
VNU Journal o f  Science, M athematics - Physics 23 (2007) 47-54

Influence of intradot Coulomb interaction on transport 
properties of an Aharonov-Bohm interferometer

Do Ngoe Son1’2, Bach Thanh Cong1’*,

1 Department o f  Physics, College o f  Science, VNU  

334 Nguyen Trai, Hanoi, Vietnam 
2 Graduate School o f Engineering, Osaka University, Japan

Received 15 May 2007

A b s tra c t. Using Greens íunction method and the equation of motion approach, we have 
investigated the electronic transport properties of an Aharonov-Bohm (AB) ring in the presence 
of a magnetic field with a quantum dot inserted in one arm of the ring. In particular, we consider 
the electron-electron Coulomb interaction within the quantum dot. We find that the current 
through the system is dependent on the magnetic flux via the AB phase and the Coulomb 
interaction within the quantum dot, in agreement with experiments. Furthermore, the intradot 
Coulomb interaction induces dephasing.

1. Introduction

For the nanodevices-such as a quantum ring and a quantum dot, the wave nature of the electrons 
contributes a crucial role. In the Aharonov-Bohm (AB) interíerometer [1-3], the electron waves travel 
from íhe source to the drain along two different paths of the ring. The accumulated phase difference 
betvveen these two waves can be changed by applying a magnetic field. Experiments show that a 
transport through the AB interferometer has the following striking features: (i) the AB phase increases 
sharply by 7T, (ii) the transmission amplitudes at the various resonances are in phase, (iii) the transport 
is partially coherent in the presence of a strong intradot Coulomb interaction [1-3]. Hackenbroich et al. 
calculated the entire scattering amplitude through the AB interferometer and reported theoretical results 
on the phase coherent transport through the quantum dot in the frame of the single-particle scattering 
theory [3, 4]. They íòcused on the AB phase and their results showed that as a íiinction of the voltage 
on the dot, only the amplitude of the current oscillations is changed. They did not show, hovvever, 
how the Coulomb interaction vvithin the dot can affect the current. The AB phase is unaữected unless 
this amplituđe changes sign. In this case, the AB phase suddenly jumps by lĩ. To consider all possible 
eíĩects that may iníluence the system, Tae-Suk Kim et al. [5] studied the thenmoelectric effects of this 
system when the quantum dot lies in the Kondo regime and when it is directly connected with the two 
leads. Electrons can flow from One lead to the other through the tvvo paths by direct tunneling (lead 
to lead) and a resonant tunneling via the quantum dot (lead to dot to lead). The interference betvveen 
the resonant transport through the quantum dot and the direct channel gives rise to asymmetric line
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shapes in the linear conductance as a íunction of gate or bias voltage, the vvell-knovvn Fano effect [6]. 
In the same context, Bogdan et al. [7] and Walter Hofstetter et al. [8] studied the combination of the 
Kondo effect and the Fano eíĩect.

How the intradot Coulomb interaction iníluences the phase coherence of electronic transport 
through the AB interferometer has been the subject of debate. Several theoretical papers concluded 
that the intradot Coulomb interaction induces partial dephasing from the spin-flip process [9-11], vvhile 
others argued that the intradot Coulomb interaction does not induce dephasing effect at all and the 
transport through the quantum dot is fully coherent [12-14]. We believe that this inconsistency may be 
solved by using a model that considers the role of the quantum ring that connects to the quantum dot, 
vvhich was ignored in the previous works (9, 14], since the typology of the ring may play an important 
role in the transport property of the system. AIso, a theoretical model that more closely resembles the 
experimental model needs to be utilized in order to obtain more realistic results.

2. Model and Calculation

As a first step to address these concems, we investigate in this vvork the current through a 
two-terminal AB device which contains an AB ring vvith a quantum dot inserted in one of the ring’s 
amis [1].

We consider the system (Figure 1) where an intradot Coulomb interaction exists without the spin- 
flip process and vvhere the tunneling probability through the dot is considerably small. We investigate 
the system vvith an indirect tunneling channel (lead to ring to lead) and a resonant tunneling channel 
via the dot (lead to ring to dot to ring to lead). In this AB device, the quantum dot can be considercd as 
an impurity based on the Anderson model [15]. Hence, we vvant to study the transport as a íunction of 
the impurity characteristics and dcrive a reliable expression for the Green íunction on the quantum dot. 
To study the transport, vve obtain the total current through the AB dcvice using the current íbrmulation 
for interacting systems [16]. A ubiquitous method to derive an analytical expression for the Green 
function is to use the equations of motion method [16]. We choose this method because it gives results 
equivalent to those using the perturbation method providing that the Kondo efTect is not includcd (in 
the present paper, the Kondo eíĩect is not included) [17]. Our rcsults show that the coherent currents,
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vvith diíĩerent Coưlomb interactions, are in phase [1-3] and the intradot Coulomb interaction can induce 
dephasing under an appropriate condition.

