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A bstract. The PageRank algorithm, used in the Google search engine, greatly improves the 
results of Web search by applying probabilistic model on the link structure of Webs to evaluate 
the “ importance” of Webs. In PageRank probabilistic niodel, the links and webs are uniíòrm, 
so the rank score of vvebs are quite independent from their content. In practice, the researchers 
often hope that the web results can be ranked by their proposed topics. Moreover, vvhen 
computer’s techniques solve given problems ineffectively, it*s necessary to do better research 
in theoretical problems. From this judgement, in this paper, we introduce and describe the 
MPageRank based on a nevv probabilistic model supporting multi-context for ranking Webs. A 
Web now has diíĩerent ranking scores, which depends on the given multi topics. The basic idea 
in establishing the new MPageRank model is that partition our Web graph into smaller-size 
sub Web graph. As a consequence of evaluation and rejection about pages iníluence weakly to 
other pages, the rank score of pages of the original Web graph can be approximated from the 
rank score of pages in the nevv partition Web graph. Similar to the PageRank, the multi ranking 
scores in the MPageRank are pre-computed and reílect the hyperlink of Web environment.

1 . Introducỉion

Nowadays the World Wide Web has became very large and heterogeneous, with an extraordinary 
grow rate. It creates many new challenges for information retrieval. One of the interesting problems 
is that evaluating the importance of a Web. The search engines have to choose from a huge number of 
the Web pages, vvhich contain the iníormation speciíied by the user, the “most important” ones, and 
bring them to the user.

The PageRank algorithm used in the Google search engine is the most famous and eíĩective 
one in practice. The underlying idea of PageRank is that using the stationary distribution of a random 
surfer on the Web graph in order to assign relating ranks to the pages. The link structure of the Web 
graph is an abundant source of iníormation about the authority of the Webs. It encodes a considerable

• Corrcsponding author. Tel: 84-054-822407.
E-mail: hicukicn@hotrnail.com

35

mailto:hicukicn@hotrnail.com


36 Le Trung Kien el al. /  VNU Journal o f  Science, Mathematics - Physics 23 (2007) 35-46

amount of latent human judgment, and we claim that this type of judgment is necessary to formulate 
a notion of authority. In the probabilistic model of PageRank algorithm, the random surfer surfs 
indefinitely from page to page, following all outlinks vvith equal probability and the score of a page is 
the probability that the random surfer would visit that page. PageRank scores act as overall authority 
values of pages which are independent of any topic.

In practice, a user himselí oflen has a proposed topic when he retrieves information in the 
internet. In fact, at íĩrst, the surfer seems to visit from the pages, which their content are related to his 
proposed topic, and while surfmg from page to page following outlinks, he always give priority to surf 
these pages. This property is not considered in PageRank because its random suríer surfed indeíinitely 
from page to page foIlowing all outlinks with equal probability. Moreover, the most difficult problem 
in PageRank is the rapid development of environment World Wide Web. When computer’s techniques 
solve problems inffectively; obviously, theoretical problems should be studied more thoroughly. One 
of studying theoretical problems is the research of the íopological structure o f  Web graph and the 
partition Web graph.

From the above observations, we introduce and describe the MPageRank algorithm. We assume 
that we can find a finite collection of the most popular topics (music, sport, news, health, etc). For 
each topic, we can evaluate the correlation between Webs and the topic by scanning their text. Each 
node of the Web graph now is vveighed and this weight is determined by the given popular topic. 
The probabilistic model in the MPageRank doesn’t behavior uniform for all outlinks and nodes, it is 
improved by supporting the \veight of web nodes. The rank scores of a Web are multi-values. The User 
can choose his proposed topic from the collection of given topics, and the chosen rank score is suitable 
for this topic. Certainly, the probabilistic model in MPageRank not only enables the user to choose his 
prefer topic but also models surf-Web process more precisely than the PageRank’s. However, the main 
aim in building new MPageRank model is that weighting the Web graph; so thank to Ihis, we study 
more effectively about the theory of partition Web graph. As we know, if our Web graph is partition 
into subgraphs which don’t connect together, the calculation in algorithms will be reduced remarkably. 
From the definiton of the set (or node) e-weak in Section 3.2, vvhich evaluates the iníluence rate of 
one page to other pages, and several results in the Section 3.3 about approximating the rank score 
of original Web graph through partition Web graph, we can make the MPageRank algorithm to be 
cheaper.

