
VNU Journal o f Science, M athematics - Physics 27 (2011) 101-110

WCET analysis for multiprocessor based on real-time Java
processor

Quang-Dung Vu% Viet-Ha Nguyen

VNU U n iv e rs ity o f E n g in eer in '^ a n d Technology^ 144 X u a n Thuy, C a u Giay, H ano i, Vietnam

R c c c i v e d 11 F c b u a r y 20] 1

Abstract. In this paper, vve propose a solution for a w crsl-ca se ex e cu tio n time (WCET)
analyzable Java system - a combination of a time predictable Java processor and a method
WCET analysis at Java bytecode level. The execution time of bytecodes, the instructions of
the Java virtual machine, is known cycle accurately for Java processor, which simplifies the
low-level WCET analysis [1 .

In hard real-time systems, the estimation of the WCET is essential. WCET analysis is in
general an undecidable problem. As concerning above, we propose some of WCET analysis
methods using control flow graph applied for high-level and low-level Java processor. Java
bytecode generation has to follow stringent rules in order to pass the class file verification of
the JVM. Those restrictions lead to an analysis friendly code; e.g. the stack size is known
at each instruction. The control flow instructions are well defined. Branches are relative and
the destination is within the same method. Detection of basic blocks in Java bytecode and
construction of the control flow graph (CFG) is thus straight forward.
Key-work: Java processor, Java virtual machine, control flow graph, Java bytecode, worst case
execution time, best case execution time, Integer linear programming (ILP).

Ỉ. Introduction

W CET plays an im portant role in verifying Java bytecode in real-tim e constraints. W CET
analysis is a w ell estab lished research area. However, there is still a gap betw een the theoretical
findings and the practical usage o f W CET analysis tools. W CET analysis is usually divided into
high-level and low -level techniques. H igh-level W CET analysis considers the program structure by
path analysis on the control flow graph (CFG). The low-level part is concerned w ith the execution
tim e o f m achine instructions or instruction sequences. Tli£ main issue for W CET analysis m ethod is
the grow ing com plexity o f new processors. It is alm ost im possible to model them for the low-level
analysis. We are using Java processor, called JO P [2], designed for tim e-predictable execution o f
real-tim e tasks instruction cache.

The paper is organized as follows. Related work is review ed in Section 2. Section 3 presents
our proposed real-tim e Java W CET analysis. An experim ental case is presented in Section 4 together
w ith results and discussion.

* Corresponding author. Tel.: +84915087345
E-mail: dungvq@ vnu.edu.vn

101

mailto:dungvq@vnu.edu.vn

102 ̂ (_) [)nníỵ. N V. H a / V N i ỉ J o u r n a l o f Sc i en ce . M a t h e m a t i c s - P h y s i c s 2 7 Í 2 0 I I) 1 0 1 - N O

2. Related w ork

In this section, w e review several existing w orks that are related to our proposed m ethod on
W C ET analysis in real-tim e Java system s. Sun introduced the first version o f p icoJava [3] in 1997,
However, th is processor was never released as a product by Sun. A redesign followed in 1999,
know n as p icoJava-II, w hich was freely available. The architecture o f p icoJava is a stack-based CISC
processor im plem enting 341 different instructions. It is the m ost com plex Java processor available.
T he processor can be im plem ented in 27,6K logic cells in an FPGA as show n in [4 .

Shaw presents in [5] tim ing schem as to calculate m inim um and m axim um execution tim e for
comm on language constructs. The rules allow to collapse the abstract syn tax tree o f a program until
a final single value represents the W CET. However, w ith this approach it is not straight forw ard to
incorporate global low-level attributes, such as pipelines or caches. T he resu ltin g bounds are not tight
enough to be practically useful.

C om puting the W CET w ith an integer linear program m ing (IL P) so lver is proposed in [G
and [7]. We base our W CET analyzer on the ideas from these tw o groups. T h e W C E T is calculated by
iransform ing the calculation to an integer linear program m ing problem . Each basic b lock is represented
by an edge in the T -graph (tim ing graph) with the w eight o f the execution tim e o f the basic block.
Vertices in the graph represent the split and jo in points in the control flow. Furtherm ore, each edge
is also assigned an execution frequency. The constraints resulting from the T -graph and additional
functional constra in ts (e.g., loop bounds) are solved by an ILP solver. T h e T -graph is sim ilar to a
CFG , w here the execution tim e is m odelled in the vertices. The m otivation to m odel the execution
tim e in the edges results from the observation that m ost basic blocks end w ith a conditional branch.

