
VNU Journal o f Science, M athematics - Physics 23 (2007) 15-21

Dynamically reconfiguration architecture for embedded
systems using Kaffe

Vu Quang Dung*, Nguyen Viet Ha, To Van Khanh
Department of Software Engineering, College of Technology, VNU

144 Xuan Thuy, Cau Giay\ Hanoi, Vìetnam

Received 28 May 2007

A bstract. In designing embedded systems, the exploration and synthesis of diíĩerent design
aỉtematives and co-verification of a specific implementation are the most demanding tasks.
Kaffe, an open-source technology, proviđes a platform for building a runtime environment
and integrating diíĩerent design methodologies. Integrating Kaffe into embedded systems is
the cornerstone of java-like technologies, allowing possibilities such as the development of
portable programs on mobile devices. In this paper, vve introduce a co-design environment
based on Kaffe vvhich supports the speciíication and prototyping of dynamicalỉy reconíigurable
embedded syslems.
Keyvvords: Embedded systems, Kaffe Virtual Machine (KVM), real-time systems, ARM,
Hardware-Software co-design, Java Native Interface, Kaíĩe Native Interíace

1. Introductỉon

Novvadays, cmbcddcd systcms are playing a major rolc on thc dcvclopmcnt of tcchnology.
Embedded systems are present in almost all mobile and electrical devices. The goals of embedded
systems are long system liĩetime, low cost, low development time, and portability.

Some mobile devices such as PDA and cellular phones often have an environment using the Java
Virtual m ach ine [1]. B ut th ese Java env ironm ents are not op tim ized fo r suppo rting special em bedded
programs: they cannot be modiíìed nor controlled, and they are very expensive. Thereíbre, in the design
of embedded systems executing java bytecode, we have developed a design exploration and prototypying
platíbrm, using an open source Kaffe technology for embedded platíorm [2]. The embedded KaíTe
technology a!lows the development of eữỉcient and secure cross-platform software, and the KafFe
Virtual machine (KVM) is the comerstone of this technology.

2• Sp»ecifìcation of eEmbedded Kaffe systems

The target architecture for such systems consists of a microprocessor running a KaíTe Virtual
machime, and a hardvvare processor consisting of a core from the ARM family. At a high level, KaíTe
is a System that integrates C/C++ and Java for the native environment. An overvievv of a KaíTe
architecture is illustrated in Figure 1.

• Corresponding aulhor. Tcl: 84-4-7549016
E-maiil: Dungvq@vnu.edu.vn

15

mailto:Dungvq@vnu.edu.vn

16 Vu Quang Dung et a i / VNU Journal o f Science,'Malhematics - Physics 23 (2007) 15-21

Figure 1. Overview of Kaffe architecture.

Figure 2. Co-design of Embedded Kafĩe.

For the purpose of using a java-like technology for embedded systems, we design a distributed
KafTe system using the Kaíĩe Virtual machine to execute the Java bytecode. The KVM relies on an
interpretation mechanism which emulates the execution of Java bytecode on mobile devices based on
embedded systems. The system architecture consists of a microprocessor running a Kaffe environment
and porting to hardware controlled by an ARM processor. Starting from an initial KaíTe specification,
profiling data is gathered vvhile executing the program with input data. The profiling data is then
visualized to guide the designer in the partitioning process. Partitioning is done at the method level of
granularity using a user interíace. Functions which are to be implemented in hardware are synthe.sized
using high-level logic synthesis tools. Java bytecode is stored in the pool of soíhvare m ethods. For all
methods which are candidates for the implementation in reconíigurable hardware, the ARM proccssor
Controls all iníormation storing in the pool o f hardware methods. T h e target software platform for port-
ing Kaffe environment is an embedded Linux, adapted to real-time systems. A co-design environment
using Kaffe is shovved in Figure 2.

Vu Quang Dung el al. / VNU Journaỉ o f Science, Malhemalics - Physics 23 (2007) 15-21 17

Figure 3. Integrated platíòrm.

3. Co-processor hardvvare design based on an ARM processor

To manage system integration, a runtime management program has been implemented. The
runtime management program schedules methods for execution either as software on the KVM or as
hardvvare on the ATEB9200 Evaluation board with an ARM processor controller. Execution on this
systcm is a dynamic process [3]. The execution flow of the system is dominatcd by the software part,
cxccutcd on the KVM. The core component of the runtime environment is the KVM. It consists of
a class loader for dynamically loading Java bytecode and an execution engine for interpreting these
bytecode on the ARM processor. An integrated system is shown in Figure 3.