The two best-know algorithms vvhich improved Web search results by using the iníbrmation 
hyperlink structure are HITS [1] and PageRank [2]. Given a query, HITS invokes a traditional search 
engine to obtain a set of pages relevant to it, expands this set with its inlinks and outlinks, and then 
attempts to find two types of pages, hubs and authorities. Because this computation is carried out 
at query time, it is not feasible for today’s search engines, which need to handle billions of queries 
per day. In contrast, PageRank computes a single measure of quality for a page at cravvl time so it is 
íeasible for today’s search engines as Yahoo!, Google, etc. But PageRank has the restriction that its 
score of a page ignores topic corresponding to the query and computation is too complex.

More recently, there are many approachs for surmount the probability score of page ignores topic 
corresponding to the query. M. Richardson and p. Domingos [3] proposed the other probabilistic model, 
an intelligent random surfer,which approached for rank score function by generating a PageRank vector 
for each possible query term. T. Haveliwala [4] has approached by using categories “topic-sensitive” 
in Open Directory to bias importance scores, where the vectors and weights were selected according 
to the text query without the user’s choice. To speed up the computation of PageRank, s. Kamvar,
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T. llavelivvala et al. [5, 6] used successive intermediate iterates to extrapolate successively better 
estimates of the true local PageRank scores for each hosl vvhich are computed independently using 
the link structure of that host. Then these local rank scores are weighted by the “importance” of the 
corresponding host, and the Standard PageRank algorithm is then run using as its starting vector the 
weightcd concatenation of the local rank score. This idea originated from exploiting a nested block 
structure of the Web graph.

What is the model Web graph? Hovv does it grow random? There are interesting questions, they 
help us to realize Web environment from other way. The complex netvvork systems have been modeled 
as random graphs, it is increasingly recognized that the topology and evolution of real netvvorks are 
governed by robust organizing principles. The basic knovvledge of random graphs can find in [7]. 
Based on model random graphs, R. Albert and A. Barabási [8] discovered the small-world property and 
the clustering coeíĩicient of World Wide Web. Specially, they discovered that the degree distribution 
of the web pages follows a power law over several orders of magnitude. D. Callaway et al.[9] have 
introduced and anal>zeđ a simple model of a growing netvvork, randomỉy grown graphs that many of its 
propertics are exactly solvable, yet it shows a numberof non-trivial behaviors. The model demonstrates 
that even in the absence of preferential attachment, the fact that a Web environment is grovvn, rather 
than created as a complete entity, leaves an easily identiíiable signature in the environment topology.

There have becn many papers [10-13] investigate the property of partition Web graph; most 
results have theoretical character. J. Kleinberg [10] introduced the notion (e, kydetection set play a role 
as the evidcnce for existence of sets which don’t have as most k elements (nodes or edges) and have 
the property: if an adversary destroys this set, after vvhich two subsets of the nođes, each at least an e 
íraetion of the Web graph, that are disconnected from one another. J. Fakcharoenphol [11] shovved that 
the (f, A-)-detection set for node failures can be found with probability at least'1 - ỏ  by randomly chossing 
a subsct of nodes of size 0 (AA:logklog- + Alogj). F. Chung [12, 13] studied partition property of a 
graph based on applications of eigenvalues and eigenvectors of graphs in combinatorial optimization. 
Basically, our nevv theoretical results in this paper originate from the direction of F. Chung research.

The remainder of the paper is organized as íòllovvs: Section 2 is the preliminary. The result 
of the paper is all in Section 3. In this section, we introduce the MPageRank, present the set of Web 
pages having vveak iníĩuence on other Webs. Then we give the result approximate to the rank score 
of the original Web graph from the rank score of the ncw Web graph after destroys all of weak-pages. 
Finally, section 4 wiil be the conclusion.

