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Role of energetic disorder on diffusion
in one-dimensional systems
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Abstract. The simulation of dynamical process of target particles in one-dimensional lattice is
carried out for two types of energetic disorders. The particles are non-interacting except that ttre

double occupancy is forbidden. It is found that the diffusion quantities such as the correlation
factor and averaged time between two subsequent jumps are quite different for the lattices of site
and transition disorders. However, the diffusion constant of both lattices is close to each other.
Closed value of diffusion constant is obtained for the lattice with random distributed barriers. At
the wide temperahue range the diffusivity follows the Arrhenius law. The blocking effect
decreases the correlation factor and activation energy. These two opposite factors lead to
appearance of insignificant maximum in the dependence of diffusion constant on concentration of
targetparticles. .
Keywords: diffusion, amorphous solid, disordered one-dimension, simulation, blocking effect.

1. Introduction

Migration of particles (atom, molecular and ion) in disordered media is a rather general
phenomenon and a list of problems and applications can be found [1-6]. To name, but only a few: the
diffusion and conductivity of amorphous alloy, glass, polymer and thin solid frlm related to the
subject. In particular the concentration dependence of diffusion quantities is observed for certain
disordered media. For example, the activation energy and diffusion constant for hydrogen in
Zr6e5Cul2NittAlr.r metallic glass noticeably change in the intermediate concentration regime
0.2<H/M<0.9 [3]. Here H/M is hydrogen-to-metal ratio. In the low concentration regime H/M<0.2
insignificant maximum appears on the dependence of diffusion constant on H/M concentration.
Besides the hydrogen diffusivity follows the classical over-barrier-hopping mechanism. Authors in
ref.[3] interpret this observation by blocking effect and the increasing nearest neighboring distance
between metal atoms. However, there is very simple estimation of the contribution of energetic
disorder to the dynamic of system and it is not clear how the blocking effect affects on the activation
energy and diffusion constant. Moreover, we found only few simulation works on this subject [7-9].

Various theoretical approaches have been applied to study diffusion in disordered media from
analytic method based on effective medium theory, master, Fokker-Planclg or Kramers equations to
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simulation techniques based on the molecular dynamic and Monte-Carlo (MC) method [10-13]. The
later provides more detail information about specific features as well as the diffusion mechanism of
disordered system. It was revealed that the energetic disorder is most important factor affected on the
dynamic of the system. Consequently, it is convenient to employ a disordered lattice [8,14-l7l where
the sites are arranged into regular lattice, but transition and site energies vary from site to site. The
basic models studied in this context fall into two classes that of randomly distributed transition and site
energies or that of randomly distributed barriers. Obviously, the former represents more general case

due to that two nearest neighboring sites have common transition energy. A number of simulations has
been done in this direction 17, I8-201and reveals two specific properties characteized the diffusion in
disordered lattice. First one is that the averaged square displacement of target particle is less than one
in the case of its migration in ordered lattice by the same number of jumps. Secondary, the averaged

duration between two subsequent jumps along diffusion path is significantly less than averaged
resident time of particle at a site [18, 19]. Such, the diffusion behavior is well established for migration
of single particle in disordered lattice, but the study to the case when many particles hop through
disordered lattice is still little. Therefore, the present work is devoted to the study of blocking effect
based on MC simulation. Because of the blocking effect concerns mainly the prevention of random
movement of particles through sites, hence to simpliff, we ignore the particle-particle interacting, e.g.
consider only the system with non-interacting particles. The relevant data will be analyzed in
accordance with both aspects: the energetic disorder and the blocking effect.

