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Abstract: This paper presents an analytical approach to investigate effects of elastic foundation 

and the Poisson’s ratio ( )v v z=  on the nonlinear buckling behavior of imperfect FGM plates, 

subjected to mechanical loads. Material properties are assumed to be temperature independent, and 

graded in the thickness direction according to a power law distribution in terms of volume 

fractions of constituents. Equilibrium and compatibility equations are derived by using classical 

plate theory taking into account geometrical nonlinearity, initial geometrical imperfection and 

elastic foundation with Pasternak model. Galerkin method is used to determine explicit 

expressions of buckling loads and postbuckling paths. Analysis is carried out to assess the effects 

of material, geometrical, elastic foundation parameters on the stability of FGM plates. 

Keywords: Buckling and postbuckling, Functionally graded material, Plate, Elastic foundations,  

Poisson’s ratio ( )v v z= . 

1. Introduction
∗∗∗∗ 

Due to high performance is heat resistance capacity and excellent characteristics in comparison 

with conventional composites, Functionally Graded Materials (FGMs) which are microscopically 

composites and composed from mixture of metal and ceramic constituents have attracted considerable 

attention recent years. By continuously and gradually varying the volume fraction of constituent 

materials through a specific direction, FGMs are capable of withstanding ultrahigh temperature 

environments and extremely large thermal gradients. Therefore, these novel materials are chosen to 

use in structure components of aircraft, aerospace vehicles, nuclear plants as well as various 

temperature shielding structures widely used in industries. Buckling and postbuckling behaviors of 

FGM structures under different types of loading are important for practical applications and have 

received considerable interest. Eslami and his co-workers used analytical approach, classical and 

higher order plate theories in conjunction with adjacent equilibrium criterion to investigate the 
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buckling of FGM plates with and without imperfection under mechanical and thermal loads [3,8,9]. 

According to this direction, Lanhe [10] also employed first order shear deformation theory to obtain 

closed-form relations of critical buckling temperatures for simply supported FGM plates. Zhao et al. 

[14] analyzed the mechanical and thermal buckling of FGM plates using element-free Ritz method. 

Liew et al. [15,16] used the higher order shear deformation theory in conjunction with differential 

quadrature method to investigate the postbuckling of pure and hybrid FGM plates with and without 

imperfection on the point of view that buckling only occurs for fully clamped FGM plates. The 

postbuckling behavior of pure and hybrid FGM plates under the combination of various loads were 

also treated by Shen [17,18] using two-step perturbation technique taking temperature dependence of 

material properties into consideration. Recently, Lee et al. [19] made of use element-free Ritz method 

to analyze the postbuckling of FGM plates subjected to compressive and thermal loads. 

The components of structures widely used in aircraft, reusable space transportation vehicles and 

civil engineering are usually supported by an elastic foundation. Therefore, it is necessary to account 

for effects of elastic foundation for a better understanding of the postbuckling behavior of plates and 

shells. Librescu and Lin have extended previous works [20] to consider the postbuckling behavior of 

flat and curved laminated composite panels resting on Winkler elastic foundations [20]. In spite of 

practical importance and increasing use of FGM structures, investigation on FGM plates and shells 

supported by elastic media are limited in number. The bending behavior of FGM plates resting on 

Pasternak type foundation has been studied by Huang et al. [21] using state space method, Zenkour 

[22] using analytical method and by Shen and Wang [23] making use of asymptotic perturbation 

technique. To the best of authors’ knowledge, there is no analytical studies have been reported in the 

literature on the postbuckling of thick FGM plates resting on elastic foundations. In [11], the authors 

Dao Van Dung and Nguyen Thi Nga have studied the stability of the composite FGM plate when 

( )v v z=  and ( )E E z= (without elastic foundation). In [12], the author Do Nam has studied the 

stability of the FGM plate on the elastic foundation with classical plate theory, in [6] the authors 

Nguyen Dinh Duc and Hoang Van Tung have studied postbuckling of the high order shear deformable 

FGM plates on elastic foundation, but these studies assume ( )E E z=  and onsv c t= . 

