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Abstract: Considering an infinite potential Cylindrical Quantum Wire (CQW)  subjected to a dc 

electric field 
1 1

(0,0, )E E=
�

, a Magnetic Field (MF) ( ,0,0)B B=
�

 and a laser radiation 

0
sinE E t= Ω

� �
(where 0E  and Ω  are the amplitude and the frequency of the laser radiation, 

respectively), the quantum kinetic equation for electron distribution function is obtained. 

Assuming the electron gas is non-degenerate and considering the Electron - Acoustic Phonon (AP) 

interaction, we achieve analytical expressions for the conductivity tensor and the Hall Coefficient 

(HC), which are different from those for the case of the Electron - AP interaction in a Rectangular 

Quantum Wire (RQW) or in Two-Dimensional Electron Gas (2DEG). The Shubnikov-de Haas 

(SdH) oscillations will appear. The amplitudes of SdH oscillations in the dependence of 

Magnetoresistance (MR) decrease with increasing MF. Numerical calculations are applied for 

GaAs/GaAsAl CQW to show the nonlinear dependence of the HC on the frequency of the laser 

radiation Ω , and Magnetic Field (MF) B
�

. Wave function and energy spectrum in a CQW are 

dissiminar to those in other Quantum Wires (QWs). Therefore, all numerical results are different 

from those in the case of QWs. The most important result is that the HC reaches saturation as the 

magnetic field or the EMW frequency increases.  

Keywords: Hall coefficient; cylindrical quantum wires; electron - optical phonon interaction; 

Shubnikov-de Haas oscillations. 

1. Introduction
∗∗∗∗  

The Hall Effect in bulk semiconductors under the influence of the Electromagnetic wave (EMW) 

has been studied in much details [1-2]. The Hall effect is the production of a voltage difference 

(the Hall voltage) across an electrical conductor, transverse to an electric current in the conductor and 

a MF perpendicular to the current. It was discovered by Edwin Hall in 1879. The HC is defined as the 

ratio of the induced electric field to the product of the current density and the applied MF. It is a 

characteristic of the material from which the conductor is made, since its value depends on the type, 
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number, and properties of the charge carriers that constitute the current. In Refs [1, 2] the Hall Effect 

is subjected to a crossed time-dependent electric field and MF. The old Magnetoresistance (MR) was 

calculated when the nonlinear semiconductors were subjected to a MF and an EMW with low 

frequency, the nonlinearity was explained by the non-parabolicity of distribution functions of carriers. 

However, almost these results obtained by using the Boltzmann kinetic equation, and are limited to the 

case of weak MF region and high temperature. In cases of strong MF and low temperature, the 

Boltzmann kinetic equation is invalid. Therefore, In Refs [3] we used the quantum kinetic equation 

method to study the influence of an intense EMW on the HC in parabolic quantum wells with an in-

plane magnetic. Numerical results show the Shubnikov-de Haas (SdH) oscillations in the MR whose 

period does not depend on the temperature and amplitude decreases with increasing temperature. In 

Refs [4] we studied the HC and the MR in Doped Semiconductor Superlattices with an In-plane MF. 

They are the same type SdH oscillations obtained in Two-Dimensional (2D) electron system [3, 4]. 

We saw earlier the conductance of a 2DEG oscillates in a MF and is periodic in 1/B where B is the 

flux density. There are SbH oscillations. We know that in order for these oscillations to be manifested, 

the electrons must be able to complete cyclotron orbits and that can happen only if the diameter of the 

smallest orbit 2
c

r  is smaller than the effective width of the QW. In one-dimensional (1D) electron 

systems, the review [5] is divided into three main subjects: Discrete states of conduction electrons 

confined to the vicinity of conductance of a the negatively charged acceptors, Asymmetry of plateaus 

in the quantum Hall effect and the SdH effect, Disorder modes in the cyclotron resonance. In Refs, [6] 

the SdH oscillations have observed beating in quantum wires grown on (0001) sapphire. The spin 

splitting of 1D electron system in quantum wire can be applied to a low-power-consuming quantum-

ring interferometer. In Refs, [7] the MR and Hall resistance in a quasi-ballistic multi-terminal quantum 

wire of GaAs/AlGaAs heterostructure have been investigated. The SdH oscillations are observed at 

high MF in the absence of EMW. However, Refs [5-7] only considered the case of an absent and at the 

temperatures at which electron-electron and electron-impurity interactions were dominant. In a recent 

work [8], we studied Hall Effect in a RQW with infinitely high potential and in the presence of a laser 

radiation, subjected to a crossed dc electric field and magnetic field in the presence of a strong EMW 

characterized by electric field. The dependence of the HC under EMW in quantum wires with different 

directions of external fields still remains open for investigation, especially by analytical and 

computational methods. Therefore, in this work, calculation of the HC and Hall Conductivity in a 

CQW under the Influence of a Laser Radiation caused by Electron - AP interaction have been 

measured to investigate the SdH effect by using the quantum kinetic equation for electron. The main 

purpose of this is to make a comparison between our calculation and other experiments and theories. 

