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Abstract: Based on classical shell theory with the geometrical nonlinearity in von Karman-Donell 

sense and the Ilyushin nonlinear supersonic aerodynamic theory, this paper successfully 

formulated the equations of motion of the functionally graded cylindrical panel on elastic 

foundations under impact of a moving supersonic airflow and found the critical velocity of 

supersonic airflow that make the panel unstable. This paper also used the Bubnov-Galerkin and 

Runge – Kutta methods to solve the system of nonlinear vibration differential equations and 

illustrated effects of initial dynamical conditions, shape and geometrical parameters, material 

constituents and elastic foundations on aerodynamic response and instability of FGM cylindrical 

panel. 
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1. Introduction
∗∗∗∗ 

Functionally Graded Materials (FGMs) are composite materials which have mechanical properties 

varying smoothly from one surface to other surface of structure. The concept of functionally graded 

material was proposed in 1984 [1]. Due to functionally graded materials have many advantaged 

properties more than common materials such as: high carrying capacity, high temperature 

endurance,… therefore, functionally graded materials often are used in shipbuilding industry, heat-

resistance structures, aerospace and elements in nuclear reactors [2]. 

Moreover, today functionally graded materials are widely used in structures flying at the 

supersonic speed such as: wings of aircraft, spacecraft, rockets,… With the structures in such a 

supersonic speed, the investigation about stability of structures to guarantee and enhance safety of 

structures is very important. 

_______ 
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When the structures operated in high speed conditions, they often occur instability and self-excited 

vibrations tending to oscillate seriously and destroy structures, this phenomena is used to call “flutter”. 

The issue needed for research is to find out the maximum value of velocity in which the structure still 

can stand in process to minimize the happening of flutter phenomenon and identify the range of 

velocity in which the structure is working stably, so that it can avoid problems with the structures and 

equipment mentioned above.   

The nonlinear flutter of structures under impact of high-speed airflow have been studied by a 

number of researchers such as the study of Ibrahim et al. [3] about thermal buckling and nonlinear 

flutter behavior of FGM panels, the study of Sohn et al. [4] about using first-order shear deformation 

theory with the nonlinearity geometrical in von Karman and first order piston theory to investigate the 

nonlinear thermal flutter of functionally graded panels under a supersonic airflow and Newton-

Raphson method is adopted to obtain approximate solutions of the nonlinear governing equations. 

Prakash et al. [5] investigated the large amplitude flexural vibration characteristics of FGM plates 

under aerodynamic load, the FGM plate is modeled using the first-order shear deformation theory 

based on exact neutral surface position and von Karman’s assumption for large displacement, the 

third-order piston theory is employed to evaluate the aerodynamic pressure. Prakash and Ganapathi [6] 

used first-order shear deformation theory and first-order high Mach number including effects of 

temperature to investigate the supersonic flutter behavior of flat panels made of functionally graded 

materials under impact of supersonic airflow. Ganapathi et al. [7] studied the flutter behavior of 

composite panel subjected to thermal stress. By using Love’s shell theory and von Karman-Donnell-

type of kinematic nonlinearity coupled with linearized first-order potential Haddadpour et al. [8] 

studied the supersonic flutter prediction of functionally graded cylindrical shells. Based on Lagrange’s 

equations of motion and the first-order high Mach number approximation to potential linear flow 

theory, Singha et al. [9] investigated the supersonic flutter behavior of laminated composite skew flat 

panels. Moon et al. [10] studied suppression of nonlinear composite panels flutter with active/ passive 

hybrid piezoelectric networks by using finite element method and the governing equations of the 

electromechanical coupled composite panel flutter are derived through an extended Hamilton’s 

principle. The supersonic/ hypersonic flutter and post-flutter of geometrically imperfect circular 

cylindrical panels was studied by Librescu et al. [11]. 

However, up to date, there is no publication that carried out the nonlinear flutter of FGM panels by 

using Ilyushin supersonic aerodynamic theory [12]. The Ilyushin supersonic aerodynamic theory was 

used in the works of Stepanov [13] and Oghibalov [14] for investigating supersonic flutter behavior of 

isotropic plates lying in the moving supersonic airflow. 