The aim of the paper proposed is of studying the nonlinear stability of FGM plate on the elastic 

foundation under the effect of the load in the case both elastic modules are variable ( )v v z=  and 

( )E E z= , the study of the effect of the initial imperfect shape, proportion metal-ceramic, and the 

elastic foundation parameters and the geometric parameters on the nonlinear stability of the FGM plate 

2. FGM plates on elastic foundations 

Consider a rectangular functionally graded  plate of length a , width b and thickness h . An 

orthogonal coordinate system Oxyz is choose so that the plane coincides Oxy  with the middle surface of 

the plate and the axis Oz  is in the thickness direction ( / 2 / 2)h z h− ≤ ≤ as shown in Fig. 1. 
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              Fig.1.Geometry and coordinatr system of an FGM plate on elastic foundation 

The volume fractions of constituents are assumed to vary through the thickness according to the 

following power law distribution 

                           
2

( ) , ( ) 1 ( )
2

N

m c m

z h
V z V z V z

h

+ 
= = − 
 

    (1) 

where N  is volume fraction index (0 N≤ < ∞ ). Effective properties Pr
eff

 of  FGM panel are 

determined by linear rule of mixture as  

                           Pr ( ) Pr ( ) Pr ( )
eff m m c c

z V z V z= +   (2) 

where Pr  denotes a temperature independent material property, and subscripts m  and c  stand for the 

metal and ceramic constituents, respectively. 

Specific expressions of modulus of elasticity E , Poisson ratio ν  the coefficient of thermal 

expansion α  are obtained by substituting Eq. (1) into Eq. (2) as [11] 

        

2
( ) ( )

2

N

N

m c m m cm

z h
E E z E E E E E r

h

+ 
= = + − = + 

      (3) 

       

1

1
2

( ) ( )
2

N

N

m c m m cm

z h
z r

h
ν ν ν ν ν ν ν

+ 
= = + − = + 

   

        
 
Where 

        
1

2
; ; ; 0; 0

2
cm c m cm c m

z h
E E E r N N

h
ν ν ν

+
= − = = − ≥ ≥

           (4)                  

It is evident from Eqs. (3), (4) that the upper surface of the plate ( / 2z h= − ) is ceramic-rich, 

while the lower surface ( / 2z h= ) is metal-rich, and the percentage of ceramic constituent in the 

panel is enhanced when N  increases. 

The plate – foundation interaction is represented by Pasternak model as [7] 

        
2

1 2e
q k w k w= − ∇   (5) 
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where 
2 2 2 2 2/ /x y∇ = ∂ ∂ + ∂ ∂ , w  is the deflection of the plate, 

1
k  is Winkler foundation modulus 

and 
2

k  is the shear layer foundation stiffness of Pasternak model. 

2.1. Theoretical  formulation 

For imperfect plates, the strain components on the reference surface with the geometrical 

nonlinearity in von Karman sense, are [1] 

( )

( )

2 *

0 , , , ,

2
*

0 , , , ,

* *

0 , , , , , , , ,

w / 2 w w ;

w / 2 w w ;

w w w w w w

x x x x x

y y y y y

xy y x x y y x x y

u

v

u v

ε

ε

γ

= + +

= + +

= + + + +

                          (6) 

Where ( , ), ( , )u u x y v v x y= =  and ( , )w w x y= are displacements along ,x y  and z  

respectively; 
* *( , )w w x y=  denotes an initial imperfections of plate. The quantity 

*w  is assumed 

small. 

