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Abstract. This paper is concerned with two paralle! proximal point algorithms for solving
a system of 1ll-posed equations involving monotone operators. They are parallel versions of
the projection-proximal point method proposed by Solodov and Svaiter and the regularization-
proximal point method introduced by Ryazantseva, respectively. The convergence analysis of
both methods has been investigated. The paper is completed by some numerical experiments.
Keywork:monotone operator, proximal point method, iterative regularization method, parallel
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1. Introduction

Various problems of science and engineering, such as the convex feasibility problems with
applications in optimization theory, image processing, radiation therapy treatment planning, etc... (sce
|1]), or parameter identification problems with multi-sources [2], can be reduced to finding a solution
of a simultaneous system of possibly nonlinear operator equations.

FFor solving a maximal monotone operator inclusion, Rockafellar [3] proposed the proximal
point algorithm, which is in general only weakly convergent [4]. Solodov and Svaiter {5] combined the
proximal point algorithm with a simple projection step onto intersection of appropriately constructed
halfspaces to get the strong convergence. Later on, Ryazantseva [6, 7] proposed a strongly convergent
algorithm combining the proximal point method and Lavrentiev regularization technique.

The aim of this article is to apply the projection-proximal point and the regularization-proximal
point algorithms in a parallel way to the following consistent system of operator equations:

Afz) =0, i=1N, (1)
where H is a real Hilbert space and A, : H — H are continuous monotone operators, 1.€.,
(Ai(z) = Ailyho—y) 20,  Va,yeH

The rest of the paper is organized as follows. In Section 2 we study a parallel version of the projection-
proximal point algorithm, which beconics the Solodov - Svaiter’s method if the number of equations
N = 1. Section 3 deals with a parallel regularization-proximal point method, which can be regarded as
1 parallel implicit iterative regularization method considered in [8, 9]. The convergence of the method
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is investigated in the noisy data case. Finally, in Section 4, two parallel algorithms are tested by some
model problems.

2. Parallel projection-proximal point method

We begin this section by recalling some notations and results in [5].

Theorem 2.1. Let C be any nonempty closed convex set in H, for a:,y € H and z € C. Then the
orthogonal projector Pc from H onto C salisfies the following relations.

<z — Po(z),z— Po(z) >< 0 (2)
|1Pe(z) = Pe@)I? <z = yll* = | (Pe(z) — z) = (Pely) - y)II* (3)

Lemma 2.2. Let A: H — H be a monotone operator, x € H, p > 0, o € [0,1) and suppose that
y € H satisfies

Aly) +uly—z)+e=0, where |e| < omax{||A(w)|, pllz -y}
Then we have
<z —y, Aly) >> o max{ullz — y|* |AW)|*/ 1k} > (1~ o) [[AW)|l= -yl

Define a half-space H, = {z € Hl < z-y, Aly) >< O}, then the following four statements are
equivalent:

(1) z € Hy; (i) y=ua; (i) Aly) =0; (iv) A(x) =0.

Furthermore,
| Py, () — || > (1 — o) max{||lz ~ yl|, [ A(w)]l/x}- (4)

For solving system (1) with a nonempty solution set
S={zeH| A(z)=0, i=T,N}#0
and A; are continuous monotone operators, we implement the following parallel algorithm on a com-

puting cluster with NV processors.

Algorithm 2.1. Let xo € H be an arbitrary initial point, i > 0 and o € [0, 1).

e At iteration k > 0, having xy, we compute (in parallel) solutions y. € H of equations

Ai(yh) + vk — =) + 6, =0, i=1N, (5)

where i, € (0,7), €]l < o max { | A:(yp)l, willwx — vill -
e Define (in parallel) projections from x. onto half-spaces

Hi = {z € H| < z - 4}, Aily}) >< 0}
and find an optimal index ji (1 < ji < N), such that

Ik = Py (on)ll = max {llax — Py (2 1}
k 1=1,N
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e Compute
Tyl = P{li_*m'.-'.-‘k("r“)‘ (6)

where Wi, = {z € H‘ < z— Tk, To— T >< O}.
If T.41 = x4 then stop. Else, set k := k + 1 and repeat.

