a semiring without zero divisors, we have ef #0. For any matrix

BDSEe(R)ﬂSEf (R), by v), we have that B is an ef -idempotent matrix, which means
BOSE, (R). Thus, SE,(R)n SE,(R) O SE, (R).
If e=f, then clearly SE((R)nSEf(R)=SEf(R)=SEef(R). On the other hand, if

ef

1
which satisfies
0 ef

SE, (R) n SE, (R) =SE,, (R) , consider the  matrix A =(

, [ef 1\ef 1 ef 1 . . . . .. )
A® = =ef =efA (since R is an additively idempotent semiring). This
0 e )\0 ef 0 ef

L ) ef 1 ef 1
implies that AUSE,, (R) =SE, (R) nSE, (R) . Therefore, eA=A"=fA or e =f ,
0 ef 0 ef
which implies that e = f . O
The following fact gives a criterion for every e-idempotent matrix to be an idempotent matrix.
Proposition 3.2. Let R be an additively idempotent semiring, el E, (R) \{0} . Every e-

idempotent matrix is an idempotent matrix if and only if e =1.
Proof.
If e=1, then it is clear that every l-idempotent matrix is an idempotent matrix. Conversely,

' ' e 1 . o , (e 1\(e 1) (& e+e) (e e
consider the matrix A= , which satisfies A" = = = =eA, so
0 e 0 e\0 e 0 & 0 e

A is an e -idempotent matrix. By assumption, A is an idempotent matrix, we have eA=A or

e 1 e e
= , which implies that e =1. O
0 e 0 e

Proposition 3.3. Let R be a semiring, e E, (R)\{O} I AOM, (R) is an e -invertible matrix,
then there exists a matrix BUM, (R) such that the matrix [B'][A,] is e -idempotent, and
A[B'][A]B =diag, (0.....0.¢,0....,0) forall i0{1,2,...n} .

Proof.
Since A isan e -invertible matrix, there exists a matrix BOM, (R) such that AB=BA=el , this

implies  that [A,.][B’}:(e) for all iD{l,Z,...,n}. Let Ui=[Bi][A.], we  have
Ul.z:([Bi][A])([Bi][A]):[Bi]([A][Bi])[A]:[Bi]e[A]:eUi, which means U, is an e-
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idempotent matrix. Furthermore, from A[B’]= e| and [Ai]B=(O o 00 e 0 .- O), we

0
deduce that A[B‘}[A.]B = (A[B‘})([A,.]B) =diag, (O,...,O,e,O,...,O) .O
Proposition 3.4. Let R be a semiring, e E, (R) \{0} and A= (aij ) UM, (R) is an e-idempotent

matrix. If a, =0, (1 <k< n) , then the following statements hold:

n
i) There exist elements @,,Q,,....,Q,_,Q,,,,....Q, UR such that e[AkJ = Za'i [A’J .
i=1

ik

ii) There exist elements B3, B,,.... B, Buys-r B, OR such that e[A]=D B[A].
i=1

ik

Proof.
i) Without loss of generality, assume a, =0. Then, the matrix A can be represented as follows:
a; Qo Gy a,
B C a a ey, a,,
A= , where B=| ' 2 =) |, and D=(an1 a, - a”_l).
D 0 : : : : : ’
an—l,l an—l,Z e an—l,n—l an—l,n
B*+CD BC eB eC
We have A” = =eA= (since A is an e-idempotent matrix). This implies
DB DC eD 0

that e(g] = {eOC'] = (gg] = (ng . Therefore, [A"j =a, [Al] +a,, [AZJ +ota, [A”'l] .

ii) This is proven similarly. O

Next, we investigate some characteristic properties of e -idempotent triangular matrices on
semirings.

Lemma 3.5. Let R be a semiring, eOE,(R)\{0}, AOM, (R).BOM,,, ,y(R), and

A B
DOM,, 1.ty (R) . If the matrix (0 Dj is e-idempotent, then the matrices A and D are also e -

idempotent.
Proof.
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A BY (A> AB+BD A B) (eA eB . o
We  have = =e = ,  which implies that
0 D 0 D? 0 D 0 eD

A’ =eA,D* =eD . Thus, A and D are e-idempotent. O

Proposition 3.6. Let R be a semiring, elE, (R)\{O} and AUTM, (R) Then, A is an e -
idempotent matrix if and only if all principal submatrices of A are e -idempotent.