The strains across the plate thickness at a distance z  from the mid-plane are [1] 

0 0 0

, , ,

; ; 2

w , w , w

x x x y y y xy xy xy

x xx y yy xy xy

zk zk zk

k k k

ε ε ε ε γ γ= + = + = +

= − = − = −
                         (7) 

Hooke law for an FGM plate is defined as 

2
( , ) ( , ) ( , ) (1 ) (1,1)

1

2(1 )

x y x y y x

xy xy

E
v v T

v

E

v

σ σ ε ε ε ε α

σ γ

 = + − + ∆ −

=
+

                (8) 

where we assume that the plate is subjected to a uniform temperature rise i.e. T∆  is a constant. So, 

the force and moment resultants are expressed a 

( )

( )

/2

, ,

/2

/2

/2

( , , ) , ,

( , , ) , ,

h

x y xy x y xy

h

h

x y xy x y xy

h

N N N dz

M M M zdz

σ σ σ

σ σ σ

−

−

=

=

∫

∫

                           (9) 

Substituting relations (3), (6) ÷ (8) into (9), after series of calculations, we have

 
( ) ( ) ( )

( ) ( )

10 20 0 20 10 0 11 21 21 11 1

30 0 31

11 21 0 21 11 0 12 22 22 12 2

31 0 32

, , ( , ) ( , ) ( , ) 1,1

2

, ( , ) ( , ) ( , ) ( , ) 1,1

2

x y x y x y

xy xy xy

x y x y x y

xy xy xy

N N J J J J J J k J J k T

N J J k

M M J J J J J J k J J k T

M J J k

ε ε φ

γ

ε ε φ

γ

= + + + + ∆

= +

= + + + + ∆

= +

                 (10)            
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ij 1 2( 1, 2,3; 0,1, 2), ,J i j φ φ= =  

defined as follows
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−

−

−

−

−

=
−

=
−

= = −
+

= −
−

= −
−

∫

∫

∫

∫

∫

                           (11) 

The equilibrium equations of a imperfect plate on elastic foundations are in the form [2÷4]: 

, ,

, ,

*

, , , , ,

* * 2

, , , , 1 2

0

0

2 ( )

2 ( ) ( ) w+ w 0

x x xy y

xy x y y

x xx xy xy y yy x xx xx

xy xy xy y yy yy

N N

N N

M M M N w w

N w w N w w k k

+ =

+ =

+ + + +

+ + + + − ∇ =     (12)      

    

We introduce Airy’s stress function ( , )f f x y=  so that 

, , ,; ;x yy y xx xy xyN f N f N f= = = −
           (13)                                                          

It is easy to see that the first two equations in (12) are automatically satisfied.

 

Substituting relations (13) in Eqs. (10), we obtain 

0 1 10 , 20 , 2 , 3 , 4 1

0 1 10 , 20 , 2 , 3 , 4 1

0 31 , , 30

( w w )

( w w )

(2 w ) /

x yy xx xx yy

y xx yy yy xx

xy xy xy

I J f J f I I I T

I J f J f I I I T

J f J

ε φ

ε φ

γ

= − + + − ∆

= − + + − ∆

= −
                      (13)                     

where 

2 2

1 10 20 2 10 11 20 21

3 10 21 20 11 4 10 20

1/ ( ),

,

I J J I J J J J

I J J J J I J J

= − = −

= − = −
                                          (15) 

Substituting once again the expressions of Eq. (14) into the relations of internal moments ijM in 

(10) we obtain 

1 , 11 20 21 10 1 , 11 10 21 20 1 , 11 2 21 3 1 , 11 3 21 2 12 , 22( ) ( ) w ( ) w ( ) w w
x xx yy xx yy xx yy

M I f J J J J I f J J J J I J I J I I J I J I J J= − + + − + + + + − −
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1 , 21 20 11 10 1 , 21 10 11 20 1 , 21 2 11 3 1 , 21 3 11 2 22 , 12( ) ( ) w ( ) w ( ) w w
y xx yy xx yy xx yy

M I f J J J J I f J J J J I J I J I I J I J I J J= − + + − + + + + − −
 

( )31
31 , , 32 ,

30

2 w 2 wxy xy xy xy

J
M J f J

J
= − −

                         (16) 

The substituting (16) into the third equation of  (12) we have 

  
4 4 * * * 2

1 2 , , , , , , , , , 1 2w (w w ) 2 (w w ) (w w ) w+ w 0yy xx xx xy xy xy xx yy yyA f A f f f k k∇ + ∇ + + − + + + − ∇ =
(17) 

where 

   