Since A; is monotone and g} > 0, each subproblem (5) is well-posed, hence it has a unique
solution y}. At each iteration k, if zx € Hj, then Py (zx) = zx and ||zx — PHL(QTA-)“ = 0. Otherwise,
we have

< Ay(yh), Tk — i > ; < Auh), ok - yr > |
G e e Pl =
Clearly, the computation of the optimal index jx at iteration k of Algorithm does not require much
additional cost.
The convergence of Algorithm can be established by the technique introduced in [5].

Py () = 2k

Lemma 2.3. If the Algorithm terminates at a finite iteration k + 1, then xy, is a solution of systen

(1).

Proof. If the Algorithm terminates at a finite iteration k + 1, then we have x4 = P00 (xg) =
k k

zi. It follows zx € H* and therefore |xzp — P,
k

|z — P[;;_(:Ck)H — 0 for all 7 = I, N. Now applying Lemma 2.2 to each equation A, (y}) + pk(yp —

(zx)|| = 0. By the definition of ji, we have

z) + e}, = 0 with respect to z = 24, y = v, we have
| Ps ) = 2l 2 (1 — o) ma{lloe — vill IAGR/) forall i =T

Hence, A;(y.) = 0 and y}, = x4 for all i = 1, N, or x4 is a solution of system (1).

In what follows, assuming that Algorithm generates an infinite sequence x, we will show that
knowing the k—th iterate z, we can define the next one z,,. For a chosen initial iterate o € H we
define the set

U(wo) ={x € H| Vz€S, <z—z,20-2z><0}
Clearly, z¢ € U(xo).

Lemma 2.4. Suppose that at iteration k-th of algorithm we have xy, € U(xg), then

i §c (NN, H)NWi, C H* N W,

il. Zk41 from (6) is well-defined and xyy) € U(xp).

iii. [|[zk+1 — ol < ||Ps(zo) — zof| for all k € N, and therefore {x;.} is bounded.
Proof. From the monotonicity of A;, for any z € S we have

< Al(ylic)az N y; >=—-< Ai(y;c) - Ai(z)vy; —z>< O, 1= 1, N.

Then z € (NY.; H}), and hence S C (N, H}). Since zx € U(xy), it follows < z — zy, 7o —zx >< 0
for all z € S. Therefore, 2 € Wy and S C Wy. Thus, S C ( ile,i) NW, C H,Jc"c N Wy, and the

assumption S # () implies that Hjé" NWy # 0. Hence x4y = PHi‘*‘mwk (zg) is well-defined.

Since Tl is the projection of xp onto Hi:‘“ N Wy, from (2) we have < 2z —x4+1, 20 — k41 >< 0 for
all z € ch" N Wy. The inclusion S C H,Z’“ N Wy, and the last inequality ensure that < z — g1, To —
Iryr >< 0 for all z € S, therefore xx41 € U(xzp).

From (6), we also have ||zg41 — 2| < ||z — 2o for all z € Hﬁ“‘ N Wy. Taking into account the
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k)

inclusion S C H*NW, Vz € S, we have ||zr41—z0| < ||z—x0, i-e., |Tks1—20l| < || Ps(z0) — 0]
which implies the boundedness of the sequence {zy}.
By Lemma 2.4, starting from zq € U(zg), we have z; € U(xg) for k =0,1,2, ...

Lemma 2.5. Suppose the Algorithm reaches an iteration k + 1, then we have

lzks1 — zoll® > |z — zoll* + [|Ze41 — zk )%, (7)

lzer1 = 2kl > (1 = o) max {[ly -zl 1 4:(yi)ll /1 }- (8)

i=1,

Proof. From the definition of Wy, it follows that zx = Pw, (xo). Applying (3) with respect to
C =Wy, x = x4y and y = g, we have

1 Pw, (zx11) — Pw, (zo)lI” < lzes1 — 2ol® — | 2k41 — Pov (T1) — (20 — Pw (20)) |,

Now observing that Py, (Zi41) = Tk41, since zxr1 € Wy, and Pw, (z9) = =k, we get (7). On the
other-hand, since xx, € H*, it follows

2% = 2esall 2 Nl = Py (we)ll 2 max i — Py ()]l (9)
Using the last inequality and applying (4) with respect to H,, := ]é, A:= A x = x0, 1 == 11} and

y = Y, we have [lzx — Py (zi)|| 2> (1 = o) max{|ly; — 2, [[Ai(yi)[l/12i}. Finally, from the last
relation and (9) we come to the estimate (8).