We can express the Hamiltonian for the present system (vvith the quantum dot as an impurity)
as íbllovvs

H = Ho + HT + He (1)
Here, Ho describes the totally isolated subsystems of two leads, AB ring, and quantum dot, and 

is givcn explicitly by

H o =  ỵ ,  e*„C£,+C£, +  (2)
k ơ , a = L ,R  pơ a

NVhere Q stands for the left (L) and the right (R) leads, vvhile k  and £ka are the Iongitudinal 
\v a v e  number and the corresponding energy of the electron. The energies of the single particle states 
vvithin the ring and within the quantum dot are £p and Ed, respectively. , C+,, d+ (C£ơ, Cpa, da) 
a r e  thc creation (annihilation) operators for the electron in the lead, the ring, and the dot, respectively, 
vvhile ơ is the spin index. The tunneling part H t  consists of the couplings between the subsystems, 
and is given by

Hr  = E  (w ^ c ^ c pơ + M  + E  {{Vp d C ^d ơ + h.c)  + ( v ; de - '* C ^ d ơ + /i.c)]
kpơ pơ 
a = L J i

(3)

vvhcre the tunneling matrix elements w describe the coupling betvveen the ring and the leads, vvhile 
the tunneling matrix elements V 1 (Vr) describe the coupling -between the lefl (right) side of the dot 
and the ring. We attach the magnetic flux on the right hand side of the dot, hence carries a phase 
faclor exp(—i(ị>), \vhere <ị> = 2rc<be/h and $ is the magnetic flux encloscd by thc ring which is formcd 
by the arms. Finally, the intradot Coulomb interaction Hamiltonian is given by,

Hc = ơ n Tn I (4)
whcre nơ is the number operator, nơ = d ị d ơ. The upper arm (reference arm) current is deíined by 
the íòllovving ĩormular [16],

w  = I E  / ((/ '-(£)■ M e ) ) * í a ^ (e) ■ G y£)l) (5)

vvhcre the Greens íunction for the reference arm is vvritten as

a ỵ  (e) = -----------* lw.  ,, (6)
£ - £  - y i IỊẳk i -

6 P e - £ k a ± iỗ
ka

The line width of the leads is r Q = 2n £  Wp/*ơ WpkơS(e — £ka) (a =  L, R), and /a(£) is the 

Fermi distribution function of the leads. Similarly, the lower arm current can be vvritten as

ỉ u ^ r ^ n  = I E / § rCií+r"?-) ((/l(£)- M c ) )  x |c'“ ,(e)- G °r°°,{e)ì) (7 )
pơơ*
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In order to compute Iioxuer.arm* calculate the retarded and advanced Green íunctions (i.e. 
and) for the ring-dot using the equations of motion method [17]. The equations of motion method 
of the dot Green function gives rise to an iníìnỉte order system of higher-order Green functions. An 
approximation procedure is applied to truncate the system of equations, thus producing the closed set 
of equations. To do the truncation, vve approximate the Green íunctions up to the second order of 
u. This truncation ensures that most of the interaction effects are captured. In this paper, we do not 
consider the Kondo effect. Thus, the truncation up to the second order of u  can be acceptable (if the 
Kondo effect is expected to include, the higher-order truncation need to be developed).

Equations (8), (9), and (10) constitute the system of equations vvhich gives the relationship 
among the Greens functions of the quantum dot Gơơ/(ê), the ring-dot Gpơơ'(e), and the dot-leads
GakJ (e y ,

{ e - e d)Gơơ>(e) =

+

l- + (v£ '+ v£ei+)Gpơơ'(e)+

-  -  T T  ^C(ị L/ /  J ìyó 2
kpc7

k a ^ L . R  ‘ ~ ' k a

(8)

(e -  £p)Gpơơ'(e) =  Y '  W £ ,G ĩơA e )  +  +  V;de~^)GaA e )
ka

(9)

(10)(e -  eka)Gakơơ,(e) =  E  W^ G P'aAe)
p'

Solving for Gơa'(e) and Gpaciie), with the assumption that the matrix elements w are inde 
pendent on k, p, and ơ, we obtain

and

where

A =
£ -  e,

and

G ơ ơ ' ( e )  —

Gpơơ'{e) —

B
£ -  ed -  (V jĩ +  V £ẽ*)A  

AB
e - e d - { V l;d +  V £ é* )A

Q |2\wa\
k a

T  vụ + vụ * -*  
p £- c’

^  e -e p e - e ka  
p k a

+ (vỉd + v;de-i+)

(11)

( 12)

(13)

+ 2tt ư  < n ở >

e -  £d -  ư  -  £
e - e p ị-' t -1 ka eka

< na > is the average occupied number of the electron level in the dot given by

(14)
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< n„ > = - - ' 2 2  [  d e l m G ơa,{e + iỏ)
n w' J -°°

(15)

where ỏ is an infinitesimal quantity.
To check formulas (11) and (12), we determine the dot Greens íunction in the atomic, non- 

interacting, and strongly interacting limits:
(i) In the atomic limit, where the tunneling matrix elements V go to zero, we arrive at

_ Õqơ' í 1 -  < n õ > < n ỡ >  Ị 
2n \  e -  Sd £ -  S d - Ư )= -  < - - + } (16)Atomic

(ii) In the non-interacting limit, the intradot Coulomb interaction u becomes zero, hence we get