4 4 4
4

4 2 2 4
2

x x y y

∂ ∂ ∂
∇ = + +

∂ ∂ ∂  

   

1 1 3 2 1 11 2 21 3 12; ( )A I I A I J I J I J= = + −

 The equation (17) includes two unknowns functions w  and f  , so it is necessary to find a second 

equation relating to these two unknowns functions by using the compatible equation: 

2

0 , 0 , 0 , , , ,(w ) w wx yy y xx xy xy xy xx yyε ε γ+ − = −
                            (18) 

The substituting  the above expressions of ijε
 
in (14) into Eqs. (18), we obtain 

( )
2

4 4 * * *

3 4 , , , , , , , ,w w w w 2 w w w w w 0xy xx yy xy xy xx yy yy xxf A A w ∇ + ∇ − − + − − =                 (19) 

in wich 

3
3 4

10 1 10

1
;

I
A A

J I J
= =

 The couple of Eqs. (17) and (19) are the governing equations used to investigate the nonlinear 

stability of imperfect FGM plates with the Poisson’s Ratio ( )zν ν=  resting on elastic foundation. 

In the case  
*

w 0= , from (17) and (19) we obtain the basic stability equations for perfect FGM 

plates. 

2.2. Boundary conditions and the solution of the problem 

Suppose that three cases boundary conditions for a rectangular plate will be  considered follow as 

[5, 6]:  

Case 1. The edges of plate are simply supported and freely movable (FM). The associated 

boundary conditions are: 

      0x 0, ; w 0;x xy x xx a M N N N= = = = = =
                 (20) 

      y 0, y b= = ; 0w 0;y xy y yM N N N= = = =
  

Case 2. The edges of plate are simply supported and immovable (IM). The associated boundary 

conditions are: 
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0x 0, ; w 0;x x xx a M u N N= = = = = =

                    (21)
 

      0y 0, ; w 0;y y yy b M v N N= = = = = =
 

Case 3. The edges of plate are simply supported. Uniaxial edge loads are applied in the direction of 

the x  -coordinate. The edges 0x = , x a=  are considered freely movable, the remaining two edges 

being unloaded and immovable. The boundary conditions, for this case, are  

     0x 0, ; w 0;x xy x xx a M N N N= = = = = =
                       (22) 

     0y 0, ; w 0;y y yy b M v N N= = = = = =
 

where u, v
 
are the displacement components x, y

 
directions, respectively, , ,xy x yN M M

 
are force 

and moment resultants. Moreover, x0 y0N  , N  are prebuckling force resultants in the direction x  and 

y  respectively, for Case 1 and the first of Case 3 or are fictitious compressive edge loads at  

immovable edges (Case 2 and the second of Case 3). 

Approximate solutions of basic equations (17) and (19) are assumed as [5, 6]: 

    

*

1 2 3

2 2

4 0 0

w W sin sin

w sin sin

os2 os2 sin sin

1 1
os2 cos 2

2 2

m n

m n

m n m n

m n x y

x y

h x y

f C c x C c y C x y

C c x y N y N x

λ δ

µ λ δ

λ δ λ δ

λ δ

=

=

= + + +

+ +

            (23) 

which fulfill exactly the out-of-plane boundary conditions and satisfy in-plane boundary conditions in 

an average sense. Moreover, / ; / ; , 1, 2,...m nm a n b m nλ π δ π= = =
 
W is amplitude of deflection and 

µ
 
is imperfection parameter (0 1)µ≤ ≤ . 