Theorem 2.1. Let {xy} be the infinite sequence generated by Algorithm | then

lim zx = Ps(xg).
k—00

Proof. Using (7) consecutively, we have

k—1

|zks1 = zoll® > llok — moll® + lxksr — zoll® > D Nz — zli™. (10)
1=0

oS d
From item (iii) of Lemma 2.4 and (10), we have 5 flz141 — 2/]|? < ||Ps(zo) — xo||? < oc, therefore
=0
limg eo [{#k41 — k|| = 0. Using (8) and taking into account that u} < z, we also have limy o ly;. —
zill = 0, and limy o0 || Ai(yL)]| = 0, forall i = 1,2,..., N.
Since {x1} is bounded, it is relatively weakly compact. Let {zy, } be an arbitrary weakly convergent
subsequence of the bounded sequence {xx} and x4, — 7 as m — co. Clearly, y;, — Z asm — oc.

By the monotonicity of A;, for each t =1,2,..., N and any z € H, we have
0 <<z yp, Ail2) = Ailbk,) >=< 2 = 4, Ail2) > — <2 —ui |, Ailk,,) > -
Passing to the limit as m — oc and taking into account y; — Z and A;(y; ) — 0, we find

<z-z,A(z)>>0 Vze H, i=1,2,...,N.
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Now from the maximal monotonicity of A, it follows A;(x) = 0 (see [7]),2=1,N,ie,z€ 5.
Using the relation ||z — zo|| < || Ps(zq) — zol| for all k, we get

2k, — Ps(xo)||? = ek, — o — (Ps(zo) — xo)|°
= |xg,, — :COIIQ + || Ps(zo) — -THHQ — 2 < x4, — T, Ps(x0) — 20 >
< 2|| Ps(wo) — ol — 2 < 2k, — %0, Ps(0) — z0 > .

Hence,

lim sup ||zg,, — Pg(ﬂ?o)Hz < 2<||Pg(a:0) - IQ”Q— < I — xzg, Ps(xg) — 20 > ) (11)

m—od
Applying (2) with respect to (' := S,z = zp and 2z := r € S, we have
< Ty — PS(.’L‘()),‘J? —‘PS((IJU) >= ||£Lo - PS(CL‘o)HQ— < T — o, Pg‘(lo) — g >< 0.

Combining the last inequality with (11), we find limg,, . |2, — Ps(zo)l| = 0 or zy,, — Ps{zg)
as m — oo. Moreover, we also have & = Ps(z¢). Thus, Ps(xg) is the unique weak accumulation
point of {z;}. Clearly, every weakly convergent subsequence of {xy} strongly converges to Ps(xo),
tharefore o — Ps(x) as K — oc.

3. Parallel regularization-proximal point method
In this section we consider system (1) with A;(z) := Fi(z)— fi, where F; - H — H, (i = 1, N)
are supposed to be ¢ ! —inverse-strongly monotone operator (see [10]), i.e.,
< F(x) = F(y),z—y>>c ' |F(@) - EWII°,,  VYzyeH, ¢>0

We assume as in Section 2 that the solution set S C H of (1) is not empty, hence S is convex and
closed. Furthermore, suppose that 0 ¢ S.
N

Let ['(x) = % F(z), f =Y f and A(z) := F(z)— f for all z € II. Suppose that instead of exact
data { F}, fl},zwe are givenlgrily noisy ones { Fy;, fn,i}, such that
|Fri(z) — Fi(z)|| < hng(llzl)), Vo € Hy |fna— fill S0n, n=1,2,..,
where §,, > 0, h,, > 0 are noise levels and g : R* — RT is a positive nondecreasing function.
We put A, (7)) = Fhi(z) — fni An(x) = % A,.i(x) and suppose that the operators [, ; :

=1

H — H are continuous and monotone. Combining the parallel splitting up technique [11] with the
regularization-proximal point method {6] for the equation An(z) = 0, we come to the following parallel
regularization proximal point (PRPXP) method

1 AN
+(—-+——+7n\4-.,—(—+'}7n)zn, i=1,2,...,N, (12)
/ Cn /
1 X
Zn = a7 ‘311 =S ,1,2,...,
+1 N:?—:—l- = n 0 (13)

Clearly, the main computational task (12) can be performed simultaneously by N parallel pro-
1

cessors. With notation v, := — + 7», the PRPXP method (12)-(13) becomes a parallel implicit
c

n
iterative regularization method (PIIRM) proposed in [8], whose convergence has been studied in the
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noise-free case only.

