On the stability of the distribution function of the composed random variables by their index random variable

Nguyen Huu Bao
Faculty of Infomation Technology, Water Resources University
175 Tay Son, Dong Da, Hanoi, Vietnam

Received 15 November 2006; received in revised form 2 August 2007

Abstract

Let us consider the composed random variable $\eta=\sum_{k=1}^{\nu} \xi_{k}$, where ξ_{1}, ξ_{2}, \ldots are independent identically distributed random variables and ν is a positive value random, independent of all ξ_{k}. In [1] and [2], we gave some the stabilities of the distribution function of η in the following sense: the small changes in the distribution function of ξ_{k} only lead to the small changes in the distribution function of η. In the paper, we investigate the distribution function of η when we have the small changes of the distribution of ν.

1. Introduction

Let us consider the random variable (r.v):

$$
\begin{equation*}
\eta=\sum_{k=1}^{\nu} \xi_{k} \tag{1}
\end{equation*}
$$

where ξ_{1}, ξ_{2}, \ldots are independent identically distributed random variables with the distribution function $F(x), \nu$ is a positive value r.v independent of all ξ_{k} and ν has the distribution function $A(x)$.

In [1] and [2], η is called to be the composed r.v and ν is called to be its index r.v. If $\Psi(x)$ is the distribution function of η with the characteristic function $\psi(x)$ respecrively then (see [1] or [2])

$$
\begin{equation*}
\psi(x)=a[\varphi(t)] \tag{2}
\end{equation*}
$$

where $a(z)$ is the generating function of ν and $\varphi(t)$ is the characteristic function of ξ_{k}.
In [1] and [2], we gave some the stabilities of $\Psi(x)$ in the following sence: the small changes in the distribution function $F(x)$ only lead to the small changes in the distribution function $\Psi(x)$.

In this paper, we shall investigate the stability of η 's distribution function when we have the small change of the distribution of the index r.v ν.

[^0]
2. Stability theorem

Let us consider the r.v now:

$$
\begin{equation*}
\eta_{1}=\sum_{k=1}^{\nu_{1}} \xi_{k} \tag{3}
\end{equation*}
$$

where ν_{1} has the distribution function $A_{1}(x)$ with the generating function $a_{1}(z)$. Suppose ξ_{k} have the stable law with the characteristic function

$$
\begin{equation*}
\varphi(t)=\exp \left\{i \mu t-c|t|^{\alpha}\left[1-e \beta \frac{t}{|t|} \omega(t ; \alpha)\right]\right\} \tag{4}
\end{equation*}
$$

where c, μ, α, β are real number, $c \geq 0 ;|\beta| \leqslant 1$,

$$
\begin{equation*}
2 \geq \alpha \geq \alpha_{1}>1 ; \quad \omega(t ; \alpha)=\operatorname{tg} \frac{\alpha t}{2} \tag{5}
\end{equation*}
$$

For every $\varepsilon>0$ is given, such that

$$
\begin{equation*}
\varepsilon<\left(\frac{\pi}{3 c_{2}}\right)^{3} \tag{6}
\end{equation*}
$$

where $c_{2}=\left(c+c|\beta|\left|\operatorname{tg} \frac{\alpha_{1} \pi}{2}+|\mu|\right)\right.$.
We have the following theorem:
Theorem 2.1 (Stability Theorem). Assume that

$$
\begin{gather*}
\rho\left(A ; A_{1}\right)=\sup _{x \in R^{1}}\left|A(x)-A_{1}(x)\right| \leqslant \varepsilon \\
\mu_{A}^{\alpha}=\int_{0}^{+\infty} z^{\alpha} d A(z)<+\infty ; \quad \mu_{A_{1}}^{\alpha}=\int_{0}^{+\infty} z^{\alpha} d A_{1}(z)<+\infty, \quad \forall \alpha>0 \tag{7}
\end{gather*}
$$

Then we have

$$
\rho\left(\Psi, \Psi_{1}\right) \leqslant K_{1} \varepsilon^{1 / 6}
$$

where K_{1} is a constant independent of $\varepsilon, \Psi(x)$ and $\Psi_{1}(x)$ are the distribution function of η and η_{1} respectively.
Lemma 2.1. Let a is a complex number, $a=\rho e^{i \theta}$, such that $|\theta| \leqslant \frac{\pi}{3} ; 0 \leqslant \rho \leqslant 1$. Then we have the following estimation:

$$
\begin{equation*}
\left|a^{\ell}-1\right| \leqslant \frac{\sqrt{14}|a-1|}{(1-|a-1|)} \quad(\text { forevery } t>0) \tag{8}
\end{equation*}
$$