2. Preliminary

In this section, we give an outline of the probabilistic model of PageRank (2.1), the PageRank 
computation (2.2) and discuss the relationship between the content of a page and a given popular topic 
to supplement to PageRank algorithm (2.3).

2.1. Probabilistic Model o f PageRank

PageRank is the algorithm that evaluates the authority of web pages based on the link structure. 
Link structure can be modelled by a directed graph, Web graph. Formally, we denote the vveb graph as 
G = (V, E), where the nodes y  , corresponding to the pages, and a directed edge (u,v) € E  indicates 
the presence of a link from u to V (u, V e V). The rank score vector r : V -» [0,1] denotes the rank
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score of pages, r(u) is the score of page u. PageRank builds the rank score vector based on two 
following assumptions:

• The web pages, vvhich are linked by many others pages, have a high score. In literature, we 
evaluate the authority of a page from “the crowd”. A web page is considered “high quality” if 
the crowd accepts to it.

• If a high score page links to some pages then its destination have a high score too. For example, 
a page just has only one link from Yahoo!, but it may be ranked higher than many pages with 
more links from obscure places.

We choose the rank score vector as a standing probability distribution of a random wa!k on the 
Web graph. Intuitively, this can be thought as a result of the behavior model of a “random surĩcr”. 
The “random surfer” simply keeps clicking on successive links at random. Hovvever, if a real YVeb 
surfer ever gets into a small loop of web pages, it is unlikely that the suríer will be in the loop íbrever. 
Instead, the surfer wil[ jump to some other pages. Formally, time by time the surfer does two following 
actions:

(1) Generally, with probability 1 -p , the surfer surís following all outlinks with equal probability.
(2) When the surfer feels bored, vvith the probability p, it jumps to all nodes in Web graph with 

an equal probability.
p is called jump probability ( 0 < p < 1 ), in practice we choose p =  0.1.

Hence, we can give the íollovving intuitive description of PageRank: a page has a high rank if 
the sum of the ranks of its inlinks is high.

2.2. Rank score vector in PageRank

Let N  = I v \ be the number of nodes in Web graph. Let ubea web page, Fu be the set of pages 
u points to, B u be the set of pages that point to u and O u =  |F„| be the Iiumber of links from u. For 
pages vvhich have no outlinks we add a link to all pages in the graph1 . In this vvay, rank which is 
lost due to pages with no outlinks is redistributed uniformly to all pages.

From the probabilistic model in MPageRank algorithm, the probability of event that the surfer 
is on page u at step i is given by the formula:

v€ou

Le. «  -  , [ * ] „ „ »  + (1 -  P)M, wi.h I I .  -  j  *  £

Matrix R is the transition probability matrix of suríer when he surfs on the Web graph. Rank 
score vector in PageRank at step i is given by the íòrmula:

r* = RTri~l
The above formula shows that (r*)N is a Markov Chain with the State space V , conresponding 

the transition probability matrix R. It is well-know, see e.g. (14, Chap XV], that a Markov chain has 
uniqucly a stationary probability distribution if, and only if, it is irreducible and aperiodic. Based on 
this knovvledge, we have an important result:
Proposition 1. The Markov chain (r*)N exisls uniquely the stationary probability distribution, be 
denoted r.
'For each page s vvith no outlinks, we sct F. =  V  bc all N nodcs, and for all othcr nodes augment Bu with s, (Bu u  {3})
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Proo/. Thus, our Web graph G has probability move from node u to node v: R uv > 0 so (r')N is an 
irreducibỉe chain. Moreover, each node u e V ,  since Pvu = Rvu ^ p so u  has a period t = 1. Thereíore 
node li is aperiodic for u € V , so the State space V has only One positive recurrence class (it means that 
this is an aperiodic chain). In fact, the Markov Chain (r')m exists uniquely the stationary probability 
distribution, r.

