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Abstract. We deal with a class of function equation in plane geometry. Let I'(A) be the set of all
triples of positive numbers ( A, B, C) such that
A+B+C=m,
i.e. every triple (A4, B,C) e I'(A) forms a triangle AABC with 3 angles A, B,C , and let
[(A) be the set of all triples of positive numbers (@, b, ¢) such that
Lb—c‘ <a<b+c,

i.e. every triple (a,b,c) € ['(A) forms a triangle AABC with 3 side-lengths being a,b,¢:

The main our purpose is to describe the general solutions of the following functional equation
in plane geometry:

- Determine all function | :(0,0) —» (0,9) such that (f(A), f(B), f(C))e'(A) for
all (4,B,C)el’(A)

- Determine all function f :(0,00) — (0,0) such that (f(a), f(b), f(c)) e['(A) forall
(a,b,c) eT(A)
2000 Mathermatics Subject Classification: 47J17, 47J06, 47J25, 65J14, 65J20, 65J05.

1. On the general solution of function equations induced by triangle angles

In the sequel, Let I'(A)be the set of all triples of positive numbers (A4, B, C) such that
A+B+C=mr,
i.e. every triple (4,B,C)el(A)forms a triangle A4BCwith 3 angles 4,B,C, and denote by
T, (A) the set of all triples of non-negative numbers (4, B,C)such that 4+ B+ C = 7.
Let I'(A) be the set of all triples of positive numbers (a, b, c) such that
lbwc‘ <a<b+ec,
i.e. every triple (4, B,C) € ['(A) forms a triangle AABC with 3 side-lengths being a; b; c:

The main purpose of the paper is to find the general solutions of the following functional equations.
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Main froblem 1. Determine all functions f : (0,7) — (0, 7) such that (f(A), f(B), f(C)) € T'(A)
forall A, B, C)eT(A).

Main problem 2. Determine all functions f : (0,00) — (0,00) (f : BRY — R™) such that
(f(a), [(b), f(c)) € F(A) for all (a,b,c) € F(A).
Firstly we deal with continuous and differential solutions.

Problem 1.1 Determine the general continuous solution f(z) in [0, 7] and differentiabe in (0, 7) with
f(0) =0 such that (f(A), f(B), f(C)) € T(A) for all (4, B,C) € I'(A).

Solution. We determine a differentiable function f(z) such that
[ ()>O Vz € (0, )
7 F0)=
l f(A +f(B) +/(C) =
The assamption f(0) = 0 follows f(7r) =n and C =7 — (A + B).
That follows

flAY+f(B)+ f(r—A—-DB)=mn, VA,B,A+ B € [0, 7]

hay
flx)+ fly) + flm —z~y) ==, Yz,y,z+y € [0, 7). (1)
The denvative in z of the both side of (1) is given by
f’(a:)—f’(w—:z:—y) :U| Vm,y,:L'erE [Oa’”]' (2)

Equalitr (8) follows that f'(z) is constant in (0, 7) and then f(x) = pr + g. Since f(0) = 0 then
q=0ad f(z) = pz. Since f(m) = m then p = 1 and we find f(x) = z.

Hence, only the function f(z) = z is a continuous in [0, 7] and differentiabe in (0, 7) with
f£(0) =3 such that f(A), f(B), f(C) form 3 angles of a triangle for all given AABC.

Problen 1.2. Determine all functions f(x) defined in [0, 7] such that (f(A), f(B), f(C)) € T(A)
for all given (A, B,C) € I'(A) and f(0) =

Solutioa. We formulate Problem 1.2 in the following equivalent form:

Letermine the general solution in [0, 7] of the functional equation
fae)+ fy+flm—z—y)=mn, Vo,ye0,m),zt+y<m. (3)
f(0)=0, f(x)>0, Vxe(0,n).

Since f(0) = 0, from (3) we get

flx)+ f0)+ f(r —x)=m, Vzel0,n].
Fating f(z) = = + g(z) then g(0) = 0 and

B)eztgl@)+(r-z)+g(r—z)=7

& g{z)+ glm—x) =0, Yz [0, 7]
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or
g(m —az) = —g(x), Yre 0, (1)
Putting f(2} — 2 + g(x) to (3) and using (1), we find
rtgle)ty gyt —(z+y dgln—(xty) =7, Vo,ye0mlaty<T
or

gl +y) =glx)+g(y), Yo,y e[0,n], x4y <. (5)

Hence ¢(x) is additive in [0, 7]. On the other hand, since f(a) > 0 for all z € (0, 7), it follows
g(x) > —x > —m, ie g is bounded from the lower and then g is lincar (cf[1]-[3]). Hence.
g(x) = ax > —u for all z € (0, 7). It follows a > —1.

Hence, the general solution of the problem 1.2 is f(x) = (1 + a)z. @ > —1. Futhermore, by
the assumption, the equality f(A) + f(B) + f(C) =« follows 1 + a = 1, i.e. a = 0 and f(z) = z.