The class loader is extended for reading in the current system partitioning table and for handling
hardvvare methods, exccuted on the ATEB9200 Evaluation board. The execution engine needs to know
whether a method is to be interpretcd as bytecode or executed in the ARM processor. For this reason,
the class loader assigns a special flag to every hardware method. During execution of the application,
the interpreter has to activate the hardware call module \vhenever the f!ow of control reaches a hardvvare
method. The hardvvare wrapper implements (he procedures, which transíers input data to the board,
cxecutes on the ARM processor and transfers the resulting data back to the calling thread.

For the ease of using the system model above, we propose some ideas for a simple implemen-
tation of Kaffe in the co-processor hardvvare on an ATEB9200 board that will lead to an increase in
períbrmance [4], as shovvn in Figure 4. Within the block diagram, all connections are 32 bits wide
vvith one exception. This is due to the fact that Java byte-code is built on a 32-bit architecture. The
cxception is the connection betvveen the Stack cache and the arithmetic units that is 96 bits. This
allovvs for long operands to pass from the cache to the arithmetic units in a single cycle.

The Ịogical blocks that are unique to this design arc the ARM ư o interface and the interface
controller. The interíace is connecteđ inside the ATEB9200 board to both the instruction and data
cachcs as well as the interface controller. Instructions for execution flow through the interface and
into the instruction cache for execution.

The interface controller maintains the link between the KaíTe system and the ATEB9200 board.
It is responsible for halting the hardvvare in the event that execution neeđs to stop vvhile the KVM
carries out part of the execution. In addition, it is responsible for changing the context of the current

18 Vu Quang Dung et aì. / VNU Journaỉ o f Science, Mathematics - Physics 23 (2007) 15-21

Figure 4. Hardvvare design based on an ARM processor.

execution when signaled by the KVM. In essence, it is the hardvvare mediator between the hardware
and software.

4. Software co-design

Between the Java co-processor, vvhich is in the ARM processor, and the memory that is available
on the board, there must be some interaction. The memory on board is used as an intermediate memory
location between the ATEB9200 system and the Kaffe co-processor. As the ATEB9200 system resolves
classes and sets the location of execution with the Kaffe coprocessor, it places into the board’s dynamic
memory RAM the class itself and the instructions that are locateđ at the address of execution. The
KaíTe co-processor through its I/O interface retrieves data from the memory and brings it into the
instruction cache on the ATEB boarđ for execution, similar to [5]. The memory must also contain any
data that cannot fit into the data cache and is used too often to be svvapped back out onto the ATEB
system.

To handle the amounts of data that are being transferred back and íòrth between the ATEB9200
system and the card, in the event that the memory on board is not sufficient to hold all the application
and necessary data generated, the memory must be split into manageable blocks to allow for quick and
efficient transferring.

For this reason and based on [6], we propose in Figure 5 the soữvvare design of Kaffe co-
processor, which supports the execution of the Java byte-code on the ATEB9200 board. This design
consists of the threads of execution that are necessary in the soữvvare to support the KaíTe co-processor.
Each of the threads are Standard threads vvithin the KaíTe V irtua l Machine except for the Hardware
handler that is added for communicating vvith the ARM processor interface. The hardware handler
is also an essential component in the communication of data between the Kaíĩe co-processor and the
Java byte-code. The thread is also used to maintain the synchronization of data between the memory
on the ARM processor and the memory located on the ATEB9200 board.

Vu Quang Dung et a i / VNU Journal o f Science, Mathematics - Physics 23 (2007) ì 5-2.1 19

Finallzôf

ỉtarbagd
Coỉtoctión

Harđware ỵx 1 »
Manđier M—V ia l l —" ■ í&SRyí

Instanca
Store

Object
Stóro

Figure 5. KaíTe design of co-processor.

Figure 6 . ARM/KVM integration.

5. An implementation of Kaffe architecture based on an ARM processor

Based on [6] and with Virtual machine Java-like system design in [4], we have ported Kaíĩe
into an Embedded system based on ARM processor [7]. We implemented a nevv mođel of hardware
and soíìware intcgration, which executes Java byte code on a hardware device based on the ARM
processor, as shovvn in Figure 6 .