Denoting v, := 9, + —, where ¥, and ¢, are mentioned in (12)-(13), and = the minimal - norm
n
solution of the system A;(z) = Fi(z) — f; = 0 (¢ = 1, N), we have following convergence result.

Theorem 3.1. Let «,, and <, be two sequences of positive numbers, such that o, \, 0, 7y, / +o<
as n — +oco and suppose that the following conditions are satisfied for all n € N and some constant
my >0

J— m ] T 677, a”
’777.(0571 - 3an+1) < 1‘;70; "Yna?l > ”,0(15; 1n9(|I$TH) + < )
e, ag hog(llz']]) + do Tn

Further, we assume that (1 — 4mj + m?%)ag > 4m1N~g, agyo > N and lzt||? < lad, where

. 2(2N~o + ao) { 2¢ " 1 cv(Nyo + ao) 1zt
' 70[(1—4m1+c'f)a0—4m1N70| Yoo N?v0 a'g
(hag(lal) + 80)*
+ .
2700 J

Then starting from z, = 0, the sequence z, converges 1o .
Although the proof of this theorem is complicated, it follows the same line as the proof of
Theorem 2.1 in (8], therefore it will be omited.

. ]
Remark 3.1. The sequences o, = ag(l + n) 7 ?; v = (1 + -n.)l-“, where 0 < p < 1 and the

1
constants ¢y = 1 vo = — and ag > 4N satisfy all the requirements in Theorem 3.1.
ap

Remark 3.2. If the operators F;(z) are free of noise, i.e., h, = 0 and the noise levels é, do not
satisfy a-priori conditions in Theorem 3.1, then method (12)-(13) may not converge to the minimal
norm solution x' of (1). However, we can choose an appropriate stopping number of iterates n = n;
such that the sequence zy, still gives stable approximations for rf. Moreover, z,, —» x! as § - 0.
This problem will not be discussed here due to lack of space.

4. Numerical experiments

To test the described above parallel proximal point methods we consider the system of linear
first kind Fredholm integral equations given in [8]:

b
(Aiz)(t) == /K,-(t, s)x(s)ds — fi(t) =0 1=1,2,..., N, (14)
ts 1 t+ s
where N = 4; [a, b] = [0, 1] and the kernels K (t,s) = —; Ko(t,s) = 3t ts;
o]
(t—5)° t+s 1
s(l1—t¢ s <t - +its+ = s<t
Kalt,s) = { =50 Kt =, 3 3
t(l—s) t<s s—t) t+ 1 .
3 - + ts 4 3 t < 5
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It was shown in [8] that A,, i = 1,2,..., N are inverse-strongly monotone operators. In partic-
ular, A, are Lipschitz continuous, ie., ||4;i(z) — Ai(y)| < L|lz — y|| for all z,y € H, with

11 L2
L > ma_x{ ( I K2(¢, s)ds)

1=1,N 00
that 0 < p < p} < @1, where p satisfies L/ < g < 1.

The integrals in the left-hand sides of (14) are discretized by the rectangle rule. The programs
are written in C and executed on a Linux cluster 1350 with 8 computing nodes of 51.2 GFlops. Each
node contains 2 Intel Xeon dual core 3.2 GHz, 2GB Ram. The notations used in this section are as
follows.

}. For an arbitrary fixed constant g € (0, 1), we choose pj. such

TOL Tolerances

M Number of equal-length subdivisions of [0, 1]

M Total number of iterations

T Time of the parallel execution on 4 CPUs taken in seconds

PRPXPM Parallel regularization proximal point method

PPPXPM Parallel projection proximal point method

INS&DE  Method is not stable and explosively divergent.
Firstly, we consider two methods PRPXP and PPPXP in a free noise case. Then, PRPXP

method is equivalent to PIIR method [8]. We choose the initial approximation zo = 0. the parameters

1 +1 : .
Oy, = W VY = \/HT for PRPXP method and uj = 3.5, ¢ = 0.5 for Algorithm . The
following right-hand sides
t Tt + 4 t—t t> — 5t3 +10t2 — 5t + 2
t) = —=; 2(t) = : t) = ; 4(t) = 15
t 2t+1 sin(2tm
and A =-Li  pe=-2EL g = 220,
6 47 4 (16)
falt) = 8m2t® — 12722 — 12t + 272 + 6 | sin(2nt)
e 2473 art
corresponding to exact solutions ., (t) = t and x.»(t) = sin(2nt), respectively, are given in [8].

