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Abstract: In this work, we introduce the notion of e -idempotent matrices over a commutative 
semiring, this is a generalization of the idempotent matrices. We investigate some characteristic 
properties of e -idempotent matrices over general semirings. We provide a formula to calculate the 
number of e -idempotent triangular matrices over finite commutative semirings without zero divisors. 
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1. Introduction
*
 

In 1934, the concept of a semiring was first introduced by Vandiver. Semirings were studied as a 
generalization of rings by removing the requirement for the existence of additive inverses. Semirings 
have appeared in coding theory and fuzzy logic, as well as in problems of dynamic programming and 
optimization. By the 21st century, semirings have been widely used in various fields such as computer 
science, optimization and graph theory, algebraic modeling, game theory, and several other areas. 
Some semirings that have attracted research interest in recent years include the tropical semiring, the 
boolean semiring, and the min-plus semiring. 

In semiring theory, idempotent matrices play an impotant role and are known as matrices E  that 

satisfy the condition 2
E E= . The structure and characteristic properties of idempotent matrices over 

specific semirings have been considered. Bapat et al., [1] described the structure of nonnegative 
idempotent matrices with a given rank r  (see [1, Theorem 2]). Kang et al., [2] provided the 
characteristic properties of idempotent matrices over general Boolean algebras and chain semirings 
(see [2, Theorems 2.11 and 3.1]). Beasley et al., [3] provided a new structural characterization of 
idempotent Boolean matrices to describe all Boolean matrices that are majorized by a given 
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idempotent (see [3, Theorem 4.16]). Dolžan and Oblak [4] given a characterization of idempotent 
matrices by digraphs over a commutative antiring. Theorem 3.8 in [5] described the structure of 
triangular idempotent matrices over a given commutative semiring. 

To enrich the study of idempotent matrices over semirings, in this work, we provide several 
characteristic properties of e -idempotent matrices over commutative semirings. The paper is 
organized as follows: In Section 2, we present some defintions and related results concering matrices 
over semirings. In Section 3, we investigate several characteristic properties of e -idempotent matrices 
over commutative semirings and establish a formula to calculate the number of e -idempotent 
triangular matrices over fintite commutative semirings. 

2. Preliminaries 

Semiring [6] R is a non-empty set equipped with two operations, addition (+) and multiplication 
(.), such that: 

i) ( ),R +  is a commutative monoid with the identity element 0. 

ii) ( ),.R  is a monoid with the identity element 1. 

iii) ( )( ). . . ;  . . .+ = + + = +u v w u w v w w u v wu w v  for all , ,u v w R∈ . 

iv) .0 0. 0= =u u  for all ∈u R . 

v) 0 1≠ . 

In this work, we write uv  instead of .u v  for all ,u v R∈ . The semiring R is called commutative if 

uv vu=  for all ,u v R∈ . The semiring R is said to be without zero divisors if it satisfies the condition: 

If 0a ≠  and 0b ≠  then 0ab ≠  for all ,a b R∈ . An element u R∈  is called additively idempotent if 

u u u+ = , we denote by ( )a
E R  the set of additively idempotent elements of R, R is called additively 

idempotent semiring if ( )a
E R R= . An element e R∈  is called multiplicatively idempotent if 2e e= , 

we denote by ( )m
E R  the set of multiplicatively idempotent elements of R, R is called multiplicatively 

idempotent semiring if ( )m
E R R= . An element u R∈  is called invertible if there exists an element 

v R∈  such that 1uv vu= = ; u is called additively invertible if there exists an element s R∈  such that 

0u s+ = . We denote by ( )U R  the set of invertible elements and by ( )V R  the set of additively 

invertible elements of the semiring R. Note that if ( )V R R= , then R  is called a ring. 

Let R be a semiring, we denote by ( )m n
M R×  the set of all m n×  matrices over R, and by ( )n

M R  

the set of all n n×  square matrices over R. For a matrix ( )m n
A M R×∈ , we denote the entry in the i -th 

row and j -th column of A by ,i j
a  or ij

a . 

Now, we define an e -idempotent matrix as follows: Let R be a commutative semiring and 

( ) { }\ 0
m

e E R∈ , a matrix ( )n
A M R∈  is called e -idempotent if 2

A eA= . 

Thus, every idempotent matrix is a 1-idempotent matrix. If A is an e -idempotent matrix, then 

( ) ( )2 2
eA eAeA eA e eA eA= = = = , implying that eA  is both an idempotent matrix and an e -

idempotent matrix. However, if eA  is an idempotent matrix, A is not necessarily idempotent. 
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Furthermore, if A is an e -idempotent matrix, A is not necessarily idempotent. For example, consider 

the semiring [ ]0,1R = ⊂ ℝ  with addition and multiplication defined by { }max ,a b a b+ =  and 

{ }min ,ab a b=  for all ,a b R∈ . For the matrix 
0.5 1

0.3 0.8
A

 
=  
 

 and 0.8e = , we see that 

0.5 0.8

0.3 0.8
eA

 
=  
 

 satisfies ( )2 0.5 0.8

0.3 0.8
eA eA

 
= = 
 

, so eA  is an idempotent matrix. However, since 

2 0,5 0,8

0,3 0,8
A eA A

 
= = ≠ 
 

, A  is an e -idempotent matrix but not an idempotent matrix. 

