VNU Journal of Science, Mathematics - Physics 27 (2011) 101-110

WCET analysis for multiprocessor based on real-time Java
processor

Quang-Dung Vu*, Viet-Ha Nguyen
VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Recerved 11 Febuary 2011

Abstract. In this paper, we propose a solution for a worst-case execution time (WCET)
analyzable Java system - a combination of a time predictable Java processor and a method
WCET analysis at Java bytecode level. The eXecution time of bytecodes, the instructions of
the Java virtual machine, is known cycle accurately for Java processor, which simplifies the
low-level WCET analysis [1].

In hard real-time systems, the estimation of the WCET is essential. WCET analysis is in
general an undecidable problem. As concerning above, we propose some of WCET analysis
methods using control flow graph applied for high-level and low-level Java processor. Java
bytecode generation has to follow stringent rules in order to pass the class file verification of
the JVM. Those restrictions lead to an analysis friendly code; e.g. the stack size is known
at each instruction. The control flow instructions are well defined. Branches are relative and
the destination is within the same method. Detection of basic blocks in Java bytecode and
construction of the control flow graph (CFQ) is thus straight forward.

Keywork: Java processor, Java virtual machine, control flow graph, Java bytecode, worst case
execution time, best case exccution time, Integer linear programming (ILP).

1. Introduction

WCET plays an important role in verifying Java bytecode in real-time constraints. WCET
analysis is a well established research area. However, there is still a gap between the theoretical
findings and the practical usage of WCET analysis tools. WCET analysis is usually divided 1nto
high-level and low-level techniques. High-level WCET analysis considers the program structure by
path analysis on the control flow graph (CFG). The low-level part is concerned with the execution
time of machine instructions or instruction sequences. The main issue for WCET analysis method is
the growing complexity of new processors. It is almost impossible to model them for the low-level
analysis. We are using Java processor, called JOP [2], designed for time-predictable execution of
real-time tasks instruction cache.

The paper is organized as follows. Related work is reviewed in Section 2. Section 3 presents
our proposed real-time Java WCET analysis. An experimental case is presented in Section 4 together
with results and discussion.

* Corresponding author. Tel.: +84915087345

E-mail: dungvq@vnu.edu.vn
101

mailto:dungvq@vnu.edu.vn

102 - Dung, NV, Ha / VNU Journal of Science. Mathematics - Phvsics 27 (2011) 101-1110

2. Related work

In this section, we review several existing works that are related to our proposed method on
WCET analysis in real-time Java systems. Sun introduced the first version of picolava [3] in 1997.
However, this processor was never released as a product by Sun. A redesign followed in 1999,
known as picolava-ll, which was freely available. The architecture of picolava is a stack-based CISC
processor implementing 341 different instructions. [t is the most complex Java processor available.
The processor can be implemented in 27.6K logic cells in an FPGA as shown in [4].

Shaw presents in [5] timing schemas to calculate minimum and maximum execution time for
common language constructs. The rules allow to collapse the abstract syntax tree of a program until
a final single value represents the WCET. However, with this approach it is not straight forward to
incorporate global low-level attributes, such as pipelines or caches. The resulting bounds are not tight
enough to be practically useful.

Computing the WCET with an integer linear programming (ILP) solver is proposed in [C]
and [7]. We base our WCET analyzer on the ideas from these two groups. The WCET is calculated by
transforming the calculation to an integer lincar programming problem. Each basic block is represented
by an edge in the T-graph (liming graph) with the weight of the execution time of the basic block.
- Vertices in the graph represent the split and join points in the control tlow. Furthermore, each edge
is also assigned an execution frequency. The constraints resulting from the T-graph and additional
functional constraints (e.g., loop bounds) are solved by an ILP solver. The T-graph is similar to a
CFG, where the exccution time is modelled in the vertices. The motivation to model the execution
time in the edges results from the observation that most basic blocks end with a conditional branch.

