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Abstract: Noncommutative Quantum Field (NCQF) is a field defined over a space endowed with 

a noncommutative structure. In the last decade, the theory of NCQF has been studied intensively, 

and many qualitatively new phenomena have been discovered. In this article we study one of these 

phenomena known as UV/IR mixing.  
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1. Introduction
∗∗∗∗ 

Noncommutative quantum field theory (NC QFT) is the natural generalization of standard 

quantum field theory (QFT). It has been intensively developed during the past years, for reviews, see 

[1,2]. The idea of NC QFT was firstly suggested by Heisenberg and the first model of NC QFT was 

developed in Snyder’s work [3]. The present development in NC QFT is very strongly connected with 

the development of noncommutative geometry in mathematics [4], string theory [5] and physical 

arguments of noncommutative space-time [6].  

The simplest version of NC field theory is based on the following commutation relations between 

coordinates [7]:  

[ ]ˆ ˆ ix x
µνµ ν θ, = ,                                                                                                          (1)  

where µνθ  is a constant antisymmetric matrix.  

Since the construction of NC QFT in a general case ( 0 0iθ ≠ ) has serious difficulties with unitarity 

and causality [8-10], we consider a simpler version with 0 0iθ =  (thus space-space noncommutativity 

only), in which there do not appear such difficulties. This case is also a low-energy limit of the string 

theory [1, 2].  
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2. Moyal Product 

We introduce d -dimensional noncommutative space-time by assuming that time and position are 

not c -numbers but self-adjoint operators defined in a Hilbert space and obeying the commutation 

algebra  

[ ]ˆ ˆ ix x
µνµ ν θ, = ,                                                                                                                  (2) 

where the µνθ  are the elements of a real constant d d×  antisymmetric matrix θ . Then we define 

the Moyal star product  
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In particular we have:  

( )
exp

2

ip x i p q xiq x i
e e p q e

µ µν
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+ 
= − ∧ , 

 
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where we have defined the wedge product  

 p q p q
µν

µ ν
µ ν

θ
,

∧ = .∑                                                                                                     (5) 

The natural generalization of the star product (3) follows:  

 1 1 2 2 1 1( ) ( ) ( ) exp ( ) ( ) for 1
2

n n n n

a b a b

i
f x f x f x f x f x a b … n

x x

µν

µ ν
θ

<

 ∂ ∂
= , , = , , . 

∂ ∂ 
∏� �� � �   (6) 

A simple prescription to construct NC FT is to replace ordinary products by (Moyal) star products 

�  all over the place. For example, the action for a noncommutative 4Φ  real-valued scalar field  

21
[ ]

2 2 4

d m
S d x

µ
µ

λ 
Φ = ∂ Φ ∂ Φ − Φ Φ − Φ Φ Φ Φ . 

! 
∫ � � � � �                                                 (7) 

For 0 0iθ =  we can construct NC quantum fields by canonically quantizing NC classical fields. 

This can be done by applying formal canonical quantization method. Alternatively, we can quantize 

NC classical fields by path intergral method. Thus  

[ ] ( )[ ] [ ]
di S i d x J

Z J D e eµ Φ Φ∫= Φ ,∫ �                                                                                               (8) 

with some specification of the integral measure. 

3. Noncommutative Perturbative Quantization 

Now we will restrict ourselves to the pertubative evaluation of [ ]Z J . The first important 

observation is that the free approximation is locally θ -independent  
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2 2 2

free

1 1
[ ]

2 2

d d
S d x m d x m

µ µ
µ µ
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 
 

 Φ = ∂ Φ ∂ Φ − Φ Φ = ∂ Φ∂ Φ − Φ . ∫ ∫� �                          (9) 

The Fourier transform of the Feynman propagator is the same as for commutative scalar field  

2 2
( )

0

i
G p

p m i
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− +
�                                                                                                          (10) 

Upon Fourier transformation  
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W p … p p p
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 
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is the Moyal phase. Thus we get a simple Feynman rule for the interactions:  

1
( )

n n n
i i W p … pλ λ− → − , , ,                                                                                                   (13) 

i.e. the standard Feynman vertex is mapped into itself times the Moyal phase.  

Hence, the Feynman rules in momentum space of noncommutative field theory are similar to those 

of commutative ones except that the vertices of the NC theory are modified by the Moyal phase factor.  

4. The UV/IR mixing of NC QFT 

The phenomenon of UV/IR mixing is the most radical feature of NC QFT that significantly differs 

from those of ordinary QFT. It occurs in perturbation theory, so we can study this phenomenon in 

details. We analyze the UV/IR mixing in the case of real-valued 4Φ  scalar field.  

The NC real-valued 4Φ  theory in the four-dimensional space-time, is described by  

21

2 2 4

m
L

µ
µ

λ
= ∂ Φ ∂ Φ − Φ Φ − Φ Φ Φ Φ.

!
� � � � �                                                              (14) 

As we have seen in Eqs (9), (13), under the integration the star product of the fields does not affect 

the quadratic parts of the Lagrangians, whereas it makes the interaction parts become nonlocal by the 

Moyal phase (12).  

For the Lagrangian (14), the Feynman rule for the noncommuative vertex is  

1 2 1 3 2 3 1 2 1 3 2 3
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where 
i

p , 1 4i …= , , , are momenta coming out of the vertex and i j i jp p p p
µ ν

µ νθ ,∧ = .  

In the commutative 4Φ  model the leading mass renormalization comes from the normal-ordering 

diagram contribution to the self energy [11]:  
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∫                     (16) 

where Λ  is the ultraviolet cutoff.  

In the noncommutative 4Φ  model, we have two contributions, planar and nonplanar Feynman 

diagrams. The planar diagram gives almost the same contribution (16), except the factor 1 3/  instead 

of 1 2/ , which is responsible for different symmetry of the diagram. Thus  
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∫ �                       (17) 

and the nonplanar diagram gives  
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is the effective cutoff, which shows the mixing of UV divergence and IR singularity.  

Note that the nonplanar contribution is one half of the planar one. We computed all above 

integrations by using dimensional regularization method [11]. So we can normalize the theory at fixed 

p  and fixed θ  by subtracting the planar divergence in the limit when the cutoff Λ  tends to infinity  
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Finally, we obtain one particle irreducible (or 1PI) effective action  
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Thus the effective action has a singularity at 0p =�  that can be interpreted either as a non-analytic 

function of θ  at fixed p , or an IR singularity at fixed θ .  

In the case that Φ  is a complex scalar field, there are two ways of ordering the fields Φ  and ∗Φ  

in the quartic interaction 2( )∗Φ Φ . So, the most general potential of the NC complex scalar field action 

is  

( )V A B
∗ ∗ ∗ ∗Φ = Φ Φ Φ Φ + Φ Φ Φ Φ.� � � � � �

                                                           (23) 

It was shown in [12] that the theory is not generally renormalizable for arbitrary values of A  and 

B  and is renormalizable at one-loop level only when 0B =  or A B= .   
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5. Conclusion 

Our main focus in this article is to point out several important aspects of NC field theories, 

especially noncommutative perturbative path-integral quantization and the renormalization problem of 

NC QFT. We have figured out significant analogies and radical differences between the perturbative 

description of NC QFT and that of the ordinary QFT. We successfully calculated noncommutative 

vertex, one-loop renormalized mass and 1PI effective action for noncommutative real-valued scalar 

field. We found that UV/IR mixing terms, as a direct consequence of phase factors induced in the 

vertex, generally appear in all perturbative quantum calculations. The analysis and computing 

techniques used here are very useful and applicable for other models of NC QFT.  
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