 Let R be a semiring and a matrix ( ) ( )ij nA a M R= ∈ . We denote by i
A    the i -th column of the 

matrix A and by 
jA    the j -th row of the matrix A. The matrices 

( )
11 12 1

21 22 211 12

11

21 22

1 2

,  ,...,  

n

n

n n nn

a a a

a a aa a
a

a a

a a a

 
 

   
    

 
 

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

 are called the principal submatrices of A. The matrix A is 

called (upper) triangular matrix if 0
ij

a =  for all { }, 1,2,...,i j n∈  with i j> . The set of n n×  

triangular matrices over the semiring R is denoted by ( )n
TM R , if 0

ij
a =  for all { }, 1,2,..., ,i j n i j∈ ≠  

then  A is called a diagonal matrix, denoted as ( )11 22, ,...,
nn

diag a a a . Furthermore, if the diagonal 

matrix ( )11 22, ,...,
nn

diag a a a  has 0
jj

a =  for all { }1,2,..., ,j n j i∈ ≠ , we write it as 

( )0,...,0, ,0,...,0
i ii

diag a . The matrix A  is called invertible if there exists a matrix ( )n
B M R∈  such 

that n
AB BA I= = . 

Proposition 2.1 ([7, Lemma 2.2]). Let R be a semiring, if a matrix ( ) ( )ij nA a M R= ∈  is invertible, 

then ( ),ik jk ki kja a a a V R∈  for all { }, , 1,2,...,i j k n∈  with i j≠ . 

Recall from [8] that for a semiring R and ( ) { }\ 0
m

e E R∈ , a matrix ( )n
A M R∈  is called e -

invertible if there exists a matrix ( )n
B M R∈  such that n

AB BA eI= = . Note that every invertible 

matrix is a 1-invertible matrix. However, if ( )n
A M R∈  is e -invertible, it is not necessarily invertible. 

Recall from [6, p. 8] that a non-empty set S is totally ordered by the relation " "≪  such that 0 S∈  
is the smallest element and 1 S∈  is the largest element. Then S, together with the operations of 

addition and multiplication defined as { } { }max , , min ,a b a b ab a b+ = =  for all ,a b S∈ , forms a 

semiring called a bottleneck algebra. 

Example 2.2. Given the set { }0,0.5,1S = ⊂ ℝ  with the total order relation " "≤  on ℝ , S together 

with the operations { } { }max , , min ,a b a b ab a b+ = = forms a bottleneck algebra. 



H. C. Cong et al. / VNU Journal of Science: Mathematics – Physics, Vol. 41, No. 2 (2025) 42-55 

 

45

3. Main Results 

In this section, we investigate several characteristic properties of e -idempotent matrices and  e -
idempotent triangular matrices over general semirings. We provide a formula to determine the number 
of e -idempotent triangular matrices over finite semirings with no zero divisors. Note that the 
semirings discussed in this section are commutative semirings. 

Proposition 3.1. Let R be a semiring, ( ) { }, \ 0
m

e f E R∈ , and let ( )n
A M R∈  be an e -idempotent 

matrix. Then, the following statements hold: 

i) If the matrix eA  is invertible, then n
A I= . 

ii) The matrix feA is idempotent. 

iii) If 0ef =  and A  is an f -idempotent matrix, then the matrix ( )e f A+  is idempotent. 

Furthermore, if R  is an additively idempotent semiring, then A  is an ( )e f+ -idempotent matrix. 

iv) 2=k
A A  for all , 2k k∈ ≥ℕ . 

v) If R  is a semiring without zero divisors and A  is an f -idempotent matrix, then A  is an ef -

idempotent matrix. 

vi) Let ( )e
SE R  denote the set of e -idempotent matrices over R, and ( )fSE R  denote the set of f

-idempotent matrices over R . Then, if R  is an additively idempotent semiring without zero divisors, 

( ) ( ) ( )e f efSE R SE R SE R∩ ⊂ , equality occurs if and only if e f= . 

Proof. 

i) Since eA  is an invertible matrix, there exists a matrix ( )n
B M R∈  such that 

( ) ( ) ( ) ( ) n
eA B B eA e AB e BA I= = = = . Then, ( ) ( )n n

eI ee AB e AB I= = = , which implies that 1e = . 