This stationary distribution r, itself is a rank score vector in PageRank. Rank score vector in 
PageRank is given by íòrmula:

r  =  ỉ ỉ T r  (1 )

R t is the stochastic matrix so rank score vector r is equivalent to primary eigenvector of the 
transition probability matrix R correspond vvith eigenvalue I.

2.3. Supplement to PageRank aỉgorithm

Generally, vvhile user retrieves iníormation in internet, he vvould like to find infonnation related 
to the determined topic. Hence, he has a tendency to retrieve web pages which have content related 
to tliis topic. For example, when a user find information about the Manchester United íbotball team, 
ccrtainly he prefers to find some vveb pages having content related to sport topic.

From the above observation, we propose the third assumption that supplements the two assump- 
tion of PagcRank:

• With a given topic, a page having its content related to this topic will have a high score.
Hovvever, how to evalute the relating rate of a Web page with a given topic based on its content? 

This is a big and complex problem which attract the attention of scientists in two recent decades. As 
wc know, this problem is knovvn with the name Text Analysis, which contains some techniques for 
analyzing the textual content of individual Web pages. Recently, the publisher John & Sons has 
published the book [15] and has one chapter to present this problem. The techniques are presented in 
this book have been developcd within the íìelds of information retrieval and machine learning and 
include indexing, scoring, and categorization of textual documents. Concretely, the main problem to 
cvalu.ate the relating rate of Web’s content vvith a given topic is that vvhether we can classify Web pages 
or noit based on their content. Clearly, this technique is related to iníormation retrieval technique, that 
consi:sts of assigning a document of Web to One or more predeíined categories.

In this paper, we have no intention of researching on the above problem thoroughly; however, 
in order to create theoretical base for results in the next section of the paper, we accept a judgement is 
that: “Let a topic T , vve can have an evaluation/unction ỈT : V —> [0,100] to evaluate how relationship 
betvveen a page and this topic is.” After constructing the evaluation íunction ỈT for the topic T, where 
/•/■(«)) evaluates how the page u related to the topic T, we introduce a new probabilistic model for 
ranki ng Webs, MPageRank, improvement of PageRank model based on the evaluation about Web page 
impoirtance related to the given topic. Moreover, from the vveighed Web graph technique, we present 
some new theoretical results to understand more clearly the partition property of Web graph.

3. T'he MPageRank

There are three problems vve discuss in this section. The íìrst, we will describe probabilistic 
model in MPageRank algorithm. Next, in theory, we will evaluate and propose quantitatives to partition
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the set of Web pages in Web graph. The end, we will present basic results to suggest the direction of 
the cheap algorithm, MPageRank.

3.1. Probabiỉistic Model o f  MPageRank

Based on above discussion, we construct the MPageRank algorithm according to a new proba- 
bilistic mođel. To begin constructing the MPageRank, we choose k popular topics T \,T ì , . . . ,T k \  (e.g. 
with k = 5, we can choose a collection of popular topics such as: Politics, Economics, Culture, Society, 
Others). For each topic Ti, we consider and give an evaluation function fi to evaluate the relationship 
between the content of pages and this topic.

We build the MPageRank algorithm satisfies three following assumptions:
• The web pages, which are linked by many others pages, have a high score.
• If a high score page links to some pages then its destination has high score too.
• With a given topic, a page having its content related to this topic vvill have a high score.
We choose the rank score vector tm as the the standing probability distribution of a random 

surfer on the Web graph. However, diíĩerence of PageRank, in MPageRank the surfer doesn’t surf 
following all outlinks and choose all the pages when he feels boring with cqual probability. It depends
on the topic vvhich the user choose. For each topic Ti, the surfer surfs following outlink (u,u) € E
and jum ps to page V w hen he feels bored w ith probability:

Formally, time by time this surfer does two following actions:
(1) Gerterally, with probability 1 - p ,  the surfer stayed at page u surfs following all outlinks, vvhere 

surfs to page V (v € B u) with probability puv.
(2) When the surfer feels bored, with probability p, it jumps to all pages in Web graph, where 

page V is probability pv.
Like to the calculation in PageRank, we calculate rank score function rM in MPageRank as

v € B u

Let Rm = p R l + (1 -  p)R2, where /ỉ1, R 2 are a N  X N  matrix with R lv = p„ and