Proof. Since $a=\rho(\cos \theta+i \sin \theta)$, it follows that $a^{t}=\rho^{t}(\cos t \theta+i \sin t \theta)$.
Hence

$$
\begin{equation*}
\left|a^{t}-1\right|^{2}=\left(\rho^{t} \cos t \theta-1\right)^{2}+\left(\rho^{t} \sin t \theta\right)^{2} \tag{9}
\end{equation*}
$$

we also have

$$
\left(\rho^{t} \cos t \theta-1\right)=\left(\rho^{t}-1\right) \cos t \theta+(\cos t \theta-1)
$$

Notice that $|1-\cos x| \leqslant|x|$ for all x, thus

$$
\left|\rho^{t} \cos t \theta-1\right| \leqslant\left|\rho^{t}-1\right|+|t \theta| .
$$

On the other hand, since $|\sin u| \leqslant|u|$ for all u,

$$
\begin{equation*}
\left|a^{t}-1\right|^{2} \leqslant 2\left|\rho^{t}-1\right|^{2}+2 t^{2} \theta^{2}+\rho^{2 t} t^{2} \theta^{2} \tag{10}
\end{equation*}
$$

we can see

$$
|a-1|^{2}=(\rho \cos \theta-1)^{2}+\left(\rho^{2} \sin ^{2} \theta\right)
$$

It follows that

$$
\begin{equation*}
|\rho \sin \theta| \leqslant|a-1| . \tag{11}
\end{equation*}
$$

Furthermore,

$$
||a|-1| \leqslant|a-1| \Rightarrow|\rho-1| \leqslant|a-1| \Rightarrow \rho \geq 1-|a-1| .
$$

From (11) we obtain

$$
\begin{equation*}
|\sin \theta| \leqslant \frac{|a-1|}{\rho} \leqslant \frac{|a-1|}{1-|a-1|} \tag{12}
\end{equation*}
$$

Since $|\theta| \leqslant \frac{\pi}{3} \Rightarrow|\sin \theta| \geq \frac{|\theta|}{2}$, so that

$$
\begin{equation*}
|\theta| \leqslant \frac{2|a-1|}{(1-|a-1|)} . \tag{13}
\end{equation*}
$$

From (10) and (13), we have

$$
\begin{equation*}
\left|a^{t}-1\right|^{2} \leqslant 2\left|\rho^{t}-1\right|^{2}+\frac{8 t^{2}|a-1|^{2}}{(1-|a-1|)^{2}}+4 \frac{\rho^{2 t} t^{2}|a-1|^{2}}{(1-|a-1|)^{2}} \tag{14}
\end{equation*}
$$

For all $t \geq 0$, the following inequality holds:

$$
\begin{equation*}
1-\rho^{t} \leqslant \frac{t(1-\rho)}{\rho} \tag{15}
\end{equation*}
$$

Using (11) and notice that $|1-\rho|=|1-|a|| \leqslant|a-1|$, we shall have

$$
\begin{equation*}
1-\rho^{t} \leqslant \frac{t|a-1|}{\rho} \tag{16}
\end{equation*}
$$

Hence by (14) we get

$$
\left|a^{t}-1\right|^{2} \leqslant \frac{14 t^{2}|a-1|^{2}}{(1-|a-1|)^{2}}
$$

Lemma 2.2. Under the notation in (2), let $\delta(\varepsilon)$ be sufficiently small postive number such that $\delta(\varepsilon) \rightarrow 0$ when $\varepsilon \rightarrow 0$ and

$$
|\arg \varphi(t)| \leqslant \frac{\pi}{3} \quad \forall t, \quad|t| \leqslant \delta(\varepsilon)
$$

Then

$$
\left|\psi(t)-\psi_{1}(t)\right| \leqslant C|t| \quad \forall t, \quad|t| \leqslant \delta(\varepsilon)
$$

where C is a constant independent of ε and $\psi_{1}(t)$ is the characteristic function with the distribution function $\Psi_{1}(t)$ respectively.
Proof. We have

$$
\begin{equation*}
\left|\psi(t)-\psi_{1}(t)\right|=\left.\left|\int_{0}^{+\infty}\right| \varphi(t)\right|^{2} d\left[A(z)-A_{1}(z)\right]\left|\leqslant \int_{0}^{+\infty}\right| \varphi^{z}(t)-1 \mid d\left[A(z)+A_{1}(z)\right] . \tag{17}
\end{equation*}
$$