3. Real-time Java WCET analysis

In this section, we describe the m ethods o f W CET analysis. T here are 2 m ethods of W C E l
analysis - one is the basic m ethod in W CET analysis- im plicit path enum eration technique (IPRT),
w hich bases for high-level; the other is low-level W CE r analysis, w hich involves to Java bytecode.

3 .1. IP E T W C E T analysis m ethod

IPET m ethod [6] is based for W CET analysis, w hich can find the exact W C E T in these sim ple
cases because the execution tim e o f each section o f code can be considered independently o f all the
others. T hat is a high-level W CET analysis. In IPET, llie program is m odeled as a flow netw ork, and
integer linear program m ing (ILP) is used to determ ine the execution path w ith the m axim al execution
tim e. The calculation o f the W C ET is transform ed to an ILP problem . In the CFG , each vertex
represents a basic block with execution tim e Cị. W ith the basic b lock execu tion frequency Cj the

W CET is:
N

W C E T = m a x ^ CjCj

i=i
T he sum is the objective function for the ILP problem . The m axim um value o f th is expression results
in the W C ET o f the program . Furtherm ore, each edge is also assigned an execution frequency f. T hese
execution frequencies represent the control flow through the W C ET path . Tw o prim ary constraints
form the ILP problem : (i) For each vertex, the sum o f f j for the incom ing edges has to be equal to

the sum of the f k o f the outgo ing edges; (ii) the frequency o f the back edges connecting the loop body
with the loop header, is less than or equal to the frequency o f the edges entering the loop m ultiplied

by the loop bound.
From the C FG , w h ich represents the program stm cture, w e can extract the flow constrain ts.W ith

the execution frequency f o f the edges and the tw o sets h for the incom ing edges to basic block D^
and for the ou tgoing edges, the execution frequency ei o f B ị is:

V.Q. D ung N .v. H a / VNU Journal o f Science, M athem atics - Physics 27 (2011) l OI - l I O 103

=< = E / . = E a
j e h keo .

The frequencies f i are the in teger variables calculated by solving the ILP problem . A dditional con
straints are needed to h and le loops. The incom ing edges to the entry point o f the loop, the loop header

h, are classified as follow s:

1. The set o f incom ing edges E k that en ter the loop
2. The set o f back edges Cii that close the loop

W ith the m axim um loop count (the loop bound) n, w e form ulate the loop constra in t as

jeCh. k^Efi

W ithout further global constra in ts, the problem can be solved locally for each m ethod. We start at the
leaves o f the call tree and calculate the W C ET for each m ethod. The W C ET value o f a m ethod is
included in the invoke instruction o f the caller m ethod. To incorporate global constrain ts, such as cache
constraints [8], a s ing le IL P problem is built that m odels the w hole program . The invoke instruction
i is connected to the en try and exit node o f the invoked m ethod, adding edges c and r, respectively.
To ensure that on ly valid paths are considered, one additional constrain t is needed for each m ethod

invocation:

f i — f c = f r
j e h

T he exam ple o f IPET W C E T analysis m ethod could be show n in Figure ? ? . T he basic b lock that
contains the invoke in struction is split into three new blocks: The preceding instructions, the invoke
instruction, and fo llow ing instructions. C onsider follow ing basic block:

- iload 1
- iload 2
- aload 0
- invokevirtual foo
- istore 3

W hen different versions o f fooQ are possible receiver m ethods, w e m odel the invocation o f fooQ
as alternatives in the graph . Follow ing the standard rules for the incom ing and outgoing edges the

resulting ILP constra in t for th is exam ple is:

f l = Ỉ 2 + /3

104 i (J D unợ . N . v . H a / l \ \ ' U J o u r n a l n f S c i ^ ’ncc. M ã í h c m a ĩ i c s - P h v s i c s 2 7 (2 0 Ị I) I OI ~ Ị Ị (ì

fl

Fig. 1. Exam ple on basic block for possibility o f IPET W C ET analysis m ethod.

Ỉ.2. Low -level W CET anơìysis m eihod

The low -level analysis concerns to executing Java bytecode inside Java processor. The Figure
shows ihe process for execution bytecode on the real JO P system s [2 .