By substituting expression (23) into Eq. (19), we obtain  

    

2

4
1 2

2

4
2 2

3 3

4

W (W 2 )

32

W (W 2 )

32

W

0

n

m

m

n

A h
C

A h
C

C A

C

δ µ

λ

λ µ

δ

+
=

+
=

= −

=
                                          (24)     

Introducing Eqs. (24) and (23) into the left side of Eq. (17) and the applying Galerkin method we 

obtain equation for determining buckling loads and postbuckling curves of rectangular FGM plates 

subjected to mechanical, thermal and combined loads. 
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( )( )
2

2 2 2 2

2 1 3 1 2

2 2 3
0 0

2 2 4 4

1 4 4

2

( ) W

32
( )(W ) W(W )

3

( )16
W(W 2 ) W(W )(W 2 ) 0

3 8

m n m n

m n
x m y n

m n m n

A A A k k

A
N N h h

ab

A A A
h h h

mn

λ δ λ δ

λ δ
λ δ µ µ

λ δ λ δ
µ µ µ

π

 − + − − + −
  

+ + − +

+
− + − + + =

         (25) 

where ,m n  are odd numbers. This equation will be used to analyze the buckling and postbuckling 

behaviors of thick FGM plates under mechanical, thermal and thermomechanical loads on elastic 

foundation. 

3. Nonlinear stability analysis FGM plate on elastic foundation 

3.1. Mechanical stability analysis 

Consider a rectangular imperfect FGM plate being simply supported at its edges and freely 

movable (Case. 1) and subjected to the in-plane compressive only loads 
x

P  uniformly distributed 

along the edges 0,x a= . In this case, the prebuckling force resultants are given [7] 

         0 0, 0
x x y

N P h N= − =          (26)         

Substituting this expression (26) into Eq. (25)  we receive : 

2 2 2 2 2 2 2 2 2

1 2 3 1 4

2 2 2 2 2 2 2 2 2 2

2 4 4 4

4

2 2 2

( ) ( ) W W(W 2 )W 32 16

3 3W (W )

( )W(W 2 )1

8

a a a
x

a h h h h h

a

a h

D B m n K DB K D m B n A n A A n
P

B B m B m B m B m B m

A m B n

B B m

π µ

π µ µ

π µ

 + + +
= + + + + 

+ + 

+ +
+

  (27)                                                                           

where :  

31 2 4
1 3 2 4 2 1 32 3

4 2

1 2
1 23

; ; ; ; ; ;

; ; ; / ; /

h

a

AA A A b
A A A A B D A A A

h h h h h

k a k aD
D K K W W h B b a

h D D

= = = = = = − +

= = = = =

           (28)

 for perfect FGM plate we have  

0µ =  

 

  

2 2 2 2 2 2 2 2 2

1 2 3 1 4

2 2 2 2 2 2 2 2 2 2

22 4 4 4

4

2 2 2

( ) ( ) W W32 16

3 3

( )W1

8

a a a
x

a h h h h h

a

a h

D B m n K DB K D m B n A n A A n
P

B B m B m B m B m B m

A m B n

B B m

π

π

π

 + +
= + + + + 
 

+
+

         (29) 
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If onsv c t=  we  have 1 0A = , 3 0A =  

2 2 2 2 2 ' 2 ' 2 2 2 2 4 4 4

1 1 1 2 1 4

2 2 2 2 2 2 2 2 2 2 2

( ) ( ) ( )W(W 2 )W 1

8W

a a a a
x

a h h h a h

D B m n K D B K D m B n A m B n
P

B B m B m B m B B m

π π µ

π µ

 + + + +
= + + + 

+ 

       (30) 

If  ; 0constν µ= = , for perfect FGM plate we receive :

 

22 2 2 2 2 ' 2 ' 2 2 2 2 4 4 4

1 1 1 2 1 4

2 2 2 2 2 2 2 2 2 2 2

( ) ( ) ( )W1

8

a a a a
x

a h h h a h

D B m n K D B K D m B n A m B n
P

B B m B m B m B B m

π π

π

 + + +
= + + + 
 

       (31) 

Where 

1
1 2 1 3

;
D

D A D
h

= − =  ,

4 2
' '1 2

1 2

1 1

;
k a k a

K K
D D

= =            (32) 

Looking at the expression (27) and (29 ÷ 31) we see the beneficial effects of elastic foundation to 

rainbow load capacity and after rainbow. 