2. Calculation method

The simulation is carried out for a chain consisting of 2000 or 3000 sites with periodic boundary
conditions. Several runs have been done for system of 3000 particles in order to test the accuracy of
the simulation on a chain with 2000 sites. The energy is assigned to each site in a random way from
given distribution. We consider two types of energetic distributions: the uniform distribution in the
range from Q to e2 (et < et) and twolevel distribution where the energy for each site is equal to e' or
e2. The same procedure is used for transition energy between two nearest neighboring sites. In this
way the disorder produces only in site and transition energies, but the jump distance and the number of
nearestneighboring sites are kept constant. The probability of particle's jump fiom ithto i+lth site
and the averaged resident time of particle at ith site is givan as

exp(-e,,,,rp)
Pi,,*,

ri -

exp(- e,,, u B) + exp(- e,,, _, B)
2roexp(-e,B)

(l)

(2)

period.9:I/kT;kis
exp(- e,., u p) + exp(- e,,, _, p)

Where s; and ti,ia1 ?ta the site and transition energies; rs is frequency
Boltzmann constant and Zis temperature

Consider the diffusion time /, during z jumps of single particle in a disordered lattice. If n is
enough large then the resident time of particle at ith site czr. be approximated by
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Here M is number of sites in the system. The number of visiting times of particle for ith site is

written as

exp(- e,,, u p) + exp(- e,., _, p)
M

2tolexp(-e,9)

The averaged time between two subsequent jumps in this context can be written as

ztofe*p(-e,A

(3)

(4)t,
il,:t:t,

cl

t
(s)T ju.o MM

Zn, I "*p(-",,,. 18) + exp(-e,,,-rB)
ij

After the construction of the lattice described before the sites are filled with a number of particles

Nby randomly choosing their coordinate and by avoiding double occupancy. The number Nis set to 1,

20, 4A, 80 and 120 which corresponds to the concentration of 5x104, 0.01, 0.02, 0.04 and 0.06

particles per site. The jump which carries the particle out of site i represents the Poisson process with
decay time r;. The actual duration of the residence on the current site is given as -4 lnR. Here R is
random number in the interval [0,1]. h order to select the particle to jump we determine a list of
points (LSP) t/, tz.. tui here /; is that point wherl the jump of ith particle occurs, and i : 1,2, .. N. Let
t;,,*is moment that ith particle jumps at previous step. The point for its next jump is given as

t,:t,rr*-4lnR (6)

From the LSP we select the particleT that has minimum /y and then move it into neighboring site if
this site is empty. Otherwise it remains on the current site. The neighboring site is randomly chosen

based on the probability Pii+t, Pi;t and random number R. Once the event of jump of jthparticle is

happen, the time ti in the LSP is recalculated using equation (6) and such the diffusion process of
target particles is simulated. The total duration after n jumps of ith particle can be written as

t,,:it, (7)

In order to improve the statistic we perform 106 MC runs for each system with given temperature

Z" and number of particles N. For every run the number ofjumps per particle is set to about 200-250.

The mean square displacement <xn2> and diffusion time (lr) is obtained by averaging over 106 MC

runs. Because of that both site and transition disorders affect on the diffusion and may have very

different properties, so we consider two systems with different type of disorder, namely the system

that has a random distribution of transition energies and constant site energies (lattice A) and another

one with random site energies and constant transition energies (lattice B). The input data is set to e2:1,

a7:0 for lattice A and 62:0, €1:-l for the lattice B. This input data provides that both lattices have the

same barrier distribution. To account the influence of"banier correlation we also consider lattice of
type C that every site is assigned to two barriers of which the value is uniformly distributed in the

interval [0, 1], e.g. It has the same barrier distribution as the lattice A and B, but there is not barrier

correlations in the lattice C (randomly distributed barriers, see Fig.1).
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Fig. l. The variation of energy of particle in lattice A, B and C.