Therefore, A  is an idempotent matrix. Furthermore, ( )2
n n

I BA BA BA A I A A= = = = = . 

ii) Since A  is an e-idempotent matrix, we have ( )2 2
feA feA feeA feA= = = . Thus, the matrix  

feA  is idempotent. 

iii) Since 0ef = , we have ( )2 2 2
e f e ef ef f e f+ = + + + = + , this implies that ( )m

e f E R+ ∈ . 

Then, ( )( ) ( ) ( )2 2 2 2
e f A e f A eA fA eeA ffA eA fA e f A+ = + = + = + = + = + . Therefore, the matrix 

( )e f A+  is idempotent. Furthermore, if R  is an additively idempotent semiring then 

( )2 2 2
A A A eA fA e f A= + = + = + . Moreover, if 0e f+ = , then 0 0e e e e f e f= + = + + = + = , 

which contradicts 0e ≠ . Therefore, 0e f+ ≠ . Hence, A  is an ( )e f+ -idempotent matrix.  

iv) Suppose 2kA A=  for , 2k k∈ ≥ℕ . Then, we have  

( )1 2 2 2k k
A AA AA AeA eA e eA eA A

+ = = = = = = = . Therefore, by induction, 2nA A=  for all 

, 2n n∈ ≥ℕ . 

v) Since R  is a semiring without zero divisors, we have 0ef ≠ . By iv), we obtain 
2 3 2 2

A A A A eAA eA efA= = = = = . Thus, A  is an ef -idempotent matrix. 
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vi) Since R  is a semiring without zero divisors, we have 0ef ≠ . For any matrix 

( ) ( )e fB SE R SE R∈ ∩ , by v), we have that B  is an ef -idempotent matrix, which means 

( ).efB SE R∈  Thus, ( ) ( ) ( )e f efSE R SE R SE R∩ ⊂ . 

If e f= , then clearly ( ) ( ) ( ) ( )e f f efSE R SE R SE R SE R∩ = = . On the other hand, if 

( ) ( ) ( )e f efSE R SE R SE R∩ = , consider the matrix 
1

0

ef
A

ef

 
=  
 

 which satisfies 

2 1 1 1

0 0 0

ef ef ef
A ef efA

ef ef ef

    
= = =    
    

 (since R  is an additively idempotent semiring). This 

implies that ( ) ( ) ( )ef e fA SE R SE R SE R∈ = ∩ . Therefore, 2
eA A fA= =  or 

1 1
,

0 0

ef ef
e f

ef ef

   
=   

   
 

which implies that e f= . □ 

The following fact gives a criterion for every e-idempotent matrix to be an idempotent matrix. 

Proposition 3.2. Let R be an additively idempotent semiring, ( ) { }\ 0
m

e E R∈ . Every e -

idempotent matrix is an idempotent matrix if and only if 1e = . 
Proof. 
If 1e = , then it is clear that every 1-idempotent matrix is an idempotent matrix. Conversely, 

consider the matrix 
1

0

e
A

e

 
= 
 

, which satisfies 
2

2

2

1 1

0 0 00

e e e ee e e
A eA

e e ee

 +    
= = = =     
     

, so 

A  is an e -idempotent matrix. By assumption, A  is an idempotent matrix, we have eA A=  or 

1

0 0

e e e

e e

   
=   

   
, which implies that 1e = . □ 

Proposition 3.3. Let R be a semiring, ( ) { }\ 0
m

e E R∈ . If ( )n
A M R∈  is an e -invertible matrix, 

then there exists a matrix ( )n
B M R∈  such that the matrix [ ]i

iB A    is e -idempotent, and 

[ ] ( )0,...,0, ,0,...,0i

i iA B A B diag e  =   for all { }1,2,...,i n∈ . 

Proof. 

Since A  is an e -invertible matrix, there exists a matrix ( )n
B M R∈  such that n

AB BA eI= = , this 

implies that [ ] ( )i

iA B e  =   for all { }1,2,...,i n∈ . Let [ ]i

i iU B A =   , we have 

[ ]( ) [ ]( ) [ ]( )[ ] [ ]2 i i i i i

i i i i i i iU B A B A B A B A B e A eU         = = = =          , which means i
U  is an e -
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idempotent matrix. Furthermore, from 

0

0

0

0

i
A B e

 
 
 
 
 

  =   
 
 
 
 
 

⋮

⋮

 and [ ] ( )0 0 0 0
i

A B e= ⋯ ⋯ , we 

deduce that [ ] ( ) [ ]( ) ( )0,...,0, ,0,...,0i i

i i iA B A B A B A B diag e   = =    . □ 

Proposition 3.4. Let R be a semiring, ( ) { }\ 0
m

e E R∈  and ( ) ( )ij nA a M R= ∈  is an e -idempotent 

matrix. If ( )0,  1
kk

a k n= ≤ ≤ , then the following statements hold: 

i) There exist elements 1 2 1 1, ,..., , ,...,
k k n

Rα α α α α− + ∈  such that 
1

n
k i

i

i
i k

e A Aα
=
≠

   =    . 

ii) There exist elements 1 2 1 1, ,..., , ,...,
k k n

Rβ β β β β− + ∈  such that [ ] [ ]
1

n

k i i

i
i k

e A Aβ
=
≠

= . 