3. Real-time Java WCET analysis

In this section, we describe the methods of WCET analysis. There are 2 methods of WCET
analysis - one is the basic method in WCET analysis- implicit path enumeration technique (IPET),
which bases for high-level; the other is low-level WCET analysis, which involves to Java bytecode.

3.1. IPET WCET analysis method

IPET method [6] is based for WCET analysis, which can find the exact WCET in these simple
cases because the execution time of each section of code can be considered independently of all the
others. That is a high-level WCET analysis. In IPET, tlie program is modeled as a flow network, and
integer linear programming (ILP) is used to determine the execution path with the maximal execution
time. The calculation of the WCET is transformed to an ILP problem. In the CFG, each vertex
represents a basic block B; with execution time ¢;. With the basic block execution frequency ¢, the
WCET is:

N
WCET = max Z c.e,
i=1
The sum is the objective function for the ILP problem. The maximum value of this expression results
in the WCET of the program. Furthermore, each edge is also ass’gned an execution frequency f. These
execution frequencies represent the control flow through the \V/CET path. Two primary constraints
form the ILP problem: (i) For each vertex, the sum of f; for the incoming edges has to be equal to

V.Q. Dung, N.V. Ha / VNU Journal of Science, Mathematics - Physics 27 (2011) 101-110 103

the sum of the fi of the outgoing edges; (ii) the frequency of the back edges connecting the loop body
with the loop header, is less than or equal to the frequency of the edges entering the loop multiplied
by the loop bound.

From the CFG, which represents the program structure, we can extract the flow constraints. With
the execution frequency f of the edges and the two sets I; for the incoming edges to basic block B;
and O, for the outgoing edges, the execution frequency e; of B; is:

=Y fi= > fi

Jel; keO,

The frequencies f; are the integer variables calculated by solving the ILP problem. Additional con-
straints are needed to handle loops. The incoming edges to the entry point of the loop, the loop header
h, are classified as follows:

1. The set of incoming edges Ej that enter the loop
2. The set of back edges C}, that close the loop

With the maximum loop count (the loop bound) n, we formulate the loop constraint as

ZfiSﬂ-ka

JECH keEy,

Without further global constraints, the problem can be solved locally for each method. We start at the
leaves of the call tree and calculate the WCET for each method. The WCET value of a method is
included in the invoke instruction of the caller method. To incorporate global constraints, such as cache
constraints [8], a single ILP problem is built that models the whole program. The invoke instruction
i is connected to the entry and exit node of the invoked method, adding edges c and r, respectively.
To ensure that only valid paths are considered, one additional constraint is needed for each method

Y fo=fo=fe

JEL
The example of IPET WCET analysis method could be shown in Figure ??. The basic block that
contains the invoke instruction is split into three new blocks: The preceding instructions, the invoke
instruction, and following instructions. Consider following basic block:

- iload 1
iload 2
aload 0
invokevirtual foo
- istore 3

invocation:

When different versions of foo() are possible receiver methods, we model the invocation of foo()
as alternatives in the graph. Following the standard rules for the incoming and outgoing edges the
resulting [LP constraint for this example is:

fi=f+fs

104 b) Duneg NV Ha / VNU Journal of Science, Marhematics - Phvsics 27 (2001) 10]-110

iload 1
iload 2
aload_0

7 s
// \\
P 5

A

iovoke A foo invoke B foo

7

\ 4
/
’

Fig. 1. Example on basic block for possibility of IPET WCET analysis methed.

3.2, Low-level WCET analysis method

. The iow-level analysis concerns to executing Java bytecode inside Java processor. The Figure
shows the process for execution bytecode on the real JOP systems [2|.

Java Jump JOP micrecode
bytecode table
iadd .-,:.\.-1 X
&cmnul
aiciv |- . igubk . sS_.z rx:
e :
slédv IePpe \
&fciv | i¢iv:. ctr b
&CCiv St a
_dr o orat
== Java mstruction Startaddress of idiv irem str b
(e.g. Oxéc) n JVYM ROM e

Fig. 2. Data flow for Java bytecode inside JOP.