With combination of classical shell theory with nonlinearity geometrical in von Karman-Donell 

and supersonic aerodynamic theory of A.A.Ilyushin, in this paper, we established the governing 

equations to investigate nonlinear flutter behavior of FGM cylindrical panel resting on elastic 

foundations. The influences of nonlinear elastic foundations, initial geometrical parameters and 

constituent materials on critical velocities and dynamic response of the FGM panels are considered. 
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2. Governing equations 

Consider a functionally graded cylindrical panel with radius of curvature ,R  axial length a , arc 

length b  and it is defined in coordinate system ( ), ,x zθ , where x  and θ  are in the axial and 

circumferential directions of the panel respectively and z is perpendicular to the middle surface and 

points inward ( )/ 2 / 2h z h− ≤ ≤ . In this paper, the panel is considered with large shallowness and 

setting y Rθ= in the new coordinate (Fig. 1). 

                               

Fig. 1. The concept of FGM cylindrical panel resting on elastic foundations lying  

in the moving supersonic airflow. 

Specific expressions of modulus of elasticity E  and the mass density ρ  are obtained by  

2 2
( ) ,  ( ) ,  

2 2

k k

m cm m cm

z h z h
E z E E z

h h
ρ ρ ρ

   
   
   

+ +
= + = +     (1) 

where N  is volume fraction index ( 0 N≤ < ∞ ), m  and c  stand for the metal and ceramic 

constituents;
 

,
cm c m cm c m

E E E ρ ρ ρ= − = −
 
and the Poisson’s ratio ν  is assumed constant.  

According to the classical shell theory and geometrical nonlinearity in von Karman sense, the 

strain across the panel thickness at the distance z
 
from the middle surface are [15] 

( ) ( ) ( )0 0 0, , , , ,2 .
x y z x y z x y xy

zε ε ε ε ε ε χ χ χ= +                              (2) 

The strains at the middle surface and curvatures of the panel as [15] 
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   The force and moment resultants of the FGM panel are determined by                    

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( )
( )

( ) ( )

0 0

1 2 2 32

0 0

1 2 2 32

0

1 2 2 3

1
, [ , , ],

1

1
, [ , , ],

1

1
, [ , 2 , ],

2 1

x x x y x y

y y y x y x

xy xy xy xy

N M E E E E

N M E E E E

N M E E E E

ε νε ν
ν

ε νε ν
ν

γ
ν

χ χ

χ χ

χ

= + + +
−

= + + +
−

= +
+

                                                                                                 (4) 

where  

2
3

1 2 3 .
1 1 1

,  ,  
1 2( 1)( 2) 12 3 2 4( 1)

cm cm m
m cm

E E kh E
E E h E E E h

k k k k k k

   
   

     
= + = = + − +

+ + + + + +
 (5) 

The aerodynamic pressure load q  is be determined as [12]  

2

2

1 12
w w w w w

q B BV BV BV
t x t x x

∂ ∂ ∂ ∂ ∂ 
− = − − +  

∂ ∂ ∂ ∂ ∂ 
  (6) 

and ,p V∞ ∞  the pressure and the sound velocity of the quiet airflow ( not excited ), V  is the airflow 

velocity on the surface structure, ζ  is the Politrop index. 

The nonlinear motion equation of the FGM cylindrical panels based on classical shell theory are 

given by Brush and Almroth [15] using Volmir’s assumption [16] as 

2 22 2 2 2

2 2 2 2
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1 2 1 2
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0,

1
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w
w w ,
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NN

x y

N N

x y
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ρ

∂∂
+ =

∂ ∂

∂ ∂
+ =

∂ ∂

∂ ∂∂ ∂ ∂ ∂
+ + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂
+ − + ∆ =

∂

 

   

(7) 

with 1
1

mc
c h

N

ρ
ρ ρ

 
 
 

= +
+

 

and 1 2,K K  are stiffness of Winkler and Pasternak foundation. 