3. Results and discussion

Besides the diffusion constant D fwo other quantities used here are the correlation factor F and the

averaged time between two subsequent jumps of particle along diffusion path tiu,p. ln the case of
diffusion of single particle in ordered lattice, e.g. the site and transition energies are kept constant

(they are equal to e or E2), the correlation factor F is equal to 1 and the time tiump lpproaches to mean

resident time at a site. In each simulation run the tima t1,rp is determined as tiuro:1t"/n>. A typical

result for mean square displacement <x,2> is shown in Fig.2. Here a is the spacing between two

nearest neighboring sites; n is averaged number ofjumps per particle; T,:(e7e)p. For convenient of
discussion we employ the parameter /,'which is the diffusion time for ordered lattice. Hereafter, the

parameters employed with superscript * related to ordered lattice. The data points clearly fall on the

straight lines with slope determining the diffusion coefficient D and correlation factor F by following

formula
< xl >: Fna' < t >=2Dt,

Fig.3 represents the temperature dependence of correlation factor and averaged time between two

subsequent jumps. In the case of transition disorder (lattice A) lhe factor F monotony decreases with

temperature; meanwhile for the site disorder (lattice B) the factor F conversely is almost independent

r)'
bI)
L
c)

rrl

(8)

Distance
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on temperature. The existence of many particles reflected on the decrease of factor F due to that the

number of unsuccessful jumps (blocking effect) increases with number of particles. Regarding the

time tiu,p one can see its value for lattice B is rather bigger than one for lattice A. This effect is

essential at low temperature (see Fig.2). It is interesting to note that the time tiu,o obtained from
simulation is very close to qu,o deftned by simple formula (5).

+N=l;T,=2
+N_20;l=3
+N+o;l{
+N=80;l:5
---+-N:120;T<

+N:l;T,:2
+N=20;T,=3
+N+0;T,=4
+N=80T,=5
---|-N=120;T,=6

r.lt,
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Fig. 2. The mean square displacement for

Table l. The diffusion parameters of lattice A, B and C for energetic uniform distribution and at 793

tiu-r/tiu-nNumber of
particles

I
40
80
120

0.54
0.44
0.38
0.32

1.00
0.80
0.65
0.53

0.54
0.47
0.43
0.39

3.31
3.15
3.15
3.r5

6.26
6.03
6.02
6.01

4.50
4.26
4.25
4.25

0.17
0. 14

0.12
0. l0

0. l6
0. l3
0.1 I
0.09

0.12
0.1 I
0. l0
0.09

As mentioned above, the existence of many particles prevents random movement of particles and

gives rise to the decrease of correlation factor F and time ti,,p. The compensation between F and tiurp

leads to slight change in diffusion constant D. As shown in Fig.4, the ratio Dtz/Dt varies in the

interval of 0.54-0.61 depending on temperature. Here Dt, Dtzo correspond to diffi.rsion constant for the

case of N:l and N:120 respectively. It is noticeably that the diffusion constant D for both lattice A
and B are close to each other (see Fig.a). The lattice A differ from lattice B in that two nearest

neighboring sites in lattice A have the same barrier, meanwhile each site in lattice B attains two
identical barriers. It means that for both lattices there are some correlations between baniers in the

system. Lattice C has the same barrier distribution as lattice A and B, but no any correlation between

the barriers in it. The diffusion parameters of three lattices are listed in Table 1.
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Fig. 3. The temperature dependence of correlation factor F and time ti,,pl 1,2: Laltice B; 3,4: Lattice A; I ,3 for
the case N:l: 2.4 for case -1y':80.
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Fig.4 The dependence of diffusion coefficient D on number of particles ly' for system with energetic uniform
distribution; the filled and unfilled symbols represent the case of Lattice A and B, respectively.

We can see that the correlation factor and averaged time between two subsequent jumps varies
from one type lattice to another, but their diffusion constants are close to each other. Therefore, the
diffusion constant weakly depends on the correlation between the barriers in the system. The diffusion
constant D for the lattice B can be approximated by simple formula

D=D' 4 (9)
t juro

Where ry is coefficient in the interval of 0.54-0.61 which characterized the blocking effect.
Because of the diffusion constants of three types lattices have a closed value; hence the formula (9)
can be applied to estimate quantity D of lattice A as well as lattice C.
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Fig. 5. The Arrhenius plot for diffrrsion on the lattice A'

Fig.5 shows the Anhenius plot for the case of transition disorder. The data points fail well on the

straight lines and clearly indicates the absence of the compensation effect between site and transition

disorders reported in ref.[21]. The reason may be related to three-dimensional lattice used in ref.[21].

