
VNU Jounal of science, Mathermatics - Physics 27 (2011) 181-188

 181

An Efficient Music Identification System Based on

PostgreSQL User-Defined Functions

Pham Cam Ngoc*, Nguyen Hai Chau

Faculty of Information Technology, VNU University of Engineering and Technology,

144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 28 September 2011, received in revised from 31 October 2011

Abstract. In this paper, we present a novel approach for music identification task aimed at proving

the ability to identify a song by recorded song snippets. By combining Y. Ke’s feature extracting

method [1, 2] with PostgreSQL user-defined functions [3, 4, 5]], our system proves as an effective

search strategy for the field. We construct training data sets in a noisy environment and compare

the search speed and the search accuracy of the system with Y. Ke’s system. Experiment results

show that our system is more powerful with the accurate retrieval ability of 98% on a database of

600 songs and the search speed is 3.6 times faster than Y. Ke’s system.

Keywords: Audio snippet, music identification, user-defined functions.

1. Introduction
∗∗∗∗

The goal of music identification is to match short recorded audio snippets to an appropriate song

[6, 7, 8, 9]. Because of the distortions of the snippets caused by low quality recording devices or

natural ambient noises, simple matching is insufficient for this task.

Recently, numerous approaches, which utilize efficient audio feature calculating mechanisms,

have been proposed to deal with this task. Haitsma and Kalker [10, 11] propose the technique based on

overlay windows of audio signal to preserve the best energy properties called sub-fingerprints. Y. Ke

et al [1, 2] present a method of combining machine learning technique in selecting features, which is

also called rectangular features [12], to enhance their persistence. Baluja and Covell [13, 14, 15]

improve the technique by using data stream processing method instead of machine learning method to

allow querying in large databases. In this paper, we use the approach based on machine learning of Y.

Ke when extracting time-frequency features of audio snippets to build our music identification system.

Furthermore, we execute a preprocess on recorded audio snippets by increasing these signal amplitude

and construct two new data training sets aimed at better search results. Based on PostgreSQL, we

construct a song/fingerprint data base enabling effective index and user-defined functions, both of

which help increasing average search speed of the system.

∗

 Corresponding author. Email: phamcamngoc@gmail.com

P.C. Ngoc, N.H. Chau / VNU Jounal of Science, Mathermatics - Physics 27 (2011) 181-188

182

2. The music identification system based on postgresql user-defined functions

2.1 The structure of the system

In Y. Ke’s research, the music identification system in Fig. 1 consists of two parts: the client and

the server. The client’s tasks are to receive audio signals, record these signals, perform useful

calculation to extract audio features (energy features that are selected by machine learning technique)

and then send those features to the server. The server will search in meta-data/features database an

appropriate song that best matchs with those features and after that return the result for the client.

Figure 1. The structure of Y. Ke’s system.

Our system (Fig. 2) is constructed similarly to Yan Ke’s system; however, there are two essentially

points distinguishing our system from his. Firstly, after being sent to the client, audio signals are

preprocessed by increasing the amplitude signals, and then client will calculate audio features of those.

Secondly, when receiving these audio features, the server would utilize user-defined functions and a

newly built training data set to find out the appropriate song that matches with these features in a large

database created in PostgreSQL.

Figure 2. The structure of our system.

P.C. Ngoc, N.H. Chau / VNU Jounal of Science, Mathermatics - Physics 27 (2011) 181-188 183

2.2 Constructing test data set and training data set

When carrying out building these data sets, we use Unix/Linux OS environment to compile and

run applications. We have useful functions, which help automatically play song, record the songs and

after that split the songs into song snippets with the length of 30 seconds. Those functions are created

using open source libraries such as fftw3 [16], ffmpeg [17] and mpg123 [18]. Throughout the process,

we attempt to create noises to diminish the quality of recorded songs in order to increase the difficulty

of test data set and the effectiveness of the training data set. The noises include natural noises, for

example the sound of electronic fan, the sound of TV, the sound of engine of cars or motorbikes. In

order to recognize precisely the recorded song snippets in the noisy environment, we propose two

solutions. Firstly, the recorded song snippets will be increased amplitude by increasing volume and

thus we can reduce effects of noises. Indeed, recorded song snippets due to particular reasons will be

distorted, which result in differences between features of recorded song snippets and those of

corrensponding original song snippets. When incresing volume of recorded song snippets, we also