From the equation (29) we can see that for the perfect plate ( 0µ = ) the function (W)
x

P  will 

reach a minimum at W 0=  and (0)
x

P is the lowest point of the deflection-load graph. 

3.2. Numerical results and discussions  

 The purpose of this section is to explore the dependence of the critical force on the 

coefficients 1K , 2K  of the elastic foundation in some cases when the plate is perfect and imperfect. 

 To illustrate the present approach for buckling and postbuckling analysis of thick FGM plates 

resting on elastic foundations, consider a square ceramic–metal plate consisting of aluminum and 

alumina with the following properties [3,8,9,10] 

70 ; 0.3177

380 ; 0.24

m m

c c

E GPa v

E GPa v

= =

= =
 

In figures, W/h denotes the dimension-less maximum deflection and the FGM plate foundation 

interaction is ignored, unless otherwise stated. 
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         Fig.2. The influence of imperfections on the stability of FGM plates  under compression 

 

                   Fig.3. The effects of the area ratio coefficient N  on the stability of FGM  plates under compression           
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       Fig.3 shows the variation of postbuckling for FGM plates with the ratio / 40b h =  under 

compression on one side with three different values of the ratio of the area (0,1, 2)N = . As we can 

see, the curves after rainbow becomes lower representing less carrying capacity load of the plate when 

the area ratio coefficient N  decreases. This is true because of the elastic modulus of ceramic E is 

much larger than the metal’s when area ratio percentage of ceramic components in the plate decreases 

when N  increases. 

 

                               Fig.4. Effect of Poisson’s ratio on posbuckling of FGM plates 

 

Fig.5. The effects of the linear Winkler foundation model to the postbuckling of FGM plates under axial 

compression load. 
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Figure 5 shows the effects of the linear Winker foundation model to the postbuckling of FGM 

plates under axial compression load when 2 0K =  and the value 1K  changes.  

                   

Fig.6. The effects of Pasternak foundation model to the postbuckling of FGM plates under axial compression 

load. 

 

                     Fig.7. The effects of elastic foundations on postbuckling for FGM plates 
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         Fig.8. The effects of Winkler’s elastic foundations on postbuckling for FGM plates     

               

                  

        Fig.9. The effect of the ratio /b h  on the stability of FGM plates under compression. 
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                      Fig.10. The effects of the ratio /a b  to the stability of FGM plates 

4. Concluding remarks 

The content of the article has evaluated the effects of elastic foundation to the buckling and 

postbuckling of FGM plates under compression load when both elastic modulus of materials, Young’s 

module and Poisson’s ratio, are graded in the thickness direction according to a simple power law 

distribution in terms of the volume fractions of constituents.  

The results show that elastic media, especially Pasternak type foundations have a beneficial 

influence on the buckling loads and post buckling load carrying capacity of FGM plates, and effects of 

Poisson’s ratio ν  is small.  

In the case v const=  or the cases with out elastic foundation, the results of present paper return to 

the previous well-known results. 

 Acknowledgement. This work was supported by Grant code 107.02-2010.08 of the National 

Foundation for Science and Technology Development of Vietnam – NAFOSTED, the author is 

grateful for this support. The author also would like to express sincere thank to Professor Nguyen 

Dinh Duc for offering help and many valuable suggestions. 

 



P.H. Cong / VNU journal of Science, Mathermatics – Physics 27 (2011) 226-240 

 

240 

References 

[1] Brush D.O., Almroth B.O, Buckling of Bars, Plates and Shells, McGraw-Hill, New York, 1975. 

[2] Samsam Shariat B.A., Javaheri R., Eslami M.R. “Buckling of imperfect functionally graded plates under in-

plane compressive loading”, Thin-Walled Struct. 43, pp. 1020-1036, 2005. 

[3] Samsam Shariat B.A., Eslami M.R., “Thermal buckling of imperfect functionally graded plates”, Int. J. Solids 

Struct. 43, pp. 4082-4096, 2006. 