Proof. 

i) Without loss of generality, assume 0
nn

a = . Then, the matrix A  can be represented as follows: 

0

B C
A

D

 
=  
 

, where 

11 12 1, 1

21 22 2, 1

1,1 1,2 1, 1

n

n

n n n n

a a a

a a a
B

a a a

−

−

− − − −

 
 
 =
 
  
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

, 

1

2

1,

n

n

n n

a

a
C

a −

 
 
 =
 
  
 

⋮
, and ( )1 2 , 1n n n nD a a a −= ⋯ . 

We have 
2

2

0

eB eCB CD BC
A eA

eDDB DC

 +  
= = =   

  
 (since A  is an e -idempotent matrix). This implies 

that 
0 0

C eC BC B
e C

DC D

       
= = =       

       
. Therefore, 1 2 1

1 2 1,
n n

n n n nA a A a A a A
−

−       = + + +       ⋯ . 

ii) This is proven similarly. □ 
Next, we investigate some characteristic properties of e -idempotent triangular matrices on 

semirings. 

Lemma 3.5. Let R be a semiring, ( ) { }\ 0
m

e E R∈ , ( ) ( ) ( ),k k n k
A M R B M R× −∈ ∈ , and 

( ) ( ) ( )n k n k
D M R− × −∈ . If the matrix 

0

A B

D

 
 
 

 is e-idempotent, then the matrices A  and D  are also e -

idempotent. 
Proof. 
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We have 

2 2

20 0 00

A B A B eA eBA AB BD
e

D D eDD

 +     
= = =      

      
, which implies that 

2 2,A eA D eD= = . Thus, A  and D  are e-idempotent. □ 

Proposition 3.6. Let R be a semiring, ( ) { }\ 0
m

e E R∈  and ( )n
A TM R∈ . Then, A is an e -

idempotent matrix if and only if all principal submatrices of A are e -idempotent. 

Proof. 

If all principal submatrices of A  are e -idempotent matrices, then it is clear that A  is an e -
idempotent matrix. Conversely, if A  is an e -idempotent matrix, then for any principal submatrix 

( ) ,1
k

B M R k n∈ ≤ ≤  of A , we can express A  in the form 
0

B C
A

D

 
=  
 

, where 

( ) ( ) ( ) ( ) ( ),  
k n k n k n k

C M R D M R× − − × −∈ ∈ . By applying Lemma 3.5, we conclude that B  and D  are e -

idempotent matrices. □ 

Proposition 3.7. Let R be a semiring without zero divisors, ( ) { }\ 0
m

e E R∈ , and 

( ) ( )ij nA a TM R= ∈  be an e-idempotent matrix with 11 22 0
nn

a a a= = = =⋯ . Then ( )0A = . 

Proof. 

Since A  is an e -idempotent matrix, eA  is idempotent. Given that 11 22 0
nn

a a a= = = =⋯ , the 

matrix eA  has all entries on its main diagonal equal to 0. By [5, Proposition 3.4], we conclude that 

( )0eA = . Since R  is a semiring without zero divisors and 0e ≠ , this implies that ( )0A = . □ 

Lemma 3.8. Let R be a semiring satisfying ( )a
E R R= , equipped with a partial order " "≪  

defined as follows: a b a b b⇔ + =≪  for all ,a b R∈ . For any , ,u v t R∈ , the following statements 

hold: 

i) If ≪u v , then ≪us vs  for all ∈s R . 

ii) If ≪u t  and ≪v t , then + ≪u v t . 

Proof. 

i) Since ≪u v , we have + =u v v , which implies that + =us vs vs  for all ∈s R . Therefore, 
≪us vs  for all ∈s R . 

ii)  Since ≪u t  and ≪v t , we have + =u t t  and + =v t t . This implies + + + = +u v t t t t , or 

+ + =u v t t  (since ( )a
E R R= ), which leads to + ≪u v t . □ 

Theorem 3.9. Let R be a semiring satisfying ( ) ( )a m
E R E R R= = , equipped with a partial order 

" "≪  defined as follows: a b a b b⇔ + =≪  for all ,a b R∈ . For any triangular matrix 

11 12 1

22 20

0 0

n

n

nn

a a a

a a
A

a

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

 with 2n ≥ , satisfying the following conditions: 

i) , 1+≪
ij i j

a a  for all { } { }1,2,..., 1 , ,..., 1i n j i n∈ − ∈ − . 
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ii) 1,− ≪l n lla a  for all { }2,3,...,∈l n . 