restore the signal spectrum of recorded song snippets and thus, effects caused by noises, quality of

recorders and others will be reduced. Secondly, in the research of Y. Ke [1, 2], the training data set is

built relatively simple when it only contains some pairs of recorded and corresponding original audio

snippets. Therefore, when constructing training data sets, we attempt to select an appropriate number

of song snippets from various genres and use the above functions to build training data sets. Thanks to

a considerable number of songs and varied genres of songs used for training, we can create sufficient

and good training data sets that bring us better identification results. The training data sets in our

system are built based on EM algorithm like in [1, 2]. For instance, each original song and

corresponding recorded song are split exactly into 30 seconds intervals (audio snippets) and then

aligned together to estimate 66 Bernoulli parameters [1, 2], which are used by the system to compute

the likelihood between a query song snippet and original song snippets in the data base. We note that

the large number of songs used to train will help estimate those parameters more precisely, but not

reduce the search speed of the system because the estimating parameters and searching of the system

are two independent works.

In our experimental setup, the test data sets are created by selecting randomly a specific number of

30 seconds recorded song snippets, which have been recorded and split, according to different music

genres.

2.3 Designing meta-data/feature database in PostgreSQL user-defined functions

The task of searching in a meta-data/feature is not simple. Assuming that we have a medium

database with 10.000 songs and the average lengths of songs is 5 minutes; we will have approximately

250 million features, which is a very waste of time even with the best search algorithms. In the

research of Haitsma [10, 11], the fingerprint database is organized as a lookup table-LUT with all

possible 32 bit sub-fingerprints as an entry. Each entry will point to a list of positions of sub-

fingerprint, which have the same value with the entry. When receiving a fingerprint block, the system

will use the lookup table to search in the fingerprint database songs, which contain at least one sub-

P.C. Ngoc, N.H. Chau / VNU Jounal of Science, Mathermatics - Physics 27 (2011) 181-188

184

fingerprint that also belong to the fingerprint block and then compare the similarity between the

candidate songs with the fingerprint block by calculating the Hamming distances between these. In

practice system, because of the limited ability of the memory, a lookup table including 232 entries is

impractical and thus, a hash table is used instead of a lookup table.

In our system, we organize the database as follows. The database consists of two relations: the

song relation contains attributes: song identification, song name, song directory, features (is an array

of 32 bit integer numbers), the length of the array and the key relation contains attributes: feature

identification, song identification that the feature belong to, the position of the feature in the respective

song and the value of the feature (a 32 bit integer number). After designing the database, we construct

functions to allow automatically receiving a list of songs, calculate audio features and insert the

features into the database. In order to receive high search speed we utilize index technique of

PostgreSQL in feature field of the key relation, which proves to be very effective in practice.

PostgreSQL supports the following index methods: B-tree, hash, GiST and GIN and users can also

define their own index methods. In our system, because the feature field is a 32 bit integer number, we

use the B-tree index method in the field. When the query features are sent to the server, the server first

will search in the database songs that their features contain at least one feature which also belong to

the query features. The work is performed by comparing 32 bit integer numbers of the query features

to 32 bit integer numbers in the database and therefore, the B-tree index method is the best choice in

the situation.

Figure 3. The fingerprint database is organized as a lookup table [6].

P.C. Ngoc, N.H. Chau / VNU Jounal of Science, Mathermatics - Physics 27 (2011) 181-188 185

Based on user-defined function that PostgreSQL provides, we construct two functions that meet

the requirements of search speed.

The Find_near_neighbour function will receive a query as a set of features, the function will look

through these features, searches in database, and then returns songs called candidate songs that contain

one of these features. The function also tells the system exactly what the position of those features in

the candidate songs are.

The Compute_simalarity function uses the RANSAC algorithm [12] to calculate the similarity

between the query audio features and each of candidate songs. The function will return the song that is

most likely to be the original song of the query audio features.

Thanks to the index method, these functions can be performed effectively in a large database.

3. Accuracy and cumputation

We do experimental work with three training data sets: Y. Ke’s training data set called YK and

two training data sets that we created called HL1 and HL2 on two test data sets T1 and T2. For

instance, T1 contains approximately 600 song snippet recorded by low quality recording devices and

in a natural noise environment while T2 contains all song snippets in T1 after increasing amplitude.

