On the solution of a class of function equation in plane geometry

Nguyen Van Mau*

Faculty of Mathematics, Mechanics and Informatics VNU University of Science, 334 Nguyen Trai, Hanoi, Vietnam

Received 30 March 2011

Abstract. We deal with a class of function equation in plane geometry. Let $\Gamma(\Delta)$ be the set of all triples of positive numbers (A, B, C) such that

$$4+B+C=\pi,$$

i.e. every triple $(A, B, C) \in \Gamma(\Delta)$ forms a triangle ΔABC with 3 angles A, B, C, and let $\Gamma(\Delta)$ be the set of all triples of positive numbers (a, b, c) such that

$$|b-c| < a < b+c,$$

i.e. every triple $(a, b, c) \in \Gamma(\Delta)$ forms a triangle ΔABC with 3 side-lengths being a, b, c:

The main our purpose is to describe the general solutions of the following functional equation in plane geometry:

- Determine all function $f: (0,\infty) \to (0,\infty)$ such that $(f(A), f(B), f(C)) \in \Gamma(\Delta)$ for all $(A, B, C) \in \Gamma(\Delta)$

- Determine all function $f: (0,\infty) \to (0,\infty)$ such that $(f(a), f(b), f(c)) \in \Gamma(\Delta)$ for all $(a,b,c) \in \Gamma(\Delta)$

2000 Mathermatics Subject Classification: 47J17, 47J06, 47J25, 65J14, 65J20, 65J05.

1. On the general solution of function equations induced by triangle angles

In the sequel, Let $\Gamma(\Delta)$ be the set of all triples of positive numbers (A, B, C) such that

$$4+B+C=\pi,$$

i.e. every triple $(A, B, C) \in \Gamma(\Delta)$ forms a triangle ΔABC with 3 angles A, B, C, and denote by $\Gamma_0(\Delta)$ the set of all triples of non-negative numbers (A, B, C) such that $A + B + C = \pi$.

Let $\Gamma(\Delta)$ be the set of all triples of positive numbers (a, b, c) such that

$$|b-c| < a < b+c,$$

i.e. every triple $(A, B, C) \in \Gamma(\Delta)$ forms a triangle ΔABC with 3 side-lengths being a; b; c:

The main purpose of the paper is to find the general solutions of the following functional equations.

^{*} E-mail: maunv@vnu.edu.vn

Main problem 1. Determine all functions $f : (0, \pi) \to (0, \pi)$ such that $(f(A), f(B), f(C)) \in \Gamma(\Delta)$ for all $(A, B, C) \in \Gamma(\Delta)$.

Main problem 2. Determine all functions $f : (0, \infty) \to (0, \infty)$ $(f : \mathbb{R}^+ \to \mathbb{R}^+)$ such that $(f(a), f(c)) \in F(\Delta)$ for all $(a, b, c) \in F(\Delta)$.

Firstly we deal with continuous and differential solutions.

Problem 1.1 Determine the general continuous solution f(x) in $[0, \pi]$ and differentiable in $(0, \pi)$ with f(0) = 0 such that $(f(A), f(B), f(C)) \in \Gamma(\Delta)$ for all $(A, B, C) \in \Gamma(\Delta)$.

Solution. We determine a differentiable function f(x) such that

$$egin{aligned} &f(x)>0, \ \ orall x\in(0,\pi)\ &f(0)=0\ &f(A)+f(B)+f(C)=\pi. \end{aligned}$$

The assumption f(0) = 0 follows $f(\pi) = \pi$ and $C = \pi - (A + B)$.

That follows

$$f(A) + f(B) + f(\pi - A - B) = \pi, \ \forall A, B, A + B \in [0, \pi]$$

hay

$$f(x) + f(y) + f(\pi - x - y) = \pi, \ \forall x, y, x + y \in [0, \pi].$$
(1)

The derivative in x of the both side of (1) is given by

$$f'(x) - f'(\pi - x - y) = 0, \ \forall x, y, x + y \in [0, \pi].$$
⁽²⁾

Equality (8) follows that f'(x) is constant in $(0, \pi)$ and then f(x) = px + q. Since f(0) = 0 then q = 0 and f(x) = px. Since $f(\pi) = \pi$ then p = 1 and we find f(x) = x.

Hence, only the function f(x) = x is a continuous in $[0, \pi]$ and differentiable in $(0, \pi)$ with f(0) = 0 such that f(A), f(B), f(C) form 3 angles of a triangle for all given ΔABC .

Problem 1.2. Determine all functions f(x) defined in $[0, \pi]$ such that $(f(A), f(B), f(C)) \in \Gamma(\Delta)$ for all given $(A, B, C) \in \Gamma(\Delta)$ and f(0) = 0.