Then, ( )11 22...
nn

a a a A  is an idempotent matrix. 

Proof. 

For 2n = , consider the matrix 11 12

220

a a
A

a

 
=  
 

 satisfying the condition 11 12 22a a a≪ ≪ . Then, 

( ) 11 12 222 11 12 11 22

2222
00

a a aa a a a
A

aa

 +  
= =   

  
 (since 11 22a a≪ ), this implies that 

( )2 11 22 11 12 222
11 22 11 22

11 220

a a a a a
a a A a a A

a a

 
= =  

 
 (since ( )m

E R R= ). Moreover,  

( )211 22 11 12 22

11 22 11 22

11 220

a a a a a
a a A a a A

a a

 
= = 
 

. Thus, the matrix ( )11 22a a A  is idempotent. 

Assume the theorem holds for ( ), 1n k k= ≥ . For any matrix 

11 12 1, 1

22 2, 1

1, 1

0

0 0

k

k

k k

a a a

a a
A

a

+

+

+ +

 
 
 =
 
  
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

 that 

satisfies the conditions: , 1ij i j
a a +≪  for all { } { }1,2,..., , ,...,i k j i k∈ ∈ , and 1, 1l k lla a− + ≪  for all 

{ }2,3,..., 1l k∈ + . Let 

11 12 1

22 20

0 0

k

k

kk

a a a

a a
B

a

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

 and 

1, 1

2, 1

, 1

k

k

k k

a

a
b

a

+

+

+

 
 
 =
 
  
 

⋮
 , we have 

1, 10
k k

B b
A

a + +

 
=  
 

, which 

implies 
2 2

1, 1 1, 12

2
1, 1 1, 10 0

k k k k

k k k k

B Bb ba B Bb ba
A

a a

+ + + +

+ + + +

   + +
= =      
   

 (since ( )m
E R R= ) . The matrix B  satisfies 

the conditions: , 1ij i j
a a +≪  for all { } { }1,2,..., 1 , , 1,..., 1i k j i i k∈ − ∈ + − , and 1,l k ll

a a− ≪  for all 

{ }2,3,...,l k∈ . Thus, the matrix ( )11 22...
kk

a a a B  is idempotent. For every { }1,2,...,i k∈ , the entry in 

the i -th row of the matrix Bb  is , 1 , 1 1, 1 , 1ii i k i i i k ik k ka a a a a a+ + + + ++ + +⋯ . Since , 1il i ka a +≪  and 

, 1 1, 1l k k k
a a+ + +≪  for all { }, 1,...,l i i k∈ + , we have , 1 , 1 , 1il l k i k l k

a a a a+ + +≪  and , 1 , 1 , 1 1, 1i k l k i k k k
a a a a+ + + + +≪  (by 

the Lemma 3.8), which implies , 1 , 1 1, 1il l k i k k k
a a a a+ + + +≪  for all { }, 1,...,l i i k∈ + . Therefore, 

, 1 , 1 1, 1 , 1 , 1 1, 1ii i k i i i k ik k k i k k ka a a a a a a a+ + + + + + + ++ + +⋯ ≪ , this leads to 

, 1 , 1 1, 1 , 1 , 1 1, 1 , 1 1, 1ii i k i i i k ik k k i k k k i k k k
a a a a a a a a a a+ + + + + + + + + + ++ + + + =⋯ . Thus, 1, 1 1, 1k k k k

Bb ba ba+ + + ++ = , this 

implies that 
2

1, 12

1, 10
k k

k k

B ba
A

a

+ +

+ +

 
=   
 

. We have 
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( )( ) ( ) ( )
( )

2 22
2 11 22 1, 1 11 22 1, 1 1, 1

11 22 1, 1 2

11 22 1, 1 1, 1

... ...
...

0 ...

k k k k k k

k k

k k k k

a a a B a a a ba
a a a A

a a a a

+ + + + + +
+ +

+ + + +

 
 =
 
   . 

Since ( )11 22...
kk

a a a B  is an idempotent matrix and ( )m
E R R= , we have 

( ) ( )2 2
11 22 1, 1 11 22 1, 1... ...k k k ka a a B a a a B+ + + += , ( ) ( )2

11 22 1, 1 1, 1 11 22 1, 1... ...k k k k k ka a a ba a a a b+ + + + + +=  and 

( ) ( )2

11 22 1, 1 1, 1 11 22 1, 1 1, 1... ...
k k k k k k k k

a a a a a a a a+ + + + + + + += , wich implies that 

( )( ) ( ) ( )
( ) ( )2 11 22 1, 1 11 22 1, 1

11 22 1, 1 11 22 1, 1

11 22 1, 1 1, 1

... ...
... ...