1
ơơ 2tt c -  -  (v£  + V £ e » ) A  (17)

(IM) In the strongly interacting limit, the intradot Coulomb interaction u progresses to iníinity, 
thus we obtain

1-  < riã >
U-+ 0 0  e - e d -  {v£  +  V£é+ )A  (18)

We fìnd that the expressions (16), (17), and (18) are in good agreement with the results [17, 19]. 
The oniy difTerence lies in the self energy since our system is diíĩerent. To determine the retarded and 
advanced Greens íunctions of the ring-dot we introduce the following relationship

GrpơU e )  = Gpaa.(e + iS) (19)

By substituting G r̂ a, into (7), wc then obtain thc lower arm current expression (with an as- 
sumption that the matrix elements V are independent on p, and that the dot is always kept symmetric) 
as follows

\o w erM rm
Í f « v í  V d ( l  + C Q S 0 ) ( e p - £ d )

/  ( /L\£p) ỉR\£p)) X s . \2 . fr< /1 I jl\i!
p [ {ep -  ed) + [r«f(l + cosự>)]

+

e r ^  1 
h r  47T

Vd( 1 + cos Ộ)U < nỡ > (ep -  6d){ep -  £ d ~ ư )

Ị(ep -  ed)2 + [rd(l + COS0)]2] (ep - e d - U) *  + [ 4 V J ( 1 + C 0 8 ^ Ị

4V j ( l  +  COSậ)3 Tdư<nỡ >
r  [(£> -  £d)2 + [rrf(i + cos 0)]2] (ep - e d - U) *  + [ 4 V 2 ( l + c o s * ) ỵ r Ị

Here, rd = 2ĩĩV2ỏ{e -  £p) and r  = rL + rR.

(20)

3. Discussion

In our calculations, the dot Green íunction was approximated up to the second order of u. The 
cnergv diagram of the dot and its density of states are then describeđ in Figure 2.
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Figure 2. Energ) diagram of the QD. The density of statcs is represented by the dashed line.

For simplicity, we introduce a symmetric model with £d = - U / 2 and assume that the Fermi 
levels in the dot and in the ring are the same. Resonant tunneling betvveen the two leads occurs and 
the current ílovvs when an energy level in the dot is aligned with the Fermi level in the ring and in the 
leads. When One of the dot levels drops below the Fermi level in the ring, this level becomes occupied 
and the number of electrons increases by one in the dot. In order to scan the levels in the dot over the 
Fermi level, Yacoby et ai. used a plunger gate [1]. By changing the plunger gate voltage, they were 
a b le  to  change as  vvell as u .

In the Coulomb blockade regime and for Vd<  r  << u  and £p << ư ,  the tunneling probability 
through the dot is very small, hence, the flux depending AB oscillations of the current are dominated 
by the lovvest harmonics. All higher harmonics corresponding to electrons traveling two or more times 
around the ríng arc suppressed. As a result, ỉt may be regarded that the Coulomb interaction in the dot 
does not iníluence the upper arm current. The behavior of the total current as a íunction of the AB 
phase can then be analyzed by means of the [ower arm current, which is shown in Figure 3 for three 
diíĩerent values of u (i.e. 0.1 (V), 0.4 (V), and 0.6 (V))

Figure 3 shows that as u increases, the amplitude of the AB oscillation of the current dccreases. 
This means that the intradot Coulomb interaction can suppress the interference. The figure also shovvs 
that the AB oscillations are all in phase. We can also find these features from the approximated 
expression for (20) for Vd < r  «  ư  and Ep «  u . ưnder these conditions, (20) can be written as

_  v d{ì +  cos ip) ^ ( 1  +COSV?)3
Ư U3 *

This expression shows that: (i) the AB oscillation of the current is a function of C0S(y?, hence,
the oscillations are periodic and all the oscillations for various u  values are in phase, and (ii) the
amplitude of the current is i n v e r s e ly  proportional to u .

It is necessary to consider the system under as many physical phenomena as possible. In our
study, the dot can be regarded as a magnetic impurity [19], hence, the essential extension is to invesligate
the transport property of the system in the spin-flip process and in the Kondo regime. The Kondo
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Figure 3. The current through the system as a íunction of AB phase for u=0.1, 0.4, 0.6 V.

efifcct provides clues to understanding the electronic properties of a variety of materials where the 
intcractions between electrons are particularly strong. The Kondo effect only occurs when the defects 
are magnetic or when the total spin of the electron in an impurity atom is non-zero. These electrons 
cocxist vvith thc itincrant electrons in the host metal (e.g. the AB ring in the AB interferometer), vvhich 
bcliave like a Fermi sea. In such a Fermi sea, all the states with energies below the Fermi level are 
occupied, while the higher energy states are empty. If we scan this level over the Fermi level, one 
electron from the ring should jump into the dot.

4. Conclusion

ỉn conclusion, vve obtained the current expression as a function of the intradot Coulomb inter- 
action and the AB phase. The AB oscillations of the current are qualitatively in good agreement with 
[1, 3]. The results shovved that the intradot Coulomb interaction induces dephasing.
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