For the low-level WCET analysis, a good model of the target architecture is needed. In our case
the target architecture is simple with respect to the WCET and well documented. Following |9], the
WCET analysis is performed in the microcode that implements the bytecode instructions. That means
the bytecode instruction timing is derived by static analysis and no further measurements are necessary.

Most bytecode instructions that do not access memory have a constant execution time. They
are executed by either one microcode instruction or a short sequence of microcode instructions. The
execution time in clock cycles equals the number of microinstructions executed. As the stack is onchip,
it can be accessed in a single cycle. We do not need to incorporate the main memory timing into the
instruction timing of simple bytecodes. Table shows example instructions, their timing, and their

VO Dung, NV Ha / VNU Journal of Science, Mathematics - Physics 27 (2011) 101-110 105

meaning (TOS is top-of-stack). Access to object, array, and class fields depend on the timing of the
main memory.

Tabel 1. Execution time of simple bytecodes in cycles

Instruction Cycle Function

iconst 0 | load constant 0 on TOS

bipush 2 load a byte constant on TOS

iload 0 | load local variable 0 on TOS

iload 2 load a local variable on TOS

dup l duplicate TOS
1
|
4

iadd integer addition
isub integer subtraction
ifeq conditional branch

Object oriented instructions, array access, and invoke instructions access the main memory.
There are 2 types of memory that contain the executing bytecode inside Java processor - memory read
and memory write. The following Figure shows the picture of caching memory in Java processor.

Result buffer Cn—
Read memory
) I aetfield
Port ALU
StaCk RAM ;J> buffer ———> (Arithmatic
logic unit)

Write memory
putfield

r- Forward buffer L

Fig. 3. Memory stack caching.

A method cache, with cache fills only on invoke and return, does not interfere with data access
to the main memory. Data in the main memory is accessed with getfield and putfield, instructions
that never overlap with invoke and return. In traditional caches, data access and instruction cache
fill requests can compete for the main memory bus. For example, a load or store at the end of the
processor pipeline competes with an instruction fetch that results in a cache miss. One of the two
instructions is stalled for additional cycles by the other instruction. With a data cache, this situation
can be even worse. The worst-case scenario for the memory stall time for an instruction fetch or a
data load is two miss penalties when both cache reads are a miss. This unpredictable behavior leads
to very pessimistic WCET bounds. Access time that exceeds a single cycle includes additional wait
states (7 for a memory read and w,,s for a memory write). With a memory with s wait states, the
execution time for, e.g., getfield is:

Lget field = 11 4 274

106 V.Q Dung, NV. Ha/ VNU Journal of Science, Mathemanics - Physies 27 (2011) 101-110

The meaning of formula above could be explained as following, the time of getfield command is
taken about two times of memory read and about 11s on idle for system data transfer. A memory
read in JOP microcode is split into two phases: (1) start the read transaction and (2) read the result.
To avoid timing dependencies within the memory subsystem over bytecode boundaries, memory store
instructions are also split into a start write and wait for completion instruction. Between those two
microcode instructions the memory subsystem performs the memory transaction in parallel to the the
core pipeline executing microcode instructions. Filling this slot with useful microcode instructions can
hide some of the access latency. The microcode sequence in this load/store slot is straight line code
and the number of hidden cycles is constant. The following example gives the exact execution time of
bytecode Idc2w in clock cycles (the clock of processor is about 100MHz and Stack RAM speed for
cycle - 15ns):

tigea, = 174+ maz(rys — 2,0) + maz(wys — 1, 0)

Memory access time also determines the cache load time on a miss. The cache load time is calculated
as follows - the wait state f,, for a single word cache fill is:

fuws = Max(Tys, 1)

The real system interaction between Java application, schedule, JVM and hardware is shown
on the fellowing Figure .

|/ Task 1 J { Taek 2 I [SchedulerJ VM | Hardaare
i | i

i i i ,
! ! | !