0 ...

k k k k

k k k k

k k k k

a a a B a a a b
a a a A a a a A

a a a a

+ + + +
+ + + +

+ + + +

 
 = =
 
 

. Therefore, 

the matrix ( )11 22 1, 1... k ka a a A+ +  is idempotent. □ 

The following fact gives a sufficient condition for a semiring be to a ring. 

Proposition 3.10. Let R  be a semiring and ( ) { }\ 0
m

e E R∈ . If every e -idempotent triangular 

matrix ( )2A TM R∈ , which has one entry on the main diagonal equal to e  and the other equal to 0, 

there always exist invertible matrices ( )2,U V M R∈  such that 
0

0 0

e
UAV

 
=  
 

 , then R  is a ring. 

Proof. 

For any a R∈ , consider the matrix ( )2
0 0

e a
A TM R

 
= ∈ 
 

 satisfying 

2

0 0 0 0 0 0

e a e a e ea
A eA

    
= = =    
    

, so A  is an e -idempotent matrix. By assumption, there exist 

invertible matrices ( )2,  U V M R∈  such that 
0

0 0

e
UAV

 
=  
 

, which implies 1 10

0 0

e
A U V

− − 
=  

 
. Let 

1 1,  
m n r s

U V
p q t u

− −   
= =   
   

. Then 1 10 0

0 0 0 0

e m n e r s mer mes
U V

p q t u per pes

− −       
= =       

       
, this 

implies that 
0

0

mer e

mes a

per

pes

=
 =
 =
 =

 . Since 1
V

−  is an invertible matrix, by Proposition 2.1 we have ( )rs V R∈ , so 

there exists an element w R∈  such that 0w rs+ = , which implies 0mew mers+ = , or 0mew es+ =  

(since mer e= ). Therefore, 2 0m ew mes+ = , so 2 0m ew a+ =  (because mes a= ). Hence, ( )a V R∈ , 

and this leads to the conclusion that R  is a ring. □ 

Lemma 3.11. Let R  be a semiring without zero divisors, and let ( ) { }\ 0,1
m

e E R∈ . Suppose 

( ) ( )ij nA a TM R= ∈ , ( )0A ≠ , and satisfies the following conditions: 

i) A  is an e -idempotent matrix.    
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ii) { }0,1,∈
ii

a e  for all { }1,2,...,∈i n . 

iii) 0=
ii jj

a a  for all { }, 1,2,..., ,i j n i j∈ ≠ . 

Then, the main diagonal of the matrix A  contains one entry equal to e , and all other diagonal 
entries are 0. Moreover,  

+ If 11 =a e , then 

12 1

0 0 0

0 0 0

ne a a

A

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

 . 

+ If =
nn

a e , then 

1

1,

0 0

0 0

0 0

n

n n

a

A
a

e

−

 
 
 =
 
 
 

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋯

. 

+ If ( ),  1
kk

a e k n= < < , then 

0

0

0 0 0

M D

A e N

 
 =  
 
 

 satisfies the condition ik kj ij
a a ea=  for all 

{ } { }1,..., 1 ,  1,...,i k j k n∈ − ∈ + , where ( ) ( )
1

1 1

1,

k

k

k k

a

M M R

a

− ×

−

 
 = ∈ 
 
 

⋮ , ( ) ( ) ( ), 1 1k k kn n k
N a a M R+ × −= ∈⋯  

and ( ) ( ) ( )
1, 1 1, 2 1

2, 1 2, 2 2

1

1, 1 1, 2 1,

k k n

k k n

k n k

k k k k k n

a a a

a a a
D M R

a a a

+ +

+ +
− × −

− + − + −

 
 
 = ∈
 
  
 

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

. 

Proof. 

Since 0
ii jj

a a =  for all { }, 1,2,..., ,  i j n i j∈ ≠  and R  is a semiring without zero divisors, the main 

diagonal of matrix A  has at most one entry different from 0, with the rest being 0. 

+ If 11 22 0
nn

a a a= = = =⋯ , since A  is an e -idempotent matrix, applying Proposition 3.7 yields 

( )0A = , which contradicts the assumption ( )0A ≠ . 

+ If the main diagonal of matrix A  contains one entry diferent from 0, with the rest being 0. 

Assume 1
kk

a = , ( )1 k n≤ ≤ , let ( ) 2
ijB b A= = , we have 2 1

kk kk
b a= = . Since A  is e -idempotent, 

2
B A eA= = , which implies 1 .1

kk kk
b ea e e= = = = , contradicting the condition that ( ) { }\ 0,1

m
e E R∈ . 

Therefore, the main diagonal of matrix A  must contain exactly one entry equal to e , with the 

remaining entries being 0 (since { }0,1,
ii

a e∈  for all { }1,2,...,i n∈ ).  