Putting  Eq. (4) into Eq. (7) we obtain  

22 2 2 2
2

1 1 12 2

2 2 2 2

1 22 2 2 2

1
2 2

w w 0,

w w w w w w f f w
B BV BV BV D w

t t x t x x R x x y x y
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K K

y x x y

ρ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

+ − − + + ∆∆ − + 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂
− − + − ∆ =

∂ ∂ ∂ ∂

                 (8) 
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where ( , )f x y

 

is stress function defined by 
2 2 2

2 2
,,  ,  x y xy

f f f
N N N

x yy x

∂ ∂ ∂
= = = −

∂ ∂∂ ∂   

and 3

2(1 )

E
D

ν
=

−                                                                                                                                    

(9) 

The geometrical compatibility equation for a cylindrical panel is written as 
2

2 2 2 2

2 2 2

1

1 1
.

w w w w
f

E x y x y R x

 ∂ ∂ ∂ ∂
∆∆ = − − 

∂ ∂ ∂ ∂ ∂                                                                                   (10) 

The couple of Eqs. (8) and (10) are governing equations to investigate the nonlinear flutter of the 

FGM panel using the Ilyushin supersonic aerodynamic theory. 

3. Solution of the problem           

In the present study, the edges panels are assumed to be simply supported and freely movable. 

Depending on an in-plane restrain at the edges, the boundary conditions are 

w 0, 0, 0, 0, ,

w 0, 0, 0, 0, .

xy x x xy

xy y y xy

N M N N at x a

N M N N at y b

= = = = = =

= = = = = =
    (11) 

  The approximate two-terms Fourier expansion solution can be written as  

1 2

2
w W sin sin W sin sin ,

x y x y

a b a b

π π π π
= +  

(12) 

 

where 1( )W t  and 2 ( )W t  are time dependent functions.  

Substituting Eq. (12) into the compatibility Eq. (10), the stress function can be defined as 

1 2 3 4

5 6 7
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8 9 0 0
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s

2 2 2 2 2
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2 1 1
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 (13) 

in which 
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Assume that the panel is only subjected to the impact of airflow (not by temperature and axial 

load), so 0 0 0x yN N= = . 

Substituting Eqs. (12), (13) into Eq. (8) and applying Bubnov-Galerkin method to the resulting 

equation yields     

2
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Setting 1 2
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W WV t

a h h
τ φ φ∞= = =  to Eqs. (15) and (16), after some rearrangements, obtained 

equations may be written in the following form 
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System of second-order differential equations with non-dimensional coefficients (18), (19) can be 

used to investigate the nonlinear flutter of FGM cylindrical panel. It’s very difficult to find out the 

exact solutions of these equations, therefore, we will solve this system of differential equations by 

using the fourth-order Runge-Kutta procedure with some cases of initial conditions. 

4. Numerical results and discussion 

4.1. Validation 

This section compares obtained result with other result using A.A.Ilyushin’s aerodynamic theory 

in order to illustrate the similarity between two investigations and to increase the reliability of this 

approach. The material’s parameters of the isotropic plate are chosen as [13,14] 

6 3 4
0 02 3 2

1.4,  2 10 ( ),  7.8 10 ( ),  1.014( ),  3.4 10 ( ).
kg kg kg cm

E p V V
scm cm cm

η ρ −
∞ ∞= = × = × = = = ×  

From Fig. 2 up to Fig.5 show the similarity in the obtained results of this study with Oghibalov’s 

results for the isotropic plate [14] (cylindrical panel becomes plate with R → ∞ ) in cases of instability 

(Fig. 2 and Fig. 3) and stability (Fig. 4 and Fig. 5). 

  

Fig. 2. The present result in case of instability of the 

plate. 

Fig. 3. The Oghibalov’s result [14] in case of 

instability of the plate. 

  

Fig. 4. The present result in the case of stability of the 

plate. 

Fig. 5. The Oghibalov’s result [14] in case of stability 

of the plate. 
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4.2. Nonlinear flutter of FGM cylindrical panels on elastic foundations 

 In this section, we will investigate the nonlinear flutter of the FGM cylindrical panel with 

different initial conditions by considering response of the panel in each specific case and from which 

finding out the features of instability of the panel. The data of materials, geometrical parameters and 

aerodynamic conditions are as following 

5

0 1.014 10 ( )1.4,  340( / ),  p PaV V m sη ∞∞ = ×= = =  

3

3

380 ( ), 70 ( ),  3800 ( / ),  

2702 ( / ),  0.3

c m c

c

E GPa E GPa kg m

kg m v

ρ

ρ

= = =

= =
 

Case 1: 
1 21 2

1 21 2

(1 ) (0) 0.1,  (0) 0,  (0) 0,  (0) 0

(1 ) (0) 0.1,  (0) 0.1,  (0) 0,  (0) 0

a

b

φ φ φ φ

φ φ φ φ

• •

• •







= = = =

= = − = =

 

Case 2: 
1 21 2

1 21 2

(2 ) (0) 0,  (0) 0,  (0) 0.1,  (0) 0

(2 ) (0) 0,  (0) 0,  (0) 0.4,  (0) 0

a

b

φ φ φ φ

φ φ φ φ

• •

• •







= = = =

= = = =

 

Case 3: 
1 21 2

1 1 1
;  ;  .