R 2 _ í Puv if (u , v) e E  
uv ìo  otherwise

Matrix R m is the transition probability matrix of surfer when he surís on the Web graph in 
probabilistic model of MPageRank. Rank score vector in MPageRank at step i is given by the íormula:

Certainly, (rịw)N is a Markov Chain with the State space V. Similar to PageRank, we have 
another result:
Proposition 2. The Markov chain (rị^Ịis exists uniquely the stationary probability distribution, be 
denoted tm .

p  V =

j€Fu

following:
The probability of event that the surfer is on page u at step i is given by the íormula:

»m(u) =  PPu + (1 - p )  X ] P™r M l (v )

r1 — RT r*”1 rM — n MrM
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Proof. If the Markov Chain (rị^N has only one irreducible closed subset s, and if 5 is aperiodic, then 
the chain must have a unique the stationary probability distribution. So vve simply must show that the 
Markov Chain (ri# )n has a single irreducible closed subset s , and that this subset is aperiodic.

L e t  th e  s e t  u  b e  th e  s t a t e s  w i t h  n o n z e r o  c o m p o n e n t s  in  V =  (pu)n x \ ■ L e t  s  c o n s i s t  o f  t h e  s e t  

ofall states reachable from u  along nonzero transition in the Chain. 5 trivially forms a closed subset. 
F u rth e r ,  s i n c e  e v e r y  S ta te  h a s  a  t r a n s i t i o n  to  u,  n o  s u b s e t  o f  s  c a n  b e  c lo s e d .  T h e r e í ò r e ,  5  íò r m s  

an irreducible closed subset. Moreover, every closed subset must contain ư , and every closed subset 
containing ư  must contain 5. So s  must be the unique irreducible closed subset of the Chain.

On the other hand, all members in an irreducible closed subset have the same period, so if at 
lcast one State in s has a self-transition, then the subset s is aperiodic. Let u be any State in ư . 
By construction, there exists a self-transition from u to itselí. Thereíbre s  must be aperiodic, so the 
Markov chain (r ị, )n exists uniquely the stationary probability distribution, rA/.

The stationary distribution tm is the rank score vector in MPageRank and it is given by formuIa:

r M — R/ừrM (2)
R \t is the stochastic matrix so rank score vector rA/ is equivalent to primary eigenvector of the 

transition matrix R m correspond with eigenvalue 1.
The naive algorithm computing accurately multi-rank scores for all Webs is presented from 

equation (2). lf our Web graph is connective so the complexity of the naive algorithm is 0 ( N 2), where 
N  is the number of pages in Web graph. In practice, this complexity is extremely high (N  ~ 6.109). 
As vve know, if our Web graph has an order N ; however it partition into m  subgraphs vvhich has the 
corresponding order Ni, (i = l,?n) and don’t connect to each other, so the complexity in computation 
of algorithm is 0(M2), vvhere M  = inaXj =ỵ-^N ị. From this observation, we would like to submit 
a cheaper algorithm vvhich approximates the rank score vector in MPageRank. Our basic idea in 
forming the cheap MPageRank algorithm is that rejects most of Web pages vvhich iníluence weakly on 
MPageRank score of other pages. And Web graph can be partitioned by shrinking to a graph created 
from the remain of Web pages. The inAuence of one page on other pages according to topic depends on 
tvvo factors: the hyperlink structure (speciíy in PageRank score) and the content evaluation f'unction 
related to the topic. A Central problem of íorming the cheap MPageRank algorithm is answering 
a question “How the rank score o f pages change yvhen we rejects some speciaỉ pages and their 
conjuga(e edges?". We will give the ansvver of this question in two subsection follows:

3.2. Cỉassỉfication of the Web pages

Definition 1. Let a struclure Web graph, a page is called the strong structure i f  its PageRank score 
taken in Ihis Web graph is high, and a page is called the weak structure i f  its PageRank score is low.