+ If 11a e= , then matrix A  has the form 
0

e G
A

H

 
=  
 

, where ( ) ( )1n
H TM R−∈  has all diagonal 
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entries equal to 0. Since A  is e -idempotent, by Propositions 3.6 and 3.7, we obtain ( )0H = . Thus, 

12 1

0 0 0

0 0 0

ne a a

A

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

. In this case, it is clear that 

12 1

2
0 0 0

0 0 0

ne ea ea

A eA

 
 
 = =
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

. 

+ If nn
a e= , then matrix A  has the form 

0

E F
A

e

 
=  
 

, where ( ) ( )1n
E TM R−∈  has all diagonal 

entries equal to 0. Since A  is e -idempotent, by Propositions 3.6 and 3.7, we obtain ( )0E = . 

Therefore, 

1

1,

0 0

0 0

0 0

n

n n

a

A
a

e

−

 
 
 =
 
 
 

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋯

. Furthermore, it is clear that 

1

2

1,

0 0

0 0

0 0

n

n n

ea

A eA
ea

e

−

 
 
 = =
 
 
 

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋯

. 

+ If ( ), 1
kk

a e k n= < < , then 0

0 0

P M D

A e N

Q

 
 =  
 
 

, where ( ) ( )
1

1 1

1,

k

k

k k

a

M M R

a

− ×

−

 
 = ∈ 
 
 

⋮ , 

( ) ( ) ( ), 1 1k k kn n k
N a a M R+ × −= ∈⋯ , ( ) ( ) ( )

1, 1 1, 2 1

2, 1 2, 2 2

1

1, 1 1, 2 1,

k k n

k k n

k n k

k k k k k n

a a a

a a a
D M R

a a a

+ +

+ +
− × −

− + − + −

 
 
 = ∈
 
  
 

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

. The matrices 

( ) ( ) ( ) ( )1
,  

k n k
P TM R Q TM R− −∈ ∈  have all diagonal entries equal to 0. Since A  is an e -idempotent 

matrix, by Propositons 3.6 and 3.7, we have ( ) ( )0 ,  0P Q= = , which implies 

0

0

0 0 0

M D

A e N

 
 =  
 
 

. 

Moreover, 2

0 0

0 0

0 0 0 0 0 0

eM MN eM eD

A e eN eA e eN

   
   = = =   
   
   

. This implies that MN eD= , and so 

ik kj ij
a a ea=  for all { } { }1,..., 1 ,  1,...,i k j k n∈ − ∈ + . □ 

The problem of counting idempotent triangular matrices over a finite commutative semiring was 
studied in [5]; see [5, Corollaries 3.10 and 3.11]. The following result provides a formula for 
calculating the number of e -idempotent triangular matrices over a finite semiring without zero 

divisors. Note that let R  be a semiring and ( )m
e E R∈ , for every x R∈ , we denote 

( ) { }|e

x
R y R x eyε = ∈ = .  

Theorem 3.12. Let R  be a finite semiring without zero divisors, ( ) { }\ 0,1
m

e E R∈ . Let R  

denote the number of elements of R , and let ( ),e nµ  be the number of e -idempotent triangular 
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matrices ( ) ( )ij nA a TM R= ∈  where { }0,1,
ii

a e∈  and 0
ii jj

a a =  for all { }, 1,2,...,i j n∈ , with i j≠ . 

Then, ( ),e nµ  is defined as follows: 

+ If 1=n , then ( ),1 2eµ = . 

+ If 2=n , then ( ),2 2 1e Rµ = + . 

+ If 3n ≥ , then ( ) ( )
( ) { } { }( )

( ) ( ) { } { }
1

1 2 1, , 1

1
1

2 , 1,..., 1 1,...,, ,..., , ,..., ,

, , 1,..., 1 1,...,

, 2 1
ik kj

n
k k k k k k kn

e
a aik kj

n
ne

a a

k i j k k na a a a a R

R i j k k n

e n R R

ε

µ ε
−

− +

−
−

= ∈ − × +∈
≠∅ ∀ ∈ − × +

 
  

= + +     
  

  ∏

where ( )
ik kj

e

a a Rε  is the number of elements in the set ( )
ik kj

e

a a Rε . 

Proof. 

+ If 1n = , then ( )0=A  or ( )=A e , which implies ( ),1 2µ =e . 

+ If 2n = , then ( )0A =  or, according to Lemma 3.11, the matrix A  takes one of the following 

forms: 12

0 0

e a
A

 
=  
 

 or 120

0

a
A

e

 
=  
 

, where 12a R∈ . Therefore, ( ),2 2 1e Rµ = + . 