Since wave function of electron in a CQW is different from that in a RQW and 2D, probability of 

Electron-AP scattering, resulting in the electron form factor, changes. Energy spectra of electron in a 

CQW are different from those in a RQW and 2D, which bring about the conservation of momentum 

energy law and the scattering processes. Delta function makes a change due to all above changes. As a 

result, the HC and Hall conductivity in CQW differs from that in RQW and 2D. The most important 

difference is the MR in CQW depending on the indices , ', , 'n n l l (the quantum numbers of electron) 

and , 'N N (the Landau levels) so that quantum theory of the HC and Hall conductivity in CQWs under 

EMW is newly developed. The work is organized as follows. In Sec. 2, we briefly describe the model 

of the problem and the derivation of the quantum kinetic equation for electrons in a RQW with 

infinitely high potential under the influence of a Laser Radiation. The expressions for Hall 

conductivity and the HC are presented briefly. Numerical results and discussion are given in Sec. 3. 

Conclusions are shown in sec. 4. 
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2. The Hall conductivity and the HC for Electron-AP scatterring in a CQW with infinitely high 

potential 

We consider a CQW of the radius R and the length L with the infinite confined potential: (r) 0V =
�

 

inside the wire and (r)V = ∞
�

 elsewhere subjected to a crossed dc electric field ),0,0( 11 EE =
�

 and 

magnetic field )0,,0( BB =
�

 in the presence of a strong EMW characterized by electric 

field )sin,0,0( 0 tEE Ω=
�

. Hamiltonian for Electron–AP interacting system in external field can be written as: 

, ( ) , , , ,

, ,

2 2

, , ', ' , , ', ', , , ', ',

, , ', ', ,

( )                                

( ) ( ) ( ) .

n l t q q qn l k n l k

qn l k

q n l n l q qn l k q n l k n l k q n l k

qn l n l k q

e
H k A a a b b

c

C I q a a b b q a a

ε ω

ϕ

+ +

+ + +
−+ +

= − + +

+ + +

∑ ∑

∑ ∑

� � � � �

� �

� � � �� � �� �

� ��

� �

� �

                             (1)

 Where 
, ,n l k

a
+ �  and 

, ,n l k
a �  ( +

qb � and 
qb � ) are the creation and annihilation operators of electron (OP); 

k
�
is the electron wave momentum (along the wire's axis: z axis); q

�
 is the phonon wave vector; 

q
�ω  are 

AP frequencies; 
, , ' ' , , ', '(q) C ( )n l n n q n l n lC I q= �

� �
is the Electron – AP interaction coefficient; 

2
2

2
q

s

q
C

V

ξ

ρυ
=�
�

( q
�  is 

the phonon wave vector ; , , ,s Vυ ξ ρ  are the sound velocity, the acoustic deformation potential, the mass 

density and the normalization volume of specimen, respectively). 
1

(t) cos( t)
o

A E= Ω
Ω

�

is the potential 

vector, depending on the external field. 
, , ', ' ( )n l n lI q

�
 is the electron form factor different from that in 

RQW [8] and in quantum wells [3].  

*

, , ', ' ', ' ,'2
0

2
( ) (q R) (r) (q R) rdr

R

n l n l n l n ln n
I q J

R
ψ ψ⊥ ⊥ ⊥−

= ∫
  

                                                                                    (2) 

 In which , (r)n lψ  is radial wave function:
 

, ,

(n 1) ,

1
(r) (A )

(A )
n l n n l

n l

r
J

J R
ψ

+

=

                                             
  (3)                                 

 Where  the radial wave function containing ,An l  is the root of the Bessel function ( (x)nJ ).
 