Theorem 1.1. All functions f(x) defined in [0, 7] such that (f(A), f(B), f(C)) € T'(A) for all given
(A, B,C) € T(A) and (f(A), f(B), f(C)) € Gy(A) for all given (A, B,C) € Go(A) are of the

, 1
form f(z) = bx + E(l - b), where —— < b < 1.
3 2

: . m .
Proof. Note that two functions f(x) = x and f(z) = - are solutions.
3

We determine the general solution f(x) in [0, ﬂ with
fl@)+ fly)+ flr—z—y)=m, Voyeldrlrtysm. (6)
f(z) >0, Vxe(0,7)]
Let y == 0, then
f@)+ fO) + f(mr —z)=m, Vrel0,r|
or
f(r—z) =7— f(0)— f(x), Ve e[0,7]
Putting f(m — x) = 7 — f(0) — f(x) into (G), we find
z+g@) tytgl)tr—(z+y)tolmr—(z+y) =7 VeyclOmlaty<n
or
flz+y)+ f(0) = f(z) + f(y), Vz,ye[0,7],z+y <. (7)
Putting f(z) = f(0) + g(z} > 0. Then g(x) is additive in [0, 7] and (7) is of the form
glz+y)=g(x)+9(y), Yo,y € 0, n],z+y <, (8)

Since g(z) is additive in [0, 7] and g(x) > f(0) then (G) has the general solution of the form f(z) =
bz + 3, where bx + 3 > 0 for all z € [0, «r]. That follows f(z) is of the form f(2) = bx + %(1 - b),

where == <b< 1.
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2. On the general solution of functional equations induced by side lengths of triangles

Let I'(A) be the set of all triples of positive numbers (a, b, ¢} such that
b—cl<a<bte

i.e. every triple (u, b,c) € F(A) forms a triangle AABC with its side lengths being a, b, c.

To determine the general solution f(x) in {0, 1] such that f(a}), f(), f(c) form 3 side lengths
of a triangle for all given AABC we need some additional discussions:

In the plane, consider the cirle O with diameter length 1 (unique circle). Denote by A/(A) the set
of all triangles inscribed in the cirle O. Note that, if f is a solution of Problem 2 then F(z) = Af(z).
with any A > 0, also satisfies Problem 2 and conversely. So it enough to examine the Problem 2 in
the case when the triples of positive numbers (a, b, ¢) being the side lengths of triangles in M (A).

The sine theorem follows that a necessary and sufficient condition for three positive numbers
a, 3,y to be 3 angles of a triangle in M(A) are sina, sin g, siny form 3 side lengths of a triangle in
M(A).

Indeed, if «, 3,y are 3 angles of a triangle in A[{A) then 2R sin«, 22sin 3, 2R sin+y or sin «,
sin 3, sin~y are 3 side lengths of a triangle inscribed in the cirle O with diameter length 1.

Conversely, if sinc, sin 3, sin~y are 3 side lengths of a triangle inscribed in the cirle O with
diameter length 1 and «, 3,y are positive then «, 3,y form 3 angles of a triangle.

Firstly, we formulate propositions for some simple specialized cases.

Proposition 2.1. The function f(z) = z + « possesses the property that (f(a), f(b), f(¢)) € F(A)
for all (a,b,¢) € F(A) iff a« 2 0.

Proposition 2.2. The function f(z) = ax possesses the property that f(a), f(b), f(c) are side lengths
of a triangle for all (a,b,c) € F(A) iff a > 0.

Proposition 2.3. The function f(x) = ax + 3 possesses the property that f(a), f(b), f(c) are side
lengths of a triangle for all (a,b,¢c) € F(A)iffa 20, 20and o+ 3 > 0.

possesses the property that f(a), f(b), f(c) are side

ar + J

Proposition 2.4. The function f(x) =
€ F(A) iffa=0, 3>0.

lengths of a triangle for all (a, b, )

Now we deal with the set AM(A), ie. the set of all triangles inscribed in the cirle O with
diameter length 1.

Theorem 2.1.  Any function f : [0,1] — [0,1] such that (f(a), f(b), f(¢)) € M(A) for all
(a,b,c)€ M(A) is of the form

f(z} =sin (a- arcsinz + m)‘ e

<a<xl. 9
- o ©)

bo |
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Proof. Note that, if «, 3,5 are 3 angles of a triangle in A[(A) then 2Rsina, 2tsin 3, 20 siny or
Sitia. sin /4, sin~y are 3 side lengths of a triangle inscribed in the cirle O with diameter length 1.
Conversely, if sinc, sin 3, siny are 3 side lengths of a triangle inscribed in the cirle O with
diameter length 1 and o, 4, ~ are positive then «, 3, v form 3 angles of a triangle.
On the other hand, by theorem thml, all functions f(xz) defined in [0, 7] such that (f(A), f(B).

F(C)) e T(A) for all given (A, B,C) € T(A) and (f(A), f(B), f(C)) € Gu(A) for all given
(A, B,(') € Gp(A) are of the form f(x) = bx + %(1 —b), where —— < b< 1.

lHence, the general solution is of the form (10).

| —

-

t

Now we formulate the main result.

Theotem 2.2, Any function f : RT — Rt such that (f(a), f(b), f(c)) € F(A) for all (a,b,c) €
[7(A) is of the form
(1l —a)m ] ]

O]
9 I

|
A
/AN

—

f(x) = usin (a arcsin{x} + (10)

Proof. Applying the above additional discussion and theorem |, it is easy to obtain the form (10).
Remark 1. Some other types of functional equations in geometry were considered firstly by S. Galab

[4].
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	f{A) + f{B)+f{C)=7T.

	ĩ{x) + f{y) + /(tt - X - y) = 7T, Vx,y e [0,7r],x' + y ^ 7T.
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