[4] Samsam Shariat B.A., Eslami M.R., “Effect of initial imperfection on thermal buckling of functionally graded 

plates”, J. Thermal Stresses 28, pp. 1183-1198, 2005. 

[5] Librescu L., Stein M., “A geometrically nonlinear theory of transversely isotropic laminated composite plates 

and its use in the post-buckling analysis”, Thin-Walled Struct. 11, pp. 177-201, 1991. 

[6] Nguyen Dinh Duc, Hoang Van Tung, Mechanical and thermal postbuckling of higher order shear deformable 

functionally graded plates on elastic foundations. J. Composite Structures, Vol. 93, p2874-2881, 2011. 

[7] Nguyen Dinh Duc, Do Nam, Hoang Van Tung, Effects of elastic foundation on nonlinear stability of FGM 

plates under compressive and thermal loads. Proceedings of X
th
 National Conference on Mechanics of 

Deformed Solid, Thai Nguyen, Nov. 2010, p 191-197, 2010. 

[8] Javaheri R., Eslami M.R., Buckling of functionally graded plates under in-plane compressive loading, ZAMM 

82(4). pp. 277-283, 2002. 

[9] Javaheri R., Eslami M.R., Thermal buckling of functionally graded plates, AIAA  J. 40(1), pp. 162-169, 2002. 

[10] Lanhe W. , Thermal buckling of a simply supported moderately thick rectangular FGM plate, Compos. Struct. 

64(2), pp. 211-218, 2004. 

[11] Dao van Dung, Nguyen Thi Nga, Nonlinear Stability Analysis of Imperfect Functionally Graded Plates with the 

Poisson’s Ratio v=v(z) Subjected to Mechanical and Thermal Loads. Proceedings of X
th
 National Conference 

on Mechanics of Deformed Solid, Thai Nguyen, Nov. 2010, pp. 142-154, 2010. 

[12] Do Nam, Stability of FGM plates on elastic foundations. Master’s thesis, Hanoi, 2011. 

[13] Hoang Van Tung, Stability of FGM plates and shells. PhD’s thesis, Hanoi, 2010. 

[14] Zhao X, Lee YY, Liew KM. Mechanical and thermal buckling analysis of functionally graded plates. J. Compos 

Struct; 90:161–71, 2009. 

[15] Liew KM, Jang J, Kitipornchai S. Postbuckling of piezoelectric FGM plates subject to thermo-electro-

mechanical loading. Int J Solids Struct ;40:3869–92, 2003. 

[16] Yang J, Liew KM, Kitipornchai S. Imperfection sensitivity of the post-buckling behavior of higher-order shear 

deformable functionally graded plates. Int J Solids Struct ;43:5247–66, 2006. 

[17] Shen H-S. Postbuckling of FGM plates with piezoelectric actuators under thermo–electro-mechanical loadings. 

Int J Solids Struct ;42:6101–21, 2005. 

[18] Shen H-S. Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent 

properties. Int J Mech Sci ;49:466–78, 2007. 

[19] Lee YY, Zhao X, Reddy JN. Postbuckling analysis of functionally graded plates subject to compressive and 

thermal loads. Comput Methods Appl Mech Eng ;199:1645–53, 2010. 

[20] Librescu L, Lin W. Postbuckling and vibration of shear deformable flat and curved panels on a non-linear 

elastic foundation. Int J Non-Lin Mech ;32(2):211–25, 1997 

[21] Huang ZY, Lu CF, Chen WQ. Benchmark solutions for functionally graded thick plates resting on Winkler–

Pasternak elastic foundations. J. Compos Struct ;85:95–104, 2008. 

[22] Zenkour AM. Hygro–thermo-mechanical effects on FGM plates resting on elastic foundations. J. Compos Struct 

;93:234–8, 2010. 

[23] Shen H-S, Wang Z-X. Nonlinear bending of FGM plates subjected to combined loading and resting on elastic 

foundations. J.Compos Struct ;92:2517–24, 2010

                   

 