(q)ϕ
�

is the potential undirected: 
3(q) (2 i) (eE [q,h]) (q)

c
q

ϕ π ω δ
∂

= +
∂

��� � �
                                                              (4) 

Wave function of confined electron: 
,

0                                khi r>R

1, , (r)    khi r<R
(r, , z)

im ikz
n l

o

n l k e e
V

φ ψ
ψ φ


= 


�

    (5) 

Energy Spectrum of confined electron: 

2
2 2 2 2 2 2

1
, 2 2

1 1
( ) ( )

2 2 2 2

x

n l c

x y c

k n l
k N

m m L L m

π
ε ω

ω

� � eE         
= + + + + −= + + + + −= + + + + −= + + + + −                      

  (6)
 

Here, /c eB mω = is the cyclotron frequency, R is the radius of wire 

From Hamiltonian for Electron–AP interacting system in a CQW with Infinitely High Potential 

and the procedures as in the previous work [3, 4, 8], we obtain quantum kinetic equations for Electron:  

   ,

, ,
,

k

k k
t

n
i a a H

t

γ
γ γ
+

∂
 =   ∂

�

� �                                                                      (7) 

Where , , ,k k k
t

n a aγ γ γ
+= � �  is the non-equilibrium electron distribution function. 
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From non-equilibrium electron distribution function: 

( )

,

, , ,
,

( )

o

ko

k k k
k

n
n n k

γ
γ γ γ

γ

χ ε
ε

∂
≡ −

∂

�

� � �

�

� �

; 

,
( )

,

1
,

F ko

k
B

n e
k T

γ
β ε ε

γ
β

−
= =

�

�

. 

From quantum kinetic equations, after several operator calculations, we have the link between the 

current density
i

j  and the Hall conductivity tensor ijσ . The HC and the component xxρ  of resistance 

(the MR) are determined by Hall conductivity tensor. Therefore, we obtain the HC and the MR: 

  

2

2 2 2 2

2 2
2

2 2

2 2 2 2 2 2 2 2

1 11

(1 )
1 1 1 1

H

c

c c c

c
c

c c c c c

ea b

m
R

B ea b b
ea

m m

ω τ τ

ω τ ω ω τ

ω τ τ τ τ
ω τ

ω τ ω ω τ ω τ ω τ

 
+ 

+ + =
      −   

+ + + −      
+ + + +         

                                           (8)  
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2 2 2 2

2 2
2

2 2

2 2 2 2 2 2 2 2

(1 )
1 1

(1 )
1 1 1 1

c

c c

xx

c
c

c c c c c

b
ea

m

ea b b
ea

m m

τ τ
ω τ

ω τ ω τ
ρ

ω τ τ τ τ
ω τ

ω τ ω ω τ ω τ ω τ

 
+ − 

+ + =
      −   

+ + + −      
+ + + +         

                                          (9) 

In which: the quantities in the equation (8), (9) vary from those in RQW [8]. Therefore, the 

expression for the HC in RQW is different from that in RQW or 2D. In these expressions, /h B B=
� �

is 

the unit vector along the magnetic field, ,
(N )qk

n
γ
� � is the time independent component of the distribution 

function of electrons (phonons), γ  and 'γ  are the quantum numbers (n,l)  and (n', l')  of electron. 
( , N')N are the Landau level ( 0,1,2...).N =   

Where: 
3/2

2 2

1

2 2 2 2 2

1 2
exp

2 1 2 2 2 2 2
F c

c o c

L e n l e E m
a N

m m

β τ π
β ε ω

π ω τ ω β

      
= − + + + +     +       

�
�

�
 

2

1 2 3 4 52
, '

2
( 2 2 2 )

2

B

s
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b I S S S S S

m V γ γ

π ξ
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= + + + +∑ ;

2

11 1
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2 2 2 2
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c
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ω
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2

, '1/ (k T);I (q)B I dqγ γβ
+∞

−∞

= = ∫
� �

;   

Fε  is the Fermi level. τ  is the momentum relaxation time; , '(q)Iγ γ

�
is the electron form factor; 

Bk  is 

Boltzmann constant; T is temperature. (x)iK  are modified Bessel functions. 
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Equations (7) and (8) show the dependency of the MR and the HC on the external field, including the 

EMW. It is obtained for arbitrary values of the indices , ', , ',N, N'n n l l . However, it contains the term 

, '(q)Iγ γ

�
 for which it is difficult to produce an exact analytical result due to the presence of the Hermite 

polynomials. We will numerically evaluate this term using the computational method. Furthermore, it 

is seem that the change wires have modified the wave function and energy spectrum of electrons and, 

consequently, the obtained results are now very different from our previous results in quantum wells, 

bulk semiconductors and RQW. This differs from one observed in quantum wells (see Ref [3]), whose 

HC is only dependent on N,N' . The HC in RQW is not only dependent on , ', , ',N, N'n n l l  , which is the 

same as in CQW, but also ,x yL L  (the sire of RQW). In the next section, we will give a deeper insight 

into these results by carrying out a numerical evaluation and a graphic consideration using the 

computational method. The obtained results are very different in comparison to Quantum wells, RQW 

and 1DEG without EMW. 