Solution. We formulate Problem 1.2 in the following equivalent form:

Determine the general solution in $[0, \pi]$ of the functional equation

$$f(x) + f(y) + f(\pi - x - y) = \pi, \quad \forall x, y \in (0, \pi), x + y < \pi.$$

$$f(0) = 0, \quad f(x) > 0, \quad \forall x \in (0, \pi).$$
(3)

Since f(0) = 0, from (3) we get

$$f(x) + f(0) + f(\pi - x) = \pi, \quad \forall x \in [0, \pi].$$

Futing f(x) = x + g(x) then g(0) = 0 and

$$(3) \Leftrightarrow x + g(x) + (\pi - x) + g(\pi - x) = \tau$$
$$\Leftrightarrow g(x) + g(\pi - x) = 0, \ \forall x \in [0, \pi]$$

or

$$g(\pi - x) = -g(x), \ \forall x \in [0, \pi].$$
 (4)

Putting f(x) = x + g(x) to (3) and using (4), we find

$$x + g(x) + y + g(y) + \pi - (x + y) + g(\pi - (x + y)) = \pi, \ \forall x, y \in [0, \pi], x + y \leq \pi$$

or

$$g(x+y) = g(x) + g(y), \ \forall x, y \in [0,\pi], x+y \leq \pi.$$
(5)

Hence g(x) is additive in $[0, \pi]$. On the other hand, since f(x) > 0 for all $x \in (0, \pi)$, it follows $g(x) > -x > -\pi$, i.e. g is bounded from the lower and then g is linear (cf.[1]-[3]). Hence, g(x) = ax > -x for all $x \in (0, \pi)$. It follows a > -1.

Hence, the general solution of the problem 1.2 is f(x) = (1 + a)x, a > -1. Furthermore, by the assumption, the equality $f(A) + f(B) + f(C) = \pi$ follows 1 + a = 1, i.e. a = 0 and $f(x) \equiv x$.

Theorem 1.1. All functions f(x) defined in $[0, \pi]$ such that $(f(A), f(B), f(C)) \in \Gamma(\Delta)$ for all given $(A, B, C) \in \Gamma(\Delta)$ and $(f(A), f(B), f(C)) \in G_0(\Delta)$ for all given $(A, B, C) \in G_0(\Delta)$ are of the form $f(x) = bx + \frac{\pi}{3}(1-b)$, where $-\frac{1}{2} \leq b \leq 1$.

Proof. Note that two functions f(x) = x and $f(x) \equiv \frac{\pi}{3}$ are solutions. We determine the general solution f(x) in $[0, \pi]$ with

$$f(x) + f(y) + f(\pi - x - y) = \pi, \quad \forall x, y \in [0, \pi], x + y \leq \pi.$$

$$f(x) > 0, \quad \forall x \in (0, \pi)]$$
(6)

Let y = 0, then

$$f(x) + f(0) + f(\pi - x) = \pi, \quad \forall x \in [0, \pi]$$

or

$$f(\pi - x) = \pi - f(0) - f(x), \ \forall x \in [0, \pi].$$

Putting $f(\pi - x) = \pi - f(0) - f(x)$ into (6), we find

$$x + g(x) + y + g(y) + \pi - (x + y) + g(\pi - (x + y)) = \pi, \ \forall x, y \in [0, \pi], x + y \leq \pi$$

or

$$f(x+y) + f(0) = f(x) + f(y), \quad \forall x, y \in [0,\pi], x+y \leq \pi.$$
(7)

Putting $f(x) = f(0) + g(x) \ge 0$. Then g(x) is additive in $[0, \pi]$ and (7) is of the form

$$g(x+y) = g(x) + g(y), \ \forall x, y \in [0,\pi], x+y \leq \pi.$$
(8)

Since g(x) is additive in $[0, \pi]$ and $g(x) \ge f(0)$ then (6) has the general solution of the form $f(x) = bx + \beta$, where $bx + \beta \ge 0$ for all $x \in [0, \pi]$. That follows f(x) is of the form $f(x) = bx + \frac{\pi}{3}(1-b)$, where $-\frac{1}{2} \le b \le 1$.

87

2. On the general solution of functional equations induced by side lengths of triangles

Let $F(\Delta)$ be the set of all triples of positive numbers (a, b, c) such that

$$|b-c| < a < b+c,$$

i.e. every triple $(a, b, c) \in F(\Delta)$ forms a triangle ΔABC with its side lengths being a, b, c.

To determine the general solution f(x) in [0, 1] such that f(a), f(b), f(c) form 3 side lengths of a triangle for all given ΔABC we need some additional discussions:

In the plane, consider the cirle O with diameter length 1 (unique circle). Denote by $M(\Delta)$ the set of all triangles inscribed in the cirle O. Note that, if f is a solution of Problem 2 then $F(x) = \lambda f(x)$, with any $\lambda > 0$, also satisfies Problem 2 and conversely. So it enough to examine the Problem 2 in the case when the triples of positive numbers (a, b, c) being the side lengths of triangles in $M(\Delta)$.