360 400 440

(0) 0.1,  (0) 0,  (0) 0,  (0) 0,

h

a

φ φ φ φ
• •




=


= = = =
 

Case  4: 1 21 2(0) 0.1,  (0) 0,  (0) 0,  (0) 0,

0;  1; 2.k

φ φ φ φ
• •




= = = =

=
 

Case 5: 
3 4 3 4

1 2

1 21 2

 0; 10 ;  10 ( / ),   0; 10 ;  10 ( . ).

(0) 0.1,  (0) 0,  (0) 0,  (0) 0,

K Pa m K Pa m

φ φ φ φ
• •


 = =

= = = =
 

From Fig. 6 to Fig. 9, we can investigate the behavior of panel in case 1a  - (Fig. 6 and Fig. 8) and 

1b  (Fig.7 and Fig. 9). Observing Fig. 6 to Fig 7, when the panel is still stable at the velocity of 

800( / )V m s= , we can see that the amplitude of the panel in case 1b  is larger than one in the case 1a . 

Increasing the velocity up to 980( / )V m s= , the oscillation of the panel (in the case 1a ) starts 

becoming harmonic (happens in pre-instability period). The velocity at 980( / )V m s=  can be seen as 

the critical velocity of the panel in this case. Meanwhile, in Fig.9 (in case 1 b ), the panel still oscillate 

stably.  

Similarly, Fig. 10 up to Fig. 13 illustrate the phenomenon of flutter in case 2, when the initial 

velocity of 1( )φ τ
•

 is different from zero. Comparing between 2 cases 1(0) 0.1φ
•

=  (case 2a ) and 

1(0) 0.4φ
•

= (case 2b ), obviously we can see that in Fig. 10 and Fig.11 the panel is stable and the 

oscillation amplitude in case 2b  is much larger than the one of case 2a . Considering the occurrence 
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of instability of the panel in different initial velocities (Fig.12 and Fig.13), we can see that the critical 

velocity of airflow in both cases 2a  and 2b  is at 1000( / )V m s= . It is recognized by the 

phenomenon of continuously increasing of oscillation amplitudes by time. However, the instability in 

case 2b  (Fig. 13) happens stronger than the one in case 2a  (Fig. 12) due to the fact that the initial 

velocity of case 2b  is higher than the one in case 2a . 

  

Fig. 6. Nonlinear flutter response of the FGM 

cylindrical panel at 800( / )V m s= with initial 

conditions in the case 1( ).a  

Fig. 7. Nonlinear flutter response of the FGM panel 

at 800( / )V m s= with initial conditions in the case 

1( ).b  

  

Fig. 8. Nonlinear flutter response of the FGM panel 

 at 980( / )V m s= with initial conditions in the  

case 1( )a  

Fig. 9. Nonlinear flutter response of the FGM panel 

at 980( / )V m s= with initial conditions in the  

case 1( )b  

By considering the flutter behavior of the panel from Fig. 6 up to Fig. 13, it is showing that the 

initial conditions affect strongly on the flutter behavior of the panel, especially the initial velocities. 

Therefore, we can actively control the behavior of cylindrical panel for different purposes.  