Let a given topic, a page is caỉỉed related i f  ils evaluation /uncíion value is high, and a page 
is called unrelated i f  iís evaluation /unction vaỉue is low.
Dcíenition 2. Let a set o f  Web pages having structure Web graph and a given topic. The weakest 
auíhority sel is the set containing all o f  pages yvhich are weak síructure and unrelated.

We classiíỳ the set V, the set all of web page in Web graph, according to two subsets. w  is a 
set which contains all of pages in the vveakest authority set, and s  contains all that remains of page2. 
Certainly, if we deíine topic’s score of a set is the sum of all topic’s score of pages in it then the 
topic’s score of w  is too lovver than the topic’s score of s .

2 s  = v \ w
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Let a Web graph G = (V ,E ) and the given topic T. We have a transition matrix Rm and 
evaluation íunction f r  for all of pages in Web graph. From MPageRank algorithm we have rank score 
v e c to r  rM. L e t  a  s u b s e t  u  o f  V,  w e  w r i t e  rM(U) = ^ 2  rM{u) a n d  f r(U) = ỉ t {ù), so  w e  h a v e

li €ư  u€t/
some basic notions as follows:
Dcfenition 3. A node u is called e-weak i f  rM(u) ^ c.

A subset u  o fV  is called t-weak if  tm(U) ^  e.
Dcfenition 4. A subset u  is called weak i f  the transition probability/rom v \ u  to ư  is smaller than 
the transition probability from  v \ ư  to v \ ư  and the transition probability from u  to v \ u  is smaller 
than the transiíion probability from v \ u  lo v \ u .

It is easy to recognize the subset w  is a weak set. Let e = (£ is too tiny), we have a
result.
Theorem 1. w  is an ỉ-weak sel.
ProoỊ. We can see the detail of solution to Theorem 1 in [16]. The set w  is a vveak set so the transition 
probability from 5 to w  is smaller than the transition probability from s  to 5, and the transition 
p r o b a b i l i t y  f r o m  w  to  s  is s m a l l e r  t h a n  th e  t r a n s i t i o n  p r o b a b i l i t y  f r o m  s  to  5 .  ỉt is t h e  m a in  r e a s o n  

for doing r- ^ ị  < = e, so r M{W) < ĩệĩ < £.
We see that the rank score of pages in set \v  is really tiny and doesn’t have iníluence on rank 

score of other pages. Therefore, rank score vector in MPagcRank is decided by pages in set s.  Indeed, 
with a weak page u € w ,  if we rẹject page u and its conjugate edges, we will have an interesting 
question that how the rank score of other pages vvill cliange? With the same question when vvc rẹject 
a sct of realiy weak pages u  c W .  That is what we will answer in the next scction.

3.3. Main resuỉts

Let a given popular topic T, we have a vveight directed graph G = (K, E) with a transition 
probability matrix in MPageRank algorithm is /ĨA/. For u e V(G) is a weak vcrtex, get G' = G\u  is 
a graph (V ' , E ') whcre V ’ = v\{w} and E' = {V1U2 I V\,V2 € V'  , V1 V2 € E).  Let Ể M is a transition 
probability matrix corresponding to a random suríer in the new Web graphs G'. The new random 
surfer vvill have a stationary distribution, denote by r\f.  We have an interesting judgement that thc 
random surfer on the graph G' vvith MPageRank transition probability matrix R \ị is equivalent to 
another random surfer on the graph G with MPageRank transition probability matrix R \t when the 
evaluation function value /r(w) = 0. Let rAí is a stationary distribution of random suríer on the graph 
G corresponding the transition probability matrix rrM, and callcd rM is an expand MPageRank rank 
score vector of Web graph G'\ AR m  = Rm -  = r*M -  rM.