The sine theorem follows that a necessary and sufficient condition for three positive numbers α, β, γ to be 3 angles of a triangle in $M(\Delta)$ are $\sin \alpha, \sin \beta, \sin \gamma$ form 3 side lengths of a triangle in $M(\Delta)$.

Indeed, if α , β , γ are 3 angles of a triangle in $M(\Delta)$ then $2R\sin\alpha$, $2R\sin\beta$, $2R\sin\gamma$ or $\sin\alpha$, $\sin\beta$, $\sin\gamma$ are 3 side lengths of a triangle inscribed in the cirle O with diameter length 1.

Conversely, if $\sin \alpha$, $\sin \beta$, $\sin \gamma$ are 3 side lengths of a triangle inscribed in the cirle O with diameter length 1 and α , β , γ are positive then α , β , γ form 3 angles of a triangle.

Firstly, we formulate propositions for some simple specialized cases.

Proposition 2.1. The function $f(x) = x + \alpha$ possesses the property that $(f(a), f(b), f(c)) \in F(\Delta)$ for all $(a, b, c) \in F(\Delta)$ iff $\alpha \ge 0$.

Proposition 2.2. The function $f(x) = \alpha x$ possesses the property that f(a), f(b), f(c) are side lengths of a triangle for all $(a, b, c) \in F(\Delta)$ iff $\alpha > 0$.

Proposition 2.3. The function $f(x) = \alpha x + \beta$ possesses the property that f(a), f(b), f(c) are side lengths of a triangle for all $(a, b, c) \in F(\Delta)$ iff $\alpha \ge 0$, $\beta \ge 0$ and $\alpha + \beta > 0$.

Proposition 2.4. The function $f(x) = \frac{1}{\alpha x + \beta}$ possesses the property that f(a), f(b), f(c) are side lengths of a triangle for all $(a, b, c) \in F(\Delta)$ iff $\alpha = 0, \beta > 0$.

Now we deal with the set $M(\Delta)$, i.e. the set of all triangles inscribed in the cirle O with diameter length 1.

Theorem 2.1. Any function $f : [0,1] \to [0,1]$ such that $(f(a), f(b), f(c)) \in M(\Delta)$ for all $(a, b, c) \in M(\Delta)$ is of the form

$$f(x) = \sin\left(\alpha \arcsin x + \frac{(1-\alpha)\pi}{3}\right), \quad -\frac{1}{2} \le \alpha \le 1.$$
(9)

88

Proof. Note that, if α, β, γ are 3 angles of a triangle in $M(\Delta)$ then $2R\sin\alpha$, $2R\sin\beta$, $2R\sin\gamma$ or $\sin\alpha$, $\sin\beta$, $\sin\gamma$ are 3 side lengths of a triangle inscribed in the circle O with diameter length 1.

Conversely, if $\sin \alpha$, $\sin \beta$, $\sin \gamma$ are 3 side lengths of a triangle inscribed in the cirle O with diameter length 1 and α , β , γ are positive then α , β , γ form 3 angles of a triangle.

On the other hand, by theorem thm1, all functions f(x) defined in $[0, \pi]$ such that $(f(A), f(B), f(C)) \in \Gamma(\Delta)$ for all given $(A, B, C) \in \Gamma(\Delta)$ and $(f(A), f(B), f(C)) \in G_0(\Delta)$ for all given $(A, B, C) \in G_0(\Delta)$ are of the form $f(x) = bx + \frac{\pi}{3}(1-b)$, where $-\frac{1}{2} \leq b \leq 1$.

Hence, the general solution is of the form (10).

Now we formulate the main result.

Theorem 2.2. Any function $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that $(f(a), f(b), f(c)) \in F(\Delta)$ for all $(a, b, c) \in F(\Delta)$ is of the form

$$f(x) = u \sin\left(\alpha \arcsin\{x\} + \frac{(1-\alpha)\pi}{3}\right), \quad -\frac{1}{2} \le \alpha \le 1.$$
(10)

κ.

Proof. Applying the above additional discussion and theorem, it is easy to obtain the form (10). **Remark 1.** Some other types of functional equations in geometry were considered firstly by S. Galab [4].

References

- [1] T. Acze'l, Lectures on functional equations and their applications, Academic Press, New York/San Francisco/London, m1966.
- [2] M. Kuczma, B. Choczewski, R. Ger. Interative Functional Equations, Cambridge University Press, Cambridge/New York/Port Chester/Melbourne/Sydney, 1990.
- [3] P.K. Sahoo, T. Riedel, Mean Value Theorems and Functional Equations, World Scientific, Singapore/New Jersey/London/HongKong, 1998.
- [4] S. Galab, Functional equations in geometry, Prace Mat., NoCCXXIII, Zeszyt 14, 1969.