+ If 3n ≥ , then ( )0A =  or, according to Lemma 3.11, the matrix A  takes one of the following 

forms: 

 - If 

12 1

0 0 0

0 0 0

ne a a

A

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

, then since 12 13 1, ,...,
n

a a a R∈ , so there are 
1n

R
−

 ways to form the 

matrix .A  

- If 

1

1,

0 0

0 0

0 0

n

n n

a

A
a

e

−

 
 
 =
 
 
 

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋯

, then since 1 2 1,, ,...,n n n na a a R− ∈ , so there are 
1n

R
−

 ways to form 

the matrix .A  

 - If the matrix 

0

0

0 0 0

M D

A e N

 
 =  
 
 

 satisfies the condition ik kj ij
a a ea=  for all 

{ } { }1,..., 1 , 1,...,i k j k n∈ − ∈ + , where 1 k n< < , ( ) ( )
1

1 1

1,

k

k

k k

a

M M R

a

− ×

−

 
 = ∈ 
 
 

⋮ , 
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( ) ( ) ( ), 1 1k k kn n k
N a a M R+ × −= ∈⋯  and ( ) ( ) ( )

1, 1 1, 2 1

2, 1 2, 2 2

1

1, 1 1, 2 1,

k k n

k k n

k n k

k k k k k n

a a a

a a a
D M R

a a a

+ +

+ +
− × −

− + − + −

 
 
 = ∈
 
  
 

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

. For each 

{ }2,3,..., 1k n∈ − , if there exists { } { }1,..., 1 , 1,...,i k j k n∈ − ∈ +  such that ( )
ik kj

e

a a
Rε = ∅ , then the 

number of ways to form matrix D  is 0, implying that the number of ways to form matrix A  is also 0. 

If ( )
ik kj

e

a a
Rε ≠ ∅  for all { } { }1,..., 1 , 1,...,i k j k n∈ − ∈ + , then for each choice of entries 

1 2 1, , 1 , 2, ,..., , , ,...,
k k k k k k k k kn

a a a a a a R− + + ∈ , there are ( )
( ) { } { }, 1,..., 1 1,...,

ik kj

e

a a

i j k k n

Rε
∈ − × +

∏  ways to form matrix D . 

Therefore, the number of ways to form matrix 

0

0

0 0 0

M D

A e N

 
 =  
 
 

 that satisfies the condition 

ik kj ij
a a ea=  for all { } { }1,..., 1 , 1,...,i k j k n∈ − ∈ +  and 1 k n< <  is 

( )
( ) { } { }( )

( ) ( ) { } { }
1

1 2 1, , 1

1

2 , 1,..., 1 1,...,, ,..., , ,..., ,

, , 1,..., 1 1,...,

ik kj
n

k k k k k k kn
e
a aik kj

n
e

a a

k i j k k na a a a a R

R i j k k n

R

ε

ε
−

− +

−

= ∈ − × +∈
≠∅ ∀ ∈ − × +

 
  
     
  

  ∏ . 

Therefore, if 3n ≥ , the number of e -idempotent triangular matrices ( ) ( )ij nA a TM R= ∈  with 

{ }0,1,
ii

a e∈  and 0
ii jj

a a =  for all { }, 1,2,...,i j n∈  and i j≠  is given by the formula: 

( ) ( )
( ) { } { }( )

( ) ( ) { } { }
1

1 2 1, , 1

1
1

2 , 1,..., 1 1,...,, ,..., , ,..., ,

, , 1,..., 1 1,...,

, 2 1.
ik kj

n
k k k k k k kn

e
a aik kj

n
ne

a a

k i j k k na a a a a R

R i j k k n

e n R R

ε

µ ε
−

− +

−
−

= ∈ − × +∈
≠∅ ∀ ∈ − × +

 
  

= + +     
  

  ∏
 □ 

Example 3.13. Given the bottleneck algebra { }0,0.5,1R =  and 0.5e = , the triangular matrices in 

Theorem 3.12 are determined as follows: 

+ If 1n = , then the possible matrices are as follows: ( )0 , ( )e . 

+ If 2n = , then the possible matrices are as follows: 
0 0

0 0

 
 
 

, 
0

0 0

 
 
 

e
, 

0 0

 
 
 

e e
, 

1

0 0

 
 
 

e
, 

0 0

0

 
 
 e

, 
0

0

 
 
 

e

e
, 

0 1

0

 
 
 e

. 

+ If 3n = , since ( ) { } ( ) { }0 0 ,  ,1e e

e
R R eε ε= =  and ( )1

e
Rε = ∅ , the possible matrices are as follows: 



H. C. Cong et al. / VNU Journal of Science: Mathematics – Physics, Vol. 41, No. 2 (2025) 42-55 

 

55

 

0 0 0

0 0 0

0 0 0

 
 
 
 
 

, 

0 0

0 0 0

0 0 0

 
 
 
 
 

e

, 

0

0 0 0

0 0 0

 
 
 
 
 

e e

, 

0 1
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