When testing with T1, we recognized that the true positive rate (the number of positive results in

comparison with the number of recorded song snippets used to experiment) gained by YK, T1 and T2

are 86.7%, 89.5% and 90% respectively. Now, the accuracy is much better with preprocessed data set

T2, as the results gained are 94.3%, 98% and 98%, respectively. Therefore, both HL1 and HL2 bring

us better experimental result than YK when being tested with T1 and T2. There are two reasons for

our better accuracy. First, in our system, we have a preprocessing step by increasing amplitude of

recorded song snippets before sending to the server to compute features and recognize the original

song of these snippets. Therefore, computed features are more reliable than those which are not

preprocessed. Second, our training data set is built in real environment with natural noises and each

song snippet pairs in training data set are aligned exactly using shell functions. This will result in a

better training data set compared to Y. Ke’s training data set and thus bring us better precision.

Moreover, we compare the performance of Y. Ke’s system and our system. We create a test data

set containing 100 recorded song snippets with the length of 30 seconds and then use these as queries

in order to measure query timing of our system and Y. Ke’s system. On average, our system query

timing is 2.38 seconds, which is 3.6 times faster than Y. Ke’s system.

P.C. Ngoc, N.H. Chau / VNU Jounal of Science, Mathermatics - Physics 27 (2011) 181-188

186

Figure 4. The identification accuracy gained by YK, HL1and HL2.

Figure 5. Comparing the search speed of two systems.

P.C. Ngoc, N.H. Chau / VNU Jounal of Science, Mathermatics - Physics 27 (2011) 181-188 187

4. Conclusions

This paper has presented that user-defined functions supported by PostgreSQL can be applied to

construct an efficient music identification system. Our research contributions can be listed as follows.

First, we describe how to build a good training data set to enhance query results of the system. Second,

we propose the way to design and organize a meta-data/fingerprint database beside an indexing

method. Third, we suggest using user-defined functions of PostgreSQL to erect an impact strategy.

Finally, we demonstrate by experiment results that our system is more effective than Y. Ke’s system in

terms of the accuracy of search result and the search speed.

In the near future, we would continue to improve our system by constructing a larger song data

base which combines better indexing scheme. We also examine other feature extracting algorithms to

increase the distinguishing feature of each sub-fingerprint. Experiment results have motivated our

belief that PostgreSQL is a good way enabling us to build a music identification application that can

be effectively applied in practice.

Acknowledgments. The work is supported by the research projects No. QC.08.01 and QG.09.27

granted by Vietnam National University, Hanoi.

References

[1] Y. Ke, D. Hoiem, R. Sukthankar, Computer Vision for Music Identification, Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

[2] Y.Ke et al., Computer vision for music identification: server code,

<http://www.cs.cmu.edu/~yke/musicretrieval/musicretr-1.0.tar.gz, 2005>.

[3] Nei Matthew and Richard Stones, Beginning Databases with PostgreSQL: From Novice to Professional, Second

Edition, 2005.

[4] Korry Douglas, Susan Douglas, The comprehensive guide to building, programming, and administering

PostgreSQL databases, Second Edition, 2005.

[5] http://www.postgresql.org/docs/8.0/static

[6] http://www.shazam.com

[7] http://www.relatable.com

[8] http://www.musipedia.org

[9] http://www.napster.com

[10] J. Haitsma, T. Kalker, A Highly Robust Audio Fingerprinting System, Proceedings of the International

Conference for Music Information Retrieval, 2002.

[11] J. Haitsma, T. Kalker, J. Oostveen, Robust Audio Hashing for Content Identification, Content Based

Multimedia Indexing 2001, Brescia, Italy, 2001.

[12] M. Fischler and R. Bolles. Random sample consensus: a paradigm for model fitting with applications to image

analysis and automated cartography In Communications of the ACM, 24(6), 1981.

[13] S. Baluja, M. Covell, Content fingerprinting using wavelets, Proceedings of the 3rd European Conference on

Visual Media Production (CVMP), 2006.

P.C. Ngoc, N.H. Chau / VNU Jounal of Science, Mathermatics - Physics 27 (2011) 181-188

188

[14] S. Baluja and M. Covell, Audio Fingerprinting: Combining Computer Vision & Data Stream Processing,

Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2007.

[15] M. Covell, S. Baluja, Known-Audio Detection Using Waveprint: Spectrogram Fingerprinting By Wavelet

Hashing, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2007.

[16] http://www.fftw.org

[17] http://www.ffmpeg.org

[18] http://www.mpg123.de