Notice that, for all $t \in R^{1}$

$$
\left|e^{i t x}-1\right| \leqslant 3\left|\sin \left(\frac{t x}{2}\right)\right| \leqslant \frac{3}{2}|t x|<2|t x|
$$

Hence, if we put

$$
\mu_{F}=\int_{-\infty}^{+\infty}|x| d F(x)<+\infty ; \quad \varphi(t)=\int_{-\infty}^{+\infty} e^{i t x} d F(x)
$$

then

$$
|\varphi(t)-1| \leqslant \int\left|e^{i t x}-1\right| d F<2|t| \mu_{F} .
$$

From lemma 2.1, (with $a=\varphi(t) ;|t| \leqslant \delta(\varepsilon)$)

$$
\begin{equation*}
|\varphi(t)-1| \leqslant \frac{\sqrt{14} z|\varphi(t)-1|}{(1-|\varphi(t)-1|)} \tag{18}
\end{equation*}
$$

Because there exits moments (from (7)) and with $t,|t| \leqslant \delta(\varepsilon)$ we can see $|1-\varphi(t)| \leqslant \frac{1}{2}$, therefore

$$
\left|\psi(t)-\psi_{1}(t)\right| \leqslant \int_{0}^{+\infty} \frac{\sqrt{14} z|\varphi(t)-1|}{(1-|\varphi(t)-1|)} d\left[A(z)+A_{1}(z)\right] \leqslant 4 \sqrt{14} \mu_{F}\left(\mu_{A}+\mu_{A_{1}}\right)|t|=C|t|
$$

(do $\left.|\varphi(t)-1| \leqslant \mu_{F}|t| \quad \forall t\right)$
where C is a constant independent of ε and $\mu_{F}=\int_{-\infty}^{+\infty}|x| d F(x)<\infty$.
Proof of Theorem 2.1.

$$
\begin{align*}
& \text { For every } N>0 \text { and } t \in R^{1}, \text { we have } \\
& \begin{array}{c}
\left|\psi(t)-\psi_{1}(t)\right|=\left|\int_{0}^{+\infty} \varphi^{z}(t) d\left[A(z)-A_{1}(z)\right]\right| \\
\leqslant\left|\int_{0}^{N} \varphi^{z}(t) d\left[A(z)-A_{1}(z)\right]\right|+\left|\int_{N}^{+\infty} \varphi^{z}(t) d\left[A(z)-A_{1}(z)\right]\right| \\
\leqslant \\
\left.\leqslant A(z)-A_{1}(z)\right]\left.\right|_{0} ^{N}\left|+\int_{0}^{N}\right| A(z)-A_{1}(z)\left\|\varphi^{z}(t)\right\| \ln \varphi(t) \mid d z+\int_{N}^{+\infty} d\left[A(z)+A_{1}(z)\right] \\
=I_{1}+I_{2}+I_{3}
\end{array}
\end{align*}
$$

First, it casy to see that

$$
\begin{equation*}
I_{1} \leqslant 2 \varepsilon \tag{20}
\end{equation*}
$$

In order to estimate I_{2}, notice that $\varphi(t)$ has form (4) with the condition (5) so we have

$$
\begin{equation*}
|\ln \varphi(t)| \leqslant|\mu||t|+|t|^{\alpha}\left(c+c|\beta|\left|t g \frac{\alpha \pi}{2}\right|\right) \leqslant|\mu||t|+C_{1}|t|^{\alpha} \tag{21}
\end{equation*}
$$

where $C_{1}=c+c|\beta|\left|\operatorname{tg} \frac{\alpha \pi}{2}\right| \leqslant c+c|\beta|\left|\operatorname{tg} \frac{\alpha_{1} \pi}{2}\right|$.
If $T=T(\varepsilon)$ is a positive number which will be chosen later $(T(\varepsilon) \rightarrow \infty$ when $\varepsilon \rightarrow 0$), we can see that

$$
|\ln \varphi(t)| \leqslant|\mu| T+C_{1} T^{\alpha} \leqslant\left(C_{1}+|\mu|\right) T^{\alpha} \leqslant C_{2} T^{\alpha} \quad \forall t,|t| \leqslant T(\varepsilon)
$$

where $C_{2}=c+c|\beta|\left|t g \frac{\alpha_{1} \pi}{2}\right|+|\mu| ; \quad\left(\alpha \geq \alpha_{1}>1\right)$.
Then

$$
\begin{equation*}
I_{2} \leqslant \varepsilon \int_{0}^{N} C_{2} T^{\alpha} d z \leqslant C_{2} \varepsilon T^{\alpha} N \tag{22}
\end{equation*}
$$