i ! bmer
H : PRl TR

IMETUE!
-—

i i
| |
| !
| i

schedule

Scheduling
dedision
| dispatch

e |
¥ ! I: \-@_. : set imer i
| i —r = |
| i resure sk ! Cormext |
1}
;

¥ M Faitah |'
[1 :
; #FNP ; :
1 — 1 i H
1 ok | | 1
! | 1 genint i :
i i) r
= i o a i
i 1 se! Kerrupt 1
] :

' H H | infemupt

i ' H -——— "
i i H schedule i
| i Scheduling + 1
i E dedison i ;
i 1 dispatch i i
| ! | ‘E‘:‘illch ! ; :
i ! set timer !
' 13 h

=
T
BT 1] Contaxt
Fese 15K : ioh T
i T |
i '

Lj application |:] User defined [:I Framasork

Fig. 4. Interact between Java application with schedule and hardware.

V.Q. Dung, N.V. Ha / VNU Journal of Science, Mathematics - Physics 27 (2011) 101-110 107

4. Experiment

In this section, we conclude with a worst and best case analysis of a classic example, the Bubble
Sort algorithm. The Java source code is showing in below:

public class Bubble

final static int N = 5; static void sort(int[] a)

inti,j, vl, v2;

// loop count = N-1

for (i=N-1;1 > 0; -1)

// loop count = (N-1)*N/2

for G=1; ji=1; ++))

vl = a[j-1];

v2 = a[jl;

if (vl > v2)

a[jl = vi;

afj-1] = v2;

}
}
}
}
}

The algorithm contains two nested loops and one condition. We use an array of five elements

to perform the measurements for all permutations (i.e. 5! = 120) of the input data. The number of
iterations of the outer loop is one less than the array size ¢; = N — 1, in this case is four. The inner
loop is executed co = Y ¢4 = ci(ci -+ 1)/2 times, i.e. ten times. The disassembler of bytecode is

showing in the Figure . The bytecode is divided into some of code blocks as shown in the Figure .

The annotated control flow graph (CFG) of the example, which is shown in Figure , is a result
after analysing. The edges contain labels showing how often the path between two nodes is taken.
We can identify the outer loop, containing the blocks B2, B3, B4 and B8. The inner loop consists of
blocks B4, B5, B6 and B7. Block B6 is executed when the condition of the if statement is true. The
path from BS to B7 is the only path that depends on the input data. With using a formula in section
3.2 we can also calculate the execution time on each edge.

The WCET and BCET value for each block is calculated by multiplying the clock cycles by the
execution frequency. The overall WCET and BCET values are calculated by summing the values of
the individual blocks B1 to B8. The last block (B9) is omitted, as the measurement does not contain
the return statement. The execution time of the program is measured using the cycle counter m Java
processor. The current time is taken at both the entry of the method and at the end, resulting in a
measurement spanning from block B1 to the beginning of block B9. The last statement, the return,
is not part of the measurement. The difference between these two values (less the additional 8 cycles
introduced by the measurement itself) is given as the execution time in clock cycles. Most bytecodes
have a single execution time (WCET = BCET), and the WCET of a task depends only on the control
flow. No pipeline or data dependencies complicate the low-level part of the WCET analysis. The
result is shown in Table . The execution frequency value is depended on input data. The result is

108 O D NV Ha 7 VNU Jowrnal of Science, Mathematics - Phyvics 27 (2001 10]-]]1)

ata bed Lo
whliv « 1.
tatic Final

e Lot
Ceetend s Jave s Tong . Ohjee 04

f uhlic Iubbile
Code:
(0]

5 77Method jjavars Lang20bject (*<init > : OV

il]
JECTTRE S |
inuly
iaload
istore

: goto
iine
goto
retarn

.

Fig. 5. Java bubble disassembler.