Proof.

If all principal submatrices of A are e -idempotent matrices, then it is clear that A is an e -
idempotent matrix. Conversely, if A is an e -idempotent matrix, then for any principal submatrix

B C
0 D
CI]M,(X(H) (R) DIZIM(H)X(H) (R) By applying Lemma 3.5, we conclude that B and D are e -

idempotent matrices. O

BDMk(R),ISkSn of A, we can express A in the form A:( ], where

Proposition 3.7. let R be a semiring without zero divisors, eDEm(R)\{O}, and

A= (aij ) uTMm, (R) be an e-idempotent matrix with a,, =a,, =---=a, =0.Then A= (0) .
Proof.
Since A is an e -idempotent matrix, eA is idempotent. Given that a,, =a,, =---=a, =0, the

matrix eA has all entries on its main diagonal equal to 0. By [5, Proposition 3.4], we conclude that
eA = (0) . Since R is a semiring without zero divisors and e #0, this implies that A = (0) .0

Lemma 3.8. Let R be a semiring satisfying E, (R) =R, equipped with a partial order "<"
defined as follows: a<b < a+b=>b for all a,pOR. For any u,v,tOR, the following statements
hold:

i) If u < v, then us <vs forall sLJR.

i) If u<t and v<r,then u+v<rs.

Proof.

i) Since u<v, we have u+v=v, which implies that us+vs=vs for all sLJR. Therefore,
us < vs forall sOR.

iil) Since u <t and v<t, we have u+r=¢ and v+¢=¢. This implies u+v+t+¢r=t+¢, or
u+v+t=t (since E,(R)=R), whichleadsto u+v<t.0

Theorem 3.9. Let R be a semiring satisfying E, (R) =F (R) =R, equipped with a partial order

m

" n

<" defined as follows: a<b < a+b=b for all a,bOR. For any triangular matrix
a, Gy o,
0 ay - a, . e . ..
A=| . : : .| with n2 2, satisfying the following conditions:
0 0 - a,
i) a,<a, , forall i0{L,2,..n~1},j0{i,...n~1}.
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ii) a,_,, <a, forall 10{2,3,...n}.
Then, (al Gy, ) A is an idempotent matrix.
Proof.

all alZ

For n=2, consider the matrix A :( j satisfying the condition a,, <a,, <a,,. Then,

ay

a, a,la, ta a, a,a . . . .
A’ :[ Gt 22)]:( e ZZJ (since a,, <K dy,), this implies that

0 ay, 0 ay,
a,a,, a,d,,d .
(anazzA)z = a,,a,, A’ :( e T 22] (since E,(R)=R). Moreover,
0 a4y,
a,a,, a,a,d
a,,a, A :( “022 1 22]:(allazzA)z.Thus, the matrix (a,,a,,)A is idempotent.
a, a,,
ay G o Gy
_ . _ 0 ay - Gy
Assume the theorem holds for n—k,(kzl). For any matrix A= . . . that
0 0o - v+l
satisfies the conditions: a; <gq, ,, for all iD{l,Z,...,k},jD{i,...,k}, and a_,,, <a, for all
ay Gy o Gy Q)
0 a - a a B
ll]{2,3,...,k +1} .Let B=| . 2 * 1 and b= . , we have A=[O j, which
: : : : : T~
0 0 - ay Ay k41

implies A* =

2
Ay k41 0 Ay e+l

B* Bb+ba,,,,., B Bb+ba,,., . . e
’ = ’ (since E, (R) =R) . The matrix B satisfies

the conditions: a, <a,,, for all iO{12,...k~1},jO0{i,i+1..k=1}, and a_, <a, for all

ll]{2,3,...,k} . Thus, the matrix (a”azz...akk)B is idempotent. For every iD{1,2,...,k} , the entry in