3. Numerical results and discussions 

In this section, we present detailed numerical calculations about the dependence of the HC and 

MR on the frequency of EMW, the MF of the CQW GaAs/GaAsAl. When the temperature changes 

with parameters [7]:         
24 13 1 23 3

0

12 3 5 1 18

12.5, 6.006 10 , 50 , 36.25 , 3 10 , 1.38 10 /

' 1, 1, 0 1, 1, 0 1, 10 , 5320 , 2 10 , 5220 / , 2.2 10

F B

s

m meV meV s k kg m

N N n n l l s kgm q m m s J

ε ε ω

τ ρ υ ξ

− − −

− − − −

= = × = = Ω = × = ×

′ ′− = = = ÷ = = ÷ = = = × = = ×

�         

 

a) 

 
b) 

Figure 1. The dependence of the Hall coefficient on a) ( )B T ; b) 
11 / ( )B T

−
 

The HC is plotted in Fig. 1 as a function of the B and 1 / B for two cases: presence of the EMW 

(solid curve) and absence of the EMW (dashed curve). Here
2

1 1 0 / , 1E V m T K= = . We can see 

clearly the appearance of the typical SdH oscillations with the period is in 1/B. We saw that the 

conductance of a 2DEG oscillates in a MF and is periodic1 / B where B is the flux density. We know 

that in order for these oscillations to be manifested, the electrons must be able to complete cyclotron 
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orbits and that can happen only if the diameter of smallest orbit 2 cr is smaller than the effective width 

of the quantum wire, which is given *2 / ( )
o

m ω� by [6]. Therefore, SbH oscillations in QW will 

appear when the magnetic flux density.  

The oscillations in Fig. 1 have been studied in detail both theoretically and experimentally in Ref. 

[5-7] in case absence of the EMW. As we see from the graphs 1a and 1b, in the case of the absence of 

EMW, the curves are identical to those in Refs experimentally [5-7]. The amplitude of HC with the 

presence of HC EMW, however, is higher than that without EMW. In addition, the HC increases when 

the magnetic field goes up. This is the novel point of HC, which is totally different from that in Refs 

[5-7]. Like the two-dimensional systems, if the Electron-AP interaction occurs at the low temperature, 

the SbH oscillations will appear. Nevertheless, the HC values in a CQW are smaller than those in 

quantum wells [3, 4] and the curves are different from those in quantum wells, 2DEG and bulk 

semiconductors. 

 
 

a) 

 

b) 

Figure 2. The dependence of the MR on a) The / cωΩ ; b) The MF. 

Figure 2a shows the dependence of the MR on the ratio / cωΩ for two case presence of the 

EMW (solid curve) and absence of the EMW (dashed curve). It seems that the oscillation amplitude 

changes evidently in some regions of the MF in the presence of the EMW. There occurs the beat 

phenomenon. This is different from that in quantum wells [3]. The dependence of The MR on the ratio 

/
c

ωΩ in the Fig. 2 without EMW is similar to that in the Ref. [7]. 

Figure 2b shows the dependence of the MR on the magnetic field at different values of the 

temperature. We can see the appearance of the typical SbH oscillations with the period does not 

depend on the temperature. This property has been observed in 2DEG and in 1DEG without EMW [3-

7]. However, our results are different from those (for type of oscillations) in quantum wells [3], and 

are obtained experimentally in a quantum wire [6]. The MR can be seen to oscillate and decrease 

according to the MF increase. 
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4. Conclusion 

In this work, we have studied calculation of the HC and Hall Conductivity in CQWs under the 

Influence of a Laser Radiation caused by Electron - AP interaction subjected to a crossed dc electric 

and MFs. The Electron–AP interaction is taken into account. We obtain the expressions of Hall 

conductivity as well as HC. The analytical results are numerically evaluated and plotted for a specific 

quantum wires GaAs/AlGaAs to show clearly the dependence of MR on the MF at different values of 

the temperature and the ratio / cωΩ , when MF is large, the MR can be seen to oscillate and decrease. 

This confirms that the MR is quite sensitive to the change in the temperature. The decrease of the 

amplitude of the SdH oscillations in certain intervals of magnetic fields and EMW frequencies is 

observed in the case of a presence of the high-frequency EMW. The agreement is found between our 

calculation and some theoretical as well as experimental works for the MR. The HC is plotted in 

CQW, whose values and the curves are different from those in quantum wells, 2DEG and bulk 

semiconductors. 
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