Bl B2 a3
0: iconst_4 2: ilad_1 6: jconst_1
1: istore_1 - 3: it S3 7: istore_2
" BS 85
8: load 2 13: sload_0 30: aload_0
9: i nad-l 14; ioad_2 n !b:d_!
10 3 a7 15; iconst_1 32: jload_3
=omes 16: isvb 33 lastora
L 17: iaload 34. aload_0
18: istore_3 35: lioad_2
1%: aload 0 36: kconst_1
20: Noad_ 2 37: bub
21; laload 38: iload 4
21: istore A 40: iastore
24; doad_3
25; iload 4
27: f_jcmple 41
e e 89
41; iinc 2,1 47: iinc 1,1 53 retum
44; gotn 8 S0: goto 2 i

Fig. 6. Java bubble disassembler block.

based on Altera board with 48MHz Cyclone processor, and 64KB memory cache by installing Java
processor.

V.Q. Dung, N.V. Ha / VNU Journal of Science, Mathematics - Physics 27 (2011) 101-110

B2

Fig. 7. Control flow graph of bytecode block.

Table 2. The result of experiment

Node

Execution time (¢) WCET = c*e¢ (ms)

B1B2
B2B3
B3B4
B4B5
B5B6
B6B7
B7B4 ¢,
B5B7
B4B8
B8B2 ¢,
B2B9

1
4
4
10
7
6
10
5
4
4
1

B1=2

B2=25

B3=8

B4=80

B5=740 (Depending on loop)
B6=730 (Depending on loop)
B7=150

Depending on loop

B8=60
return

5. Conclusion and Future work

109

In this paper, we have proposed methods for WCET analysis in Java processor. Some of them
is still in developing, and we will come to an optimizing WCET method that applied for Java real-time
embedded systems. In the future, we focus on more complex Java bytecode, that can be implemented
in Java processor. We’ve been developing and will complete an WCET analysis tool, that supports for

hight-level as well as low-level WCET analysis.

110 VO Dune. NV Ha ! VNU Jowrnal of Science. Mathematics - Phvsics 27 (2011) 10]-110)

Acknowledgement. This work is partly supported by the research project No. QC.08.05 granted by
Vietnam National University, Hanoi. ‘

References

[1] Vu Quang Dung, N.V.I1., Real time garbage collection for java microprocessor, ATC 2008 conference (2008)

[2] M. Schoeberl, Jop: A java optimized processor for embedded real-time systems, Jn: PhD thesis, Vienna University o/
Technology (2005).

[3] J.M. O’Connor. M. Tremblay, Picojava-i: The java virtual machine in hardware, In: IEEE Micro, No 17 in 2 (1997)
45,

[4] W. Puffitsch, Picojava-ii in an fpga, /n: Master’s thesis, Vienna University of Technology (2007)

[5] A.C. Shaw, Reasoning about time in higher-level language software, /n: [EEE Trans. Softw. Eng.. No 15 (7) (1989)
875.

[6] P. Puschner, A, Schedl, Computing maximum task exccution times of a graph-based approach, Journal of Real-Time
Systems, No 13 (July 1997) 67.

[7]1 Y.T.S. Li, S. Malik, Performance analysis of embedded software using implicit path cnumeration, In LCTES '95:
Proceedings of the ACM SIGPLAN 1995 workshop on languages, compilers, and tools for real-time systems, (1995)
88.

[8] Y-T. S. Li, SM., A. Wolfe, Efficient microarchitecture modeling and path analysis for real-time sofiware, In RTSS
95 Proceedings of the 16th ILEL Real-Time Systems Symposium (RTSS '95), page 298, Washington, DC, USA, IEEE
Computer Society (1995)

{91 M. Schocberl, A time predictable java processor, /n Proceedings of the Design, Automation and Test in kurope Con-
Serence (DATE 2006), (2006) 800,

	WCET analysis for multiprocessor based on real-time Java processor

	Quang-Dung Vu% Viet-Ha Nguyen

	Ỉ. Introduction

	2.	Related work

	3.	Real-time Java WCET analysis

	=< = E/. = Ea

	fl = Ỉ2 + /3

	aui = vl;