Java pc

Java
bytecode

Jump
table

JL>P microcode

Ỉ 1 - -skA ifC-nul
i?idd r.x-.

X . . _
iload_2
i d i V _ _ ỵ " ^

« i c i V
á lc i V

- ► J O P p c i CVlL . c-b r.xi

&ỄCÍV
Ể«c<ii V

i c i v : GCr. b
s t r . a

Idr. r rjr.t

Java inỉ^nvcUon
(e.g. 0x6c)

Ũtođoóớres^i ồ tĩd ĩv
m JVM ROM

i r-im: ctr. b
■ ' ■ '

Fig. 2. Data flow for Java bytecode inside JOP.

For the low-level W CET analysis, a good model o f the target arch itec tu re is needed. In our case
the target arch itecture is sim ple w ith respect to the W CET and well docum ented . Follow ing [9], the
W CET analysis is perform ed in the m icrocode that im plem ents the bytecode instructions. That means
the bytecode instruction tim ing is derived by static analysis and no further m easurem ents are necessary.

M ost bytecode instructions that do not access m em ory have a constan t execution time. They
are executed by either one m icrocode instruction or a short sequence o f m icrocode instructions. The
execution tim e in clock cycles equals the num ber o f m icroinstructions executed . A s the stack is onchip,
it can be accessed in a single cycle. We do not need to incorporate the m ain m em ory tim ing into the
instruction tim ing o f sim ple bytecodes. Table shows exam ple instructions, their tim ing, and their

KQ. Dung, N.v. Ha / Vi^V Journal o f Science, M athem atics ' Physics 27 (20ỈỈ) ÌOỈ-ỈỈO 105

meaning (TOS is top-of-stack). Access to object, array, and class fields depend on the tim ing o f the
main mcmor>'.

Tabel 1. Execution tim e o f sim ple bytecodes in cycles

Instruction Cycle Function
iconst 0 1 load constant 0 on TOS
bipush load a byte constant on TOS
iload 0 1 load local variable 0 on TOS
iload 2 load a local variable on TOS
dup 1 duplicate TOS
iadd 1 integer addition
isub 1 integer subtraction
ifeq 4 conditional branch

O bject o rien ted instructions, array access, and invoke instructions access the m ain memory.
There are 2 types o f m em ory that contain the executing bytecode inside Java processor - m em ory read
and m em ory w rite. T he fo llow ing Figure shows the picture o f caching m em ory in Java processor.

Fig. 3. Memory stack caching.

A m ethod cache, w ith cache fills only on invoke and return, does not interfere w ith data access
to the m ain m em ory. D a ta in the m ain m em ory is accessed w ith getfield and putfie ld , instructions
that never overlap w ith invoke and return. In traditional caches, data access and instruction cache
fill requests can com pete for the m ain mem ory bus. For exam ple, a load or store at the end o f the
processor p ipeline com petes w ith an instruction fetch that results in a cache miss. O ne o f the two
instructions is sta lled for additional cycles by the other instruction. W ith a data cache, th is situation
can be even w orse. T he w orst-case scenario for the m em ory stall tim e for an instruction fetch or a
data load is tw o m iss penalties w hen both cache reads are a miss. T his unpredictable behavior leads
to very pessim istic W C E T bounds. Access tim e that exceeds a single cycle includes additional wait
states {r^s ^ m em ory read and W-U)S for a mem ory write). W ith a m em ory w ith r ^ s w ait states, the
execution tim e for, e.g., getfield is:

ige t f i e ld — 11 “t" 2 t*u;5

106 K Q. Dung. N. V. H a / VNU Journal o f Science, M athem atics - Physics 2 7 (2 0 1 1) IOỈ-Ỉ Ỉ 0

The m eaning o f form ula above could be explained as follow ing,, th e tim e o f getfield com m and is
taken about tw o tim es o f m em ory read and about 11s on idlè for system data transfer. A mem ory
read in JOP m icrocode is sp lit into tw o phases: (1) start the read transaction and (2) read the result.
To avoid tim ing dependencies w ith in the mem ory subsystem over bytecode boundaries, m em ory store
instructions are also split into a start w rite and w ait for com pletion instruction . Betw een those two
microcode instructions the m em ory subsystem perform s the m em ory transaction in parallel to the the
core pipeline executing m icrocode instructions. Filling this slo t w ith useful m icrocode instructions can
hide some o f the access latency. The m icrocode sequence in th is load/store slo t is straight line code
and the num ber o f hidden cycles is constant. The following exam ple gives the exact execution tim e o f
bytecode ldc2w in clock cycles (the clock o f processor is about lOOMHz and S tack RA M speed for
cycle - 15ns):

tidc2u, = 17 + m a x { r ^ s - 2, 0) + m a x (w y js - 1, 0)