Performance results for a small number of iterations are showed in the following tables.

Table 4.1. Free noise cases and small number of iterations

right-hand sides M Mo PRPXPM PPPXPM

fii=1,2,34 i TOL iy TOL
500 0.98 0.00636 0.51 0.00147
128 750 1.42 0.00492 0.97 0.00115
(15) - 1500 2.77 0.00399 1.42 0.00008
zo(t) =t 356 500 150 0.00518 1.04 0.00192
1000 8.65 0.00311 9.10 0.00124
128 500 0.93 0.00651 0.48 0.00123
(15) - 1000 1.89 0.00519 1.01 0.00086
ze(t) = sin(2nt) 256 500 1.38 0.00557 0.99 0.00178
1000 8.61 0.00323 1.97 0.00107

Table 4.1 shows that in a free noise case, if the number of iterations is small, then the PRPXP
method is more time consuming than PPPXP method. For a fixed number of iterations, the PPPXP
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methed is also more accurate than PRPXP method. The next table shows the results in a free noise
case, when the number of iterations is large.

Table 4.2. Free noise cases, large number of iterations, and Z.o(t) = sin(27t)

M PRPXPM PPPXPM
TOL Mmax T TOL Mmax T
0.001051 15000 26.87 0.000475 15000 14.02
128 0.000835 50000 80.02 0.000397 50000 41.17
0.000759 100000 159.29 0.000401 100000 80.51
0.000285 553153 4701.12 0.000285 23427 45.87

256 0.000230 1173089 9969.18 .000230 135311 265.09
0.000200 2798307  23781.01  0.000200 NS&DE INS&DE

From Table 4.2 we observe that the PRPXP method may be more time consuming than PPPXP method,
but it is always stable and convergent. On the other hand, due to the dicretization and round-off crrors,
the PPPXP method may be unstable whenever the number of iterations is large. Moreover, this method
may give an unsatisfactory result within a given small tolerance.

Now we consider the noisy case with a,, and 7, are chosen as in Remark 3.1. For the sake of

\/_pn() and fr = it @pn()

and g, € [0; 1] are normally distributed random numbers with zero mean In this experiment, we set
M = 256.

The Table 4.3 shows that in all cases, the PRPXP method is stable and convergent. But it may be
more time consuming than PPPXP method. On the other hand, due to the crror of data, the PPPXP
method may be unstable and divergent.

simplicity, we use F, ;(x) = Fi(z)+ ——— , where p,,(t) := 0.250,0

Table 4.3. Noisy data cases

right-hand sides PRPPM PPPPM
fi;1=1,23,4 Tmax T TOL Thmax T TOL

1000 8.51 0.00761 1000 2.13 0.00157

(15) - {w.r.t 20000 166.06 0.00505 20000 45.00 0.00075

Te(t) =1) 543875  4615.5 0.00105 2437 4.35 0.00105

8752118 (8112.6 0.00050 INS&DE INS&DE 0.00050

1000 8.67 0.00693 1000 2.07 0.00233

(16) - (w.r.t 5000 44.12 0.00575 5000 10.61 0.00098

Ze(t) = sin(27t)) 20000 174.15 0.00545 20000 42.92 0.00104
635224  5481.2 0.00100 13047 26.33 0.00100

2873115 219247 0.00075 INS&DE INS&DE 0.00075

5. Conclusion

In this note two parallel versions of the proximal point method for solving a system of ill-
posed nonlinear operator equations are studied. Based on parallel computation we can reduce the
overall computational effort without imposing extra conditions on the nonlinearity of the operators.
Experiments show that the PRPXP method is more time consuming but is much stabler than the
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PPPXP method, especially in the noisy data case. Other parallel methods for ill-posed problems can
be found in [12, 13].
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