1)

the i-th row of the matrix Bb is a,a,,,, *a,,G 0+t a,a,,, . Since aq,<a;,, and
A gy K gy forall ID{U +1""’k} . we have a,a, . K a0, ad &0 KA G0, (DY
the Lemma 3.8), which implies a,q,,, <a,,,,4,,,, for all lD{i,i+l,...,k} . Therefore,

@y gy g g T T A LA Qg this leads to

i i,k +1

a;a; + ai i+1a

i i k41 teootauap i Y 0G0 e T GG - Thus,  Bb+bay, ., =bay,, ., this

i+1,k+1
ba

. . 2 _ k+1,k+1
implies that A" = . We have
0 G
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2 2
2

2 (a11a22"‘ak+1,k+1) B (a11a22"'ak+l,k+l) bay .

((a11a22"'ak+l,k+1)A) =

2
0 (a11a22“'ak+l,k+l) Qs sl
Since (allazz...akk)B is an idempotent matrix and E, (R) =R, we have

2, 2 -

(alla22"'ak+l,k+l) B _(alla22"‘ak+l,k+l)B’ (alla22“'ak+1,k+l) bay, . _(alla22"‘ak+l,k+l)b and
2 : . L

(allazz"'ak+1,k+1) Aty 1 _(allaZZ"‘ak+l,k+l)ak+l,k+l’ wich implies that
A 2 (allazz---ak+1,k+1)B (a11a22"'ak+l,k+l)b _ A Theref

(allaZZ"'akH,kﬂ) = 0 _(allaZZ"'akﬂ,kH) . erefore,

(alla22"'ak+l,k+l)ak+1,k+1

the matrix (a”azz...a“l’kﬂ)A is idempotent. O
The following fact gives a sufficient condition for a semiring be to a ring.
Proposition 3.10. Let R be a semiring and e E, (R)\{O}. If every e-idempotent triangular

matrix AOTM, (R), which has one entry on the main diagonal equal to e and the other equal to O,
0
there always exist invertible matrices U,V UM, (R) such that UAV = (g 0] ,then R is aring.
Proof.

For any alR, consider the matrix A= (g g] uTMm, (R) satisfying

, (e alle a e ea . . . . .
A= = =eA, so A is an e -idempotent matrix. By assumption, there exist
0 0)\0 O 0 0

0 0
invertible matrices U, VOM, (R) such that UAV = ((e) Oj’ which implies A=U"" (g O]V'l. Let

4 _[(m n o (r s (e 0Y , (m n)fe O)\r s mer mes .
U = , Vo= . Then U V.= = , this
P q t u 00 p q)\0O O\t u per pes

mer =e

mes =a . . . . ..
implies that 0 Since V™' is an invertible matrix, by Proposition 2.1 we have rs DV(R), SO
per =
pes =0
there exists an element wlJR such that w+rs =0, which implies mew +mers =0, or mew+es =0
(since mer =e¢). Therefore, mlew+mes =0, so m*ew+a =0 (because mes=a). Hence, a0V (R) ,
and this leads to the conclusion that R is aring. O

Lemma 3.11. Let R be a semiring without zero divisors, and let eDEm(R)\{O, 1} . Suppose
A= (aij) UM, (R) , A% (O) , and satisfies the following conditions:

i) A is an e -idempotent matrix.
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i) a, 0{0,1,¢} forall iO{1,2,...,n} .
iii) a,a, =0 forall i, jO{1,2,...n},i # j.

i jj
Then, the main diagonal of the matrix A contains one entry equal to e, and all other diagonal
entries are 0. Moreover,

¢ ap a,
0 0
+1If a,, =e, then A= )
0 0 0
0 - 0 a,
+1If a, =e,then A= S s
0 - 0 a_,,
0 - 0 e
0 M D
+ If a, =e, (1<k<n), then A=/0 e N| satisfies the condition g,a,; =ea; for all
0 0 O
Ay
i0{1,....k =1}, jO{k +1,...,n} , where M = OM_y (R). N=(a., a,)OM (. (R)
Ly
Qy Ay 0 Gy
_| Gaxn e
and D=~ L [ BMp (R)-
Gt Yorprz 0 Ggogp

Proof.