M em ory access tim e also determ ines the cache load tim e on a m iss. T he cache load tim e is calculated
as fo llovs - the w ait state f w s for a single word cache fill is:

f w s ~ ĨTKlxịTmsi 1)

The real system interaction betw een Java application, schedule, JV M and hardw are is shown
on the follow ing Figure .

Task 1 T0B k 2 Scheduler J V M Hard’A'ar©

trr.et

5c*>«Julin(j
daósion

iS-FNP

schedule

dispatch

ContoKt

genlnt̂

sef iinởĩĩưpỉ

3ch»dulino
decision

schedule?

dispatch

inĩtơưpt

T set rimer 1

Cont«xiSV¥ixh

I I Applicotion 1 ^ User defined Q Fran>eii.'ork

Fig, 4. Interact between Java application with schedule and hardware.

4. E x p e rim en t

In this section w e conclude w ith a worst and best case analysis o f a classic exam ple, the Bubble

Sort algorithm . T he Java source code is show ing in below:

public class Bubble
final static int N = 5; static void sort(int[] a)
int i, j , v l , v2;
// loop count = N-1
for (i= N -l; i > 0; - i)
// loop count = (N -l)* N /2

for 0= 1 ; ji=>; + + j)
v l = a [j- l] ;
v2 = a[j];
if (v l > v2)

au i = v l ;
aU-1] = v 2 ;

}
}
}
}

The algorithm contains tw o nested loops and one condition. We use an aư ay o f five elements
to perform the m easurem ents for all perm utations (i.e. 5! = 120) o f the input data. The num ber o f
iterations o f the ou ter loop is one less than the array size C l ^ N - 1, in th is case is four. The inner
loop is executed C2 = T , t u i = C i(ci + l) / 2 tim es, i.e. ten tim es. The disassem bler o f bytecode is
show ing in the F igure . The bytecode is divided into som e o f code blocks as show n in the Figure .

T he annotated control flow graph (CFG) o f the exam ple, w hich is show n in Figure , is a result
after analysing. T h e edges contain labels show ing how often the path betw een tw o nodes is taken.
We can identify the outer loop, contain ing the blocks B2, B3, B4 and B8. T he inner loop consists o f
blocks B4 B5 B6 and B7. B lock B6 is executed w hen the condition o f the i f statem ent is true. The
path from B5 to B7 is the only path that depends on the input data. W ith using a form ula in section

3.2 we can also ca lcu la te the execution tim e on each edge.
T he W C ET and B C ET value for each block is calculated by m ultip ly ing the clock cycles by the

execution frequency. T he overall W C ET and BCET values are calculated by sum m ing the values o f
the individual b locks B1 to B8. T he last block (B9) is om itted, as the m easurem ent does not contain
the return statem ent. T he execution tim e o f the program is m easured using the cycle counter m Java
processor. T he cu rren t tim e is taken at both the entry o f the m ethod and at the end, resulting in a
m easurem ent spann ing from b lock B1 to the beginning o f block B9. T he last statem ent, the return,
is not part o f the m easurem ent. T he difference betw een these tw o values (less the additional 8 cycles
introduced by the m easurem ent itself) is given as the execution tim e in clock cycles. M ost bytecodes
have a single execu tion tim e (W C E T = BCET), and the W CET o f a task depends only on the control
flow. N o p ipeline o r da ta dependencies com plicate the low-level part o f the W C ET analysis. The
result is show n in T able . T he execution frequency value is depended on input data. T he result IS

V.Q. Dung, N.v. Ha / VNU Journal o f Science, M athem atics - Physics 27 (2011) 101-110 107

108 í Ọ. D u ‘>'r. NA', l i a / V N i U o n r n a ỉ o f Science, Mathenu i i i is - Physics 27 {20Ị h Ị () I~ Ị ỊD

Fig. 5. Java bubble disassembler.

bi
0: konst 4
1: ỉítOf« 1

B2
2: ikMd 1
3: ifit l i

83
6: kon«t_l
7: l»t©r«_2

8: ỉtoMÌ.2
9: ttoíHỉIl

10: 47

BS
13: tlosd 0
14; 101(1.2
IS: kxm slj.