Finally, with α from condition (5), we have

$$
\begin{equation*}
I_{3} \leqslant \frac{\mu_{A}^{\alpha}+\mu_{A_{1}}^{\alpha}}{N^{\alpha}} \tag{23}
\end{equation*}
$$

By using (19), (20), (21), (23), we conclude that

$$
\begin{equation*}
\left|\psi(t)-\psi_{1}(t)\right| \leqslant 2 \varepsilon+C_{2} \varepsilon T^{\alpha} N+\frac{\mu_{A}^{\alpha}+\mu_{A_{1}}^{\alpha}}{N^{\alpha}} \tag{24}
\end{equation*}
$$

Choosing $T=\varepsilon^{-\frac{1}{3^{\alpha}}}$ and $N=T=\varepsilon^{-\frac{1}{3^{\alpha}}}$, we can see that

$$
\begin{aligned}
& C_{2} \varepsilon T^{\alpha} N \leqslant C_{2} \varepsilon^{1-\frac{1}{3}-\frac{1}{3}}=C_{2} \varepsilon \frac{1}{3} \\
& \left(\mu_{A}^{\alpha}+\mu_{A_{1}}^{\alpha}\right) N^{-\alpha}=\left(\mu_{A}^{\alpha}+\mu_{A_{1}}^{\alpha}\right) \varepsilon^{\frac{1}{3}}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|\psi(t)-\psi_{1}(t)\right| \leqslant 2 \varepsilon+C_{2} \varepsilon^{\frac{1}{3}}+\left(\mu_{a}^{\alpha}+\mu_{A_{1}}^{\alpha}\right) \varepsilon^{\frac{1}{3}}=C_{3} \varepsilon^{\frac{1}{3}} \tag{25}
\end{equation*}
$$

for every t with $|t| \leqslant T=\varepsilon^{-\frac{1}{3^{\alpha}}}$ and C_{3} is a constant independent of ε.
For all $\delta(\varepsilon)>0$, we consider now

$$
\int_{-T}^{T}\left|\frac{\varphi(t)-\varphi_{1}(t)}{t}\right| d t=\int_{-\delta(\varepsilon)}^{\delta(\varepsilon)}\left|\frac{\varphi(t)-\varphi_{1}(t)}{t}\right| d t+\int_{\delta(\varepsilon) \leqslant|t| \leqslant T}\left|\frac{\varphi(t)-\varphi_{1}(t)}{t}\right| d t
$$

Since

$$
\ln z=\ln |z|+\operatorname{iarg}(z) \quad(0 \leqslant \arg z \leqslant 2 \pi)
$$

for all complex number z, letting $z=\varphi(t), \quad(|t| \leqslant \delta(\varepsilon))$

$$
|\arg \varphi(t)| \leqslant|\ln \varphi(t)| \leqslant C_{2} \delta(\varepsilon)
$$

with $\delta(\varepsilon)=\varepsilon^{\frac{1}{3}}$, we shall gct $|\arg \varphi(t)| \leqslant C_{2} \varepsilon^{\frac{1}{3}}$ and from (6)

$$
C_{2} \varepsilon \frac{1}{3} \leqslant \frac{\pi}{3} \Rightarrow|\arg \varphi(t)| \leqslant \frac{\pi}{3} \text { for every } t, \quad|t| \leqslant \delta \varepsilon
$$

Hence, using lemma 2.2, we obtain:

$$
\begin{equation*}
\int_{-\delta(\varepsilon)}^{\delta(\varepsilon)}\left|\frac{\varphi(t)-\varphi_{1}(t)}{t}\right| d t \leqslant 2 C \delta(\varepsilon)=2 C \varepsilon^{\frac{1}{3}} \tag{26}
\end{equation*}
$$

On the other hand, using (25), we get

$$
\begin{equation*}
\int_{\delta(\varepsilon) \leqslant|t| \leqslant T}\left|\frac{\varphi(t)-\varphi_{1}(t)}{t}\right| d t \leqslant C_{3} \varepsilon^{\frac{1}{3}} \int_{\delta(\varepsilon)}^{T} \frac{d t}{t}=C_{3} \varepsilon^{\frac{1}{3}} \ln \frac{T}{\delta(\varepsilon)}=C_{3} \varepsilon^{\frac{1}{3}} \ln \left(\frac{1}{\frac{1+\alpha}{3 \alpha}}\right) \leqslant C_{4} \varepsilon^{\frac{1}{6}} \tag{27}
\end{equation*