As the question submited above, we would like to know how the rank score vector, Arw = 
rẬ/ -  rjw, will change when rejecting page u and its conjugate edges. Let G is a Web graph and a 
random surfer in MPageRank algorithm surf on its. We have a transition probability matrix R m . If 
Rst has a stantionary distribution rM, then let a matrix

„ T D ^ 2R m D - ì/2 + D - ì/ 2R I í D ^ 2 
L ~  2

where D is a diagonal matrix with entries D(v,v) = r\i(v).  c  is called an expatĩd Laplacian matrix of 
a directed Web graph G. Clearly, the expand Laplacian is real symmetric, so its has N  = |^(ơ)| real
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eigenvalues Ao ^ Aị ^ ^ \ h - \  (repeated according to their multiplicities). We define A = 7ninj^o|Aj|
is an expơnd algebrciic connectivity of Web graph G , so vve have an important result3 
Proposition 2. For any tiny real number e > 0, and a weak page u, tm(u) ^ e. I f  r*M is an expand 
r a n k  score vector o f  Web graph when we rẹịect page u and its conjugate edges, then

Proo/. To prove Theorem 2, we consider the Lemma:
Lemma 1. We have

||A/ỉXf.rM](i)| ^  r M (u), Vi e  v\{tz}.

Proo/. Let B lu = {v € B u I Fv Ỷ  {u}}, B ị = B u\ B lu = {v € Bu \ Fv = {«}}, we have

• If i Ỷ u and i ị  Fu

ỊA fíỊ,.rA,](i) = £  ARÌỈ, .rM( j ) +  £  .rM(j) +  A R t ị . r M (u)
j e B ị

E Ĩ t ( ì )  Ỉ T [ u ) r M t i )  sr* f r ( j )  ỉ t Ì u V m Ì Ì )
a .nBi M F j ) -  M u )  f T (Fj) + ^  f r ( V )  -  f T (u) M F j )

because when j  € B ị so Fj = {u} => f T{u) = f T {Fj). Clearly, < 1 and

< 1. we have

i fA  p T  r  1/,V| _ L _  r/ ,  _  V '  Ỉ T ( u )r M { j )  Ĩ t (ù ) ______ p  ỉ t (u )
*# ] ( * ) !  <  1 _ p [{ p ) £  M F j )  + P f T ( V)  ĩ - p M V )

^  1 _ /..X p  I t (Ù)
^  ĩ----- r Aí(u) -  1 —  7 / m  •1 - p  l - p / r ( V )

From Theorem 1, if page u is weak, we have

n d u ì * M y )  *  r b rM(u)" r r ? M ^ <rM(u>-
• If i 7É u and ie  Fu

|[A J& .rA,](i)| =  I £  A / $ . r M(j) +  £  + A ^ . r M(u) -  7 ^ r w (u)
i€B« j€BJ u'

[y r^ M M  -  Ĩ T Ị 7$ ỳ ]  -

< -  ĩ q ; ^ . | | r» W Ì

< rw(u). 
Lemma is proven.

3 \Ve can sce careĩulỉy these conceptions in [16).
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Novv, vve prove Theorem 2. We have

r M = R*MrM 
=> r *M — RhiTM + R m A tm + AiĩỊ./rAf “f AR^fArM

= >  [ 1 / 7  —  —  A R m Ì A t m  —  A R ^ ị T m

^  À r^Ịl/v  -  #Af] — A ì Ìa/

=> Ar^Ịl/v -  /Ĩ^ỊArA/ = t^ị A R m ArAf.

From Lemma 1 and X^rA/(z) = S i  rM (i) = 1, we have

|rX ,A /ìAfA rM| < 2rM(u).