Whereby, non-Arrhenius behavior observed for diffusion in some amorphous alloys may be caused by

the change in disordered media with temperatuSe, but not due to blocking effect or energetic disorder.

This was mentioned in the ref. 122] asthe change in short-range order with increasing temperature' '
From the Fig.4 the diffusion constant can be derived by

D = D'o e*p(-n' B) aexp(-c(e, - sr) P) (10)

Here the term dexp(-c(e2-e)p) concern the contribution of energetic disorder. The parameter d is

listed in Table 2 and the variation of parameter c as function of tr/ is shown in Fig.6, where the

concentration of low level e1 is equal to 0.2 for two-level distribution. As shown from Table 2,

parameter d may be less or bigger than 1.0 depending on the concentration of particle. It means that

the energetic disorder gives rise to increases the pre-exponential factor at the low concentration and to

decreases it in high concentration regime. The parameter c in another way varies with the number of
particle N. It is monotony decreased as the number of particle enhances due to that all highest barriers

are blocked by some particles and other ones have to move along the path with less high barriers.

Therefore, the increase of activation energy reported in ref.[3] obviously relates to the change in the

disordered media (density, local microstructure, coordination number..), but not due to blocking effect.

Table 2. The parameter d for transition disorder lattice

N:I N=20 N:40 N:80 N:120

Uniform distribution

Two-level di stribution, a=0.2
r.52

1.27

t.3l
1.08

t.t7
0.97

0.94

0.78

0.77

0.64
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Fig. 6. The dependence offactor c on number ofparticles 1{.
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Fig. 7. The dependence of diffusion coefficient D on number of particles N for system of two-level distribution.

Fig.7 shows the variation of diffusion coefficient in the case of two-level dishibution as a function
of number of particles. Here cr is the concentration of low level energy. At high temperature regime
the diffusion constant monotony decreases with number of particles, but at low temperature regime
there is an insignificant maximum near N:20.It can be interpreted by that the blocking effect leads to
two opposite factor. First one decreases the time tiu,p, e.E. to increases the diffusion coefficient.
Second factor decreases correlation factor F which decreases diffusivity. Therefore, due to the action
of these factors, at low temperature and in the low concentration regime we obserV€ an insignificant
maximum. The relative independence of diffusion constant on the concentration is caused by
compensation of two factors just mentioned. As such, the experimental data reported in [1, 3, 23lmay
be interpreted as result ofblocking effect.
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4. Conclusions

MC simulation shows that the site and transition disorder lattices affain a quite different value of
the correlation factor F and the averaged time between two subsequent jumps \u p. In the case of
transition disorder the correlation factor F is monotony decreased with temperature. Meanwhile, in

converse the factor F is independent of temperature for lattice with site disorder. Regarding the

diffusion time tiu.p its value of site disorder lattice is significantly larger than one of transition type.

However, the diffusion constant of both type lattices is very close to each other upon identical

tempbrature and energetic distribution form. Closed value of diffusion constant is obtained for the

lattice with random distributed barriers. This evidences the weak influence of barrier correlation on the

diffusion constant. For one-dimensional lattice the diffusion constant can be satisfactory approximated

by simple formula derived from site disorder lattice. In the wide temperature range we observe the

Arrhenius behavior of diffusion on all considered lattices. The contribution of energetic disorder to

pre-exponential factor Da is varied by factor dlarger or less than 1.0 depending on the concentration of
diffusing particles. The blocking effect caused by unsuccessful jumps of diffusing particles decreases

the activation energy and correlation faitor F. These two opposite factors lead to appearance of an

insignificant maximum in the dependence of diffusion constant on the concentration.
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