 Effects of geometrical dimensions on nonlinear flutter of the FGM panel are shown in Fig. 14 and 

Fig. 15 with initial conditions as case 3. The results from Fig. 14 show that with given airflow velocity 

800( / )V m s= the panel is still in the stability, although the ratio of /h a  increases, the oscillation 
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amplitude of the panel decreases. Even the ratio of /h a  does not increase much, but the oscillation 

amplitudes of the panel decrease much. In Fig. 15, we examine the flutter phenomenon of panels in 3 

cases: / 1 / 360,  / 1 / 400, / 1 / 440h a h a h a= = =  corresponding to the 3 obtained different critical 

velocities of airflow (the panels are instable): 1385( / );  1065( / );  850( / )V m s V m s V m s= = = . It is 

showing that the ratio /h a  has great influence on the critical velocity: increasing the ratio /h a  will 

increase significantly the critical velocity and decrease the oscillation amplitudes of the panel. When 

the /h a   is getting smaller, the panel is getting thinner so the panel will be weakened due to the 

excitation of the airflow. Obviously, decreasing the ratio /h a  will reduce the value of the flutter 

critical velocity, it makes the panel more easily destroyed. 

 

  

Fig. 10. Effect of initial conditions on the nonlinear 

flutter response of the FGM cylindrical panel in the 

case 2( ).a  

Fig. 11. Effect of initial conditions on the nonlinear 

flutter response of the FGM cylindrical panel in the 

case 2( ).b  

 
 

Fig. 12. Effect of initial conditions on the nonlinear 

flutter response of the FGM cylindrical panel at 

1000( / )V m s=  in the case 2( ).a  

Fig. 13. Effect of initial conditions on the nonlinear 

flutter response of the FGM cylindrical panel at 

1000( / )V m s=  in the case 2( ).b  
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Fig. 14. Influence of the /h a  ratio on the nonlinear 

flutter response of the FGM cylindrical panel (the 

panel in the stability). 

Fig. 15. Influence of the /h a  ratio on the critical 

velocity of the FGM cylindrical panel (the panel in 

the instability). 

The volume ratio between metal and ceramic also has a great influence on the behavior of 

nonlinear flutter of the panel. Specifically, the calculation is studied with the initial condition in case 4 

and the results are presented in Fig. 16, when 0k =  ( panel is made entirely from ceramic)  the 

oscillations amplitude is quite small comparing to 1k =  and 2k =  ( k increasing, the rate ceramic 

decreasing ).  Furthermore, when appears the phenomenon such as the vibration amplitude is found to 

increase continuously by time, the instability of FGM panel happens, and this value of velocity is 

called a critical flutter velocity. Fig.17 shows significant effect of volume ratio k  on the critical 

velocities of the airflow corresponding with the large difference in three values of those coefficients:  

0,  1972 /k V m s= =
 
is compared with 1,  1045 /k V m s= =

 
and 2,  830 /k V m s= = . It is suitable 

due to the elastic module of the ceramic ( )380 cE GPa=
 
much larger than the metal ( )70 mE GPa= . 

The rich ceramic FGM panel stands much better, but this also reduces the flexibility of the panel 

because  the ceramic is very hard but less elastic than metal.  

  

Fig. 16. Effect of volume ratio k  on the nonlinear 

flutter response of the FGM panel. 

Fig. 17. Effect of volume ratio k  on the critical 

flutter velocities of the FGM panel. 
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Finally, the influence of Winkler and Pasternak elastic foundations on the nonlinear flutter of FGM 

cylindrical panel with the initial conditions of case 5 is examined in Fig. 18. The results from Fig. 18 

shows that when choosing the appropriate elastic foundations, the panel can switch from instability to 

stability. Obviously, when increasing the stiffness of the elastic foundations, the oscillation amplitudes 

of the panel will also be getting smaller correspondingly. These results show clearly the great positive 

influence of elastic foundations on the flutter of the panel. 

 

Fig. 18. Influence of Winkler and Pasternak foundations on the nonlinear flutter response of the FGM panel. 

5. Conclusions 

This paper established governing equations to investigate the nonlinear flutter of FGM cylindrical 

panels on elastic foundations under impacts of moving supersonic airflow by using the classical shell 

theory. We successfully formulated the equations of motion of the functionally graded cylindrical 

panel by the Ilyushin nonlinear supersonic aerodynamic theory and found the critical velocity of 

supersonic airflow that make the panel unstable. 

 Using Bubnov-Galerkin and Runge-Kutta methods, the paper illustrated effects of initial 

dynamical conditions, shape and geometrical parameters, material constituents and reinforced elastic 

foundations on nonlinear flutter and critical velocity. Therefore, when designing appropriately those 

parameters, we may actively control the flutter of FGM panels.  
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