To prove

| | A r r f  < 2- r f à

vve consider the second Lemma
Lemma 2. [16] For a stochastic maírix R with order n; d is a vector with same order n and satisfied

-  1- Let a diagonal matrix D, where Du = di > 0. So we have

min {Ịx7(I„ -  /ỉ)x|} = min { |iT(In -  D R D ~ l )x\}
11*11=1 11*11=1

..... r_r,T D R D - ' + ( D R D - ' ) T , ,= min ị x  ( I -------------- X----------- )*}•
x d = Ò  1 '  2  111*11=1

The Lcmma 2 is corrcctly provcn bascd on the basic knovvnledgc of cigcnvcctor. From Lcmma 
2, let’s a case with d = (d(v) = rjỊ; (t;)), we have

í | x t ( I a t - i -  R 9m )*\ \  _  ( \ x T { lN - \  -  D Ì R u D - ^ x ị }
m i n  1 ------------------í r ĩ ĩ ĩ 5 -----------------  r  =  m i n  1 ---------------------------- Í7 7 T Ĩ9 ----------------------------- r= ỏ ,*>0 l  X 2 J xd=■Õ.iVo l  X 2 Jxe=ỏ,zVo l IIx||2 J *rf=ỏ,iVo l IIXII'

( Z T C x \
~~ xđ̂ o!?#0 1 ||x||2 /

So if a Y a /  is (7V -  l)-vector vvhich produceđ from vector Ar \ f  by rejecting page u , then 
aY A/(z) = 0 (vector aVa/ orthogonal with e = (1, . . . , 1)T).

Thereíbre we have

|A rĩ/[ IA' -  #Â/]ArA/| =  ỊaV ^ỊI/v  -  R m }& r M \ > A||A r A/||2

=> A||A r w ||2 =  A||ArM||2 <  2rw (u)

||A r„ ||»  s  ^  s  I .

The Theorem is proven.
As we know, the value A is called an algebraic connectivity of Web grapli G according to the 

transition probability matrix Rsi.  In the paper [16], we have a result to bound the value A as follow:
Let a weight directed graph G which f r { v )  is a weight value for each node V. The transition

probability matrix R m of random surfer in MPageRank surfed on graph G is deíined as follows:



Le Trung Kien el aỉ. /  VNU Journal o f  Science, Mathematics - Physics 23 (2007) 35-46 45

For a real number p 6 [0,1], Vi, j  e V(G) then

if Oi =  0

if O i >  0

fc€V(G)
p is a jump probability4 .

Proposition 3. [16]. ! f  X is an expand algebraic connectivity o f  G, then we have

As a directed consequence of Theorem 2 and Proposition 3, we have two important results. 
Corollary 1. For a tiny real number t > 0, and a weak page u, t m (u ) ^ Ễ. l f  r \ị  is an expand rank 
score vector o f  yVeb graph when we reject page u and its coìỹugaíe edges, then

Corollary 2. For a tiny real number € > 0, and a sei o f  weak pages w c  V(G), rM(W)  < e. I f  r*M 
is an expand rank score vecíor o f  Web graph when we rejecl all o f  pages in w and their corỳugate 
edges, then

4. Conclusion

To highlight the consideration to user’s purpose, we introduced and described MPageRank 
algorithm according to improved probabilistic model which allowed ranking Webs depending on the 
given topic. Diíĩerent to PageRank just conforms only two assumptions, the model probability in 
MPageRank conforms three assumptions. In MPageRank model, we supplemented more assumption 
that is:

• Considering with a given topic, page having its content related to this topic vvill has a high

We believe that our model will model more exactly upon real surf-Web. Therefore in theory, 
our rank score of pages will satisíy more suATicient for the users.

Similar to the computation in PageRank, MPageRank model is preformed based on knovvledge of 
Markov Chain. Our transition matrix is irreducible and aperiodic so rank score íìinction in MPageRank 
exists and itself is a primitive eigenvector of this transition matrix with eigenvalue 1. From the ideas 
that partition Web graph to many subgraphs to make the algorithm to be more simple, this paper 
introduces the way to approximate rank score vector vvhen vve reject some weakly iníluenced pages 
and their conjugate edges.

Of course, this paper doesn’t give the way to known where the page, called the bridge of Web 
graph, vvhich when we reject it and its conjugate edges, the Web graph will be disconnected, and
• wc can scc the definition of Ot in page 4 of this paper.

score.
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what an given popular topic making our Web graph having many bridges. It is diíTicult and important 
problems. This is our future works!
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