Since a,a i =0 for all i,j D{l, 2,...,n}, iZj and R is a semiring without zero divisors, the main
diagonal of matrix A has at most one entry different from 0, with the rest being 0.

+1If a,=a,=--=a, =0, since A is an e-idempotent matrix, applying Proposition 3.7 yields
A= (O) , which contradicts the assumption A # (O) .

+ If the main diagonal of matrix A contains one entry diferent from 0, with the rest being 0.
Assume a, =1, (1sk Sn), let B =(bl_.].) =A%, we have b, =a:k =1. Since A is e -idempotent,
B=A’=eA, which implies 1=b, =ea, =e.1=e¢, contradicting the condition that ¢ JE, (R) \{O, 1} .

Therefore, the main diagonal of matrix A must contain exactly one entry equal to e, with the
remaining entries being 0 (since a; D{ 0, l,e} for all iD{l, 2,...,n} ).

G
+ If a,, =e, then matrix A has the form A =((e) H]’ where HOTM |, (R) has all diagonal
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entries equal to 0. Since A is e -idempotent, by Propositions 3.6 and 3.7, we obtain H = (O) Thus,

¢ a, 4, e ea, - eaq,
o 0 - 0 . .. , |00 - 0

A= . . |- In this case, it is clear that A” =| | . . C |=eA.
0o 0 - 0 O 0 .- 0

F
j, where EOTM (R) has all diagonal

E
+ If a, =e, then matrix A has the form A :(0
e

entries equal to 0. Since A is e -idempotent, by Propositions 3.6 and 3.7, we obtain E =(O).

o - 0 a, 0 - 0 ea,
Therefore, A = S : . Furthermore, it is clear that A% = s : =eA.
- 0 an—l,n O cee 0 ean—l,n
0 - 0 e 0 - 0 e
P M D a,,
+ If a, =e,(1<k<n), then A=|0 e N|, where M=| : DM(H)Xl (R),
0O 0 0 Gy y
A i+ T R O™
a . a . e a n .
Nz(ak,kﬂ akn)DMlx(n_k)(R), p=| e 2 DM(k_l)X(n_k)(R). The matrices
L
POTM (k1) (R) onOTm (nk) (R) have all diagonal entries equal to 0. Since A is an e -idempotent
0 M D
matrix, by Propositons 3.6 and 3.7, we have P=(0), Q=(0), which implies A=|0 e N |.
0O 0 O
0 eM MN 0 eM eD
Moreover, A*=|0 eN |=eA=|0 e eN|. This implies that MN =eD, and so

e
0 0 0 0 0 0
aya,; =ea; forall iD{L,...k =1}, jO{k +1,...n} .0

The problem of counting idempotent triangular matrices over a finite commutative semiring was
studied in [5]; see [5, Corollaries 3.10 and 3.11]. The following result provides a formula for
calculating the number of e -idempotent triangular matrices over a finite semiring without zero

divisors. Note that let R be a semiring and e0E, (R), for every xUOR, we denote
£ (R)={yOR|x=e

Theorem 3.12. Let R be a finite semiring without zero divisors, eDEm(R)\{O,l}. Let |R|

denote the number of elements of R, and let /J(e,n) be the number of e -idempotent triangular
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matrices A=(a,)0TM, (R) where a,0{0,1.¢} and a,a, =0 for all i, jO{1,2,...n}, with i# ;.
Then, ,u(e,n) is defined as follows:

+1If n=1, then ,u(e,l):2.

+1If n=2, then ,u(e,2):2|R|+1.

n-l

+If n=3, then ,u(e,n)zz Z ( |_|
(6 7) 0 1seees k=T #1,...,m}

k=2 (u,k,qu,..,,uk_l_k,uk_kﬂ,,,.,ak,,)DR'H, ,,,,,,,,,,
Eaayy (R)ZD.0(0 ) Lok =1k +1.....n}

n-1 +1

£ . (R)U +2|R

where

£ a (R)‘ is the number of elements in the set & , (R).

Proof.
+If n=1,then A= (0) or A= (e), which implies ,u(e,l) =2.