16; isMb
17: iaioad

H i Irt0ft,3
19: «kMd 0
20: tfoadlz
21: i«kMd

22: i«tor« «
24; io id i
25; UMd A

27: tf icmple 41

B6
30: aio9d_0
31: ik»d.2
32: ik>ad.3
ĨÌĨ ia»toct
Ui aÌMd.o
3S: IkMd^
36: kortJtla

37: tsub
Ì9: ilo»d 4
40;

B7
41: Bnc 2.1
44; goto 8

BS
47t iinc 1, -1
50; goto 2

Fig. 6. Java bubble disassembler block.

based on A lte ra board w ith 48M H z Cyclone processor, and 64K B m em ory cache by installing Java
processor.

K y . D ung N .v. Ha / VNU Journal o f Science, M athem atics - Physics 27 (2011) l OI-IIO 109

Table 2. The result o f experim ent

N ode Execution tim e (c) W CET = c*e (m s)
B1B2 1 B l= 2
B2B3 4 B2=25
B3B 4 4 B3=8
B4B5 10 B4=80
B5B 6 7 B5=740 (D epending on loop)
B6B7 6 B6=730 (D epending on loop)
B 7B 4 C2 10 B7=150
B5B7 5 Depending on loop
B4B8 4
B 8B 2 Cl 4 B8=60
B2B 9 1 return

5. Conclusion and Future w ork

In th is paper, w e have proposed m ethods for W CET analysis in Java processor. Some o f them
is still in developing, and w e w ill com e to an optim izing W CET m ethod that applied for Java real-tim e
em bedded system s. In the fu ture, w e focus on m ore com plex Java bytecode, that can be im plem ented
in Java processor. W e’ve been developing and will com plete an W C ET analysis tool, that supports for

hight-level as w ell as low -level W C ET analysis.

A cknow ledgem en t. This work Is partly supported by the research project N o. Q C .08.05 granted by
V ietnam N ational U niversity, Hanoi.

References

[1] Vu Q uang Dung, N.V.H., Real time garbage coileclion for Java microprocessor, ATC 2008 conference (2008)
[2] M. Schoebcrl, Jop: A Java optimized processor for embedded real-time systems, in: PhD thesis, Vienna University o f

Technology (2005).
[3] J.M. O ’Connor. M. Tremblay, Picojava-i: The Java virtual machine in hardware, ỉn: IE E E M icro, No 17 in 2 (1997)

45.
[4] w . Puffitsch, Picojava-ii in an fpga, ỉn: M aster's thesis, Vienna University o f Technoiogv (2007).
[5] A .c . Shaw, Reasoning about time in higher-level language software, ỉn: IEEE Trans. Softw. Eng.. No 15 (7) (1989)

875.
[6] P. Puschner, A, SchedI, Com puting maximum task execution times o f a graph-based approach. Journa l o f Real-Time

Systems, No 13 (July 1997) 67.
[7] Y.T.S. Li, S. Malik, Performance analysis o f embedded software using implicit path enum eration, Ịn LCTES '95:

Proceedings o f the AC M SỈG PLAN Ỉ995 workshop on languages, compilers, and tools fo r real-tim e systems, (1995)
88 .

[8] Y.-T. S. Li, S.M., A. Wolfe, Efficient microarchilccture modeling and path analysis for rcal-tim c software, In RTSS
'95: Proceedings o f (he !6th IEEE Real-Time Sysiems Symposium (RTSS '95), page 298, W ashington, DC, USA, IEEE
Com puter Society (1995)

[9] M. Schocberl, A lime predictable Java processor, In Proceedings o f the Design, Autom ation and Test in Europe Con
fe ren ce (DATE 2006), (2006) 800.

 ̂ H a / V N U J o u r n a i o f Sc i ence . M a t h e m a t i c s - P h v s i c s 2 " (2 0 Ì I) Ị O Ị - Ỉ K)

	WCET analysis for multiprocessor based on real-time Java processor

	Quang-Dung Vu% Viet-Ha Nguyen

	Ỉ. Introduction

	2.	Related work

	3.	Real-time Java WCET analysis

	=< = E/. = Ea

	fl = Ỉ2 + /3

	aui = vl;