We called a structure of the ARM processor on a KalTe system following config/arm/jit.h. When
the class is loaded, vve built a dispatch table, vvhich contains the pointers to methods. Since the meth-
ods are not yet translated, each dispatch table entry points to a trampoline for the associated method
as vvritten in [8], that has the structure

typedef struct jnethodTrampoline {

20 Vu Quang Dung et al. / VNU Journal o f Science, Mathemaíics - Physics 23 (2007) 15-21

unsigned char call armJPACKED;
int íĩxup arm_PACKED;
struct -methods* meth arm_PACKED;

} methodT rampol i ne;

This structure calls to a native method of the Kaffe Native Interface (KNI) and builds in Standard
c using a call for information, which will be stored in the ARM dynamic memory. The algorithm of
this method forms the major function calls in Kaffe’s main.c, that provides an overview of the entire
compilation process of Kaffe.

ALGORITHM for Kaffe on the ATEB9200 device based on ARM processor [9]:
BEGIN

• call machine-specific main.
• set java_version.
• get deíault VM init args.
• setup libtool, device memory.
• get the CLASSPATH, LIBRARYPATH, KAFFEHOME environment variables.
• process the program options.
• get the class name to start with

— * create and initỉalize the Java VM (calling JNI based on KNI).
— * find the class to start with (JNIEnv *env, char *argv[], int farg, int argc).
— * get the method handle for the main method in the class to start with (calls GetStat-

icMethodIDOwhich is actually Kaffe_GetStaticMethodID()to get the method handle for
mainQ).

• build an array of strings as the arguments to the Java code’s mainO
— * call thc main mcthod (CallStaticVoidMcthodO on [1 0]),which will causc thc cntirc

program (or the executed portion thereof)to be translated into native code a function at a
time.

• check for errors and then exit.

END

6 . Conclusion

We provide an architecture that uses a Java class and native methods inside Kaffe environment
for interfacing with embedded processors. We use the speciíìc API plug-in on KafFe libraries to write
and reađ a vaiue that contains the address of the board. These fiinctions are implemented via the Java
Native Interface (JNI) and Kaffe Native Interíace (KNI) with Java-C integration. The goal of this
integration is to design and port a Kaffe environment on an embedded processor with clear deíìnitions
of JN1 and KNI.

This research demonstrates that a KafFe co-processor is a practical and eíĩective solution to
Java’s performance problems.

A ck n o w led g m en ts . This work is partially supported by the Vietnam National IT Fundamental
Research grant 204006.

Vu Quang Dung eí al. / VNU Journaỉ o f Science, Mathemaỉics - Physics 23 (2007) Ị 5-2ì 21

Reíerences

11] Didier Donsez, Programmable Architecture on Java 2 Micro Edition, 2006.
[2] Navecd Ahmad. Saddaf Mumtaz, Software architecture o f Kaffe, 2006.
Ị 3] J.l;leischmann, A Harci\vare/SoJìw>are Prototyping Environment for Dynamicaỉly Recon/igurable Embedded Systems.

1998.
[41 Kenneth B.Kcnt, Micaela Serra, Hardware Architecture for Java in a Hardware/Software Co-Design o f the Virtual

Siacỉỉine. 2002. •
Ị 5Ị The Java Chip Processor: Ređeíìning thc Processor Market* Sun Microsystems, November 1997.
| 6] Stophan Schu!/.. Jerzy W.Rozcnblit, Michael Mrva, Klaus Buchenrieder, Model-based. Codesign. August 1998.
Ị7Ị Samucl K.Sanscri, Porting Kaffe to a New Architecture, 2000.
[8 | Kiyo Inaba, "What is trampoỉine code in Kaffe?’\ 1998. The URL at time of this writing is,

http://vvww2 .biglobc.nc.jp/ inaba/trampolincs.html
191 Azzam Mourad, A Seỉective Dynamic Complier for Embedded JVM Targeting ARM Processors, 2005.

11 0] Kiyo Inaba, '7/o>v sysdepCallMethod works'\ 1998. The URL at timc of this writing is, http://wwvv2.biglobc.nc.jp/ in-
aba/sy sdcpCallMcthod.html

http://vvww2.biglobc.nc.jp/