+If n=2,then A= (0) or, according to Lemma 3.11, the matrix A takes one of the following

0
forms: A:{(e) a(l)zj or A:{O alzj, where a;, JR . Therefore, ,U(e,Z) =2|R| +1.
e

+If n=3, then A= (0) or, according to Lemma 3.11, the matrix A takes one of the following

forms:
¢ a, a,
-If A= 0 0 . |, then since @,,a,;,....a,, IR, so there are |R"" ways to form the
0 0 0
matrix A.
0 0 aqa,
I A=|° ° ° |, then since Gy 0y, OR , s0 there are |R["” ways to form
0 0 a,,,
0 0 e

the matrix A.

0 M D
- If the matrix A=|0 e N | satisfies the condition a,q, =ea, for all
0 0 O
alk
i0{L,...k =1}, jO{k +1,...n} where 1<k<n, M= i |OM;,.(R),
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Qv Apvy 0 4y,

Ay k41 T

N:(ak’,&l akn)DMlx(n_k)(R) and D= 5" DM(k_l)x(n_k)(R). For each

Qeoiprt Gk 77 Gy

kD{2,3,...,n—1}, if there exists il]{l,...,k—l},jD{k +1,...,n} such that &° (R)=D, then the

number of ways to form matrix D is 0, implying that the number of ways to form matrix A is also 0.
If & (R) Z0 for all iD{l,...,k -1},jD{k + 1,...,n} , then for each choice of entries

Qi Ay

€

(R)‘ ways to form matrix D.

0 M D
Therefore, the number of ways to form matrix A={0 e N | that satisfies the condition
0 0 O

a,a, =ea; for all iD{l,...,k —1},jD{k +1,...,n} and 1<k<n is

)

n-l

D T A e ]
=2 (g g el g oy g ot JIR™ (i) k=1 { k+1,...n}

Eaayy (R)ZD0(0 )Lk =Tk +1.....}

Therefore, if n=3, the number of e -idempotent triangular matrices A Z(al.j)DTM n (R) with

a, D{O,l,e} and a.a. =0 for all i,jD{1,2,...,n} and i # j is given by the formula:

i Jj

=g T ()
k=2 (au,aZk,,,.,u‘_,_‘ ,a‘_‘,,,,..,,akn)DR”", (i /)KL =T k+1,...om}

Eoayy (R)20.0(1, )L k=1p{k+1....n}

n-l1 +1.

£ (R)U +2|R

O

Example 3.13. Given the bottleneck algebra R :{0,0.5,1} and e =0.5, the triangular matrices in
Theorem 3.12 are determined as follows:

+ If n=1, then the possible matrices are as follows: (0) s (e) .

. . 0 0 e 0 e e e 1
+ If n=2, then the possible matrices are as follows: , , , ,

0 0 0 0 0 0 0 0
0 0 0 e 01
0 ¢/ (0 e) (0 e

+1If n=3, since &, (R) :{0}, &° (R) :{e,l} and & (R) =[J, the possible matrices are as follows:

e
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000 e 00 e 0 e e 0 1 e e 0 e e e e e 1
[O 0 0 0 00 0 0 0|, |OO Of, |O O O}, |O O O, |O O O],
0 0O 0 00 0 0O 0 0O 0 0O 0 00 0 0O
e 1 0 e 1 e e 1 1 000 0 0 e 0 0 1 0 0O 0 0 e
0 0 0,0 O Of,|]0 O O 0 0 0,j]O O O0[,|]0 O O 0 0 e 0 0 e],
0 00 0 0O 000 0 0 e 0 0 e 0 0 e 0 0 e 0 0 e
0 01 0 0O 0 0 e 0 01 0 0O 0 0O 0 00 0 e O
0 0 e|,]O O 1[,]0 O 1 0 0 1],]0 e O0[,|0 e e 0 e 1 0 e 0],
0 0 e 0 0 e 0 0 e 0 0 e 000 0 0O 0 0O 0 0
0 e e 0 e 1 0 e e 0 e 1 010 01 e 01 1
0 e e|,|0 e el|,|0 e 1 0 e 1,|]0 e 0,]0 e e 0 e e
00 00 0 0 0 0 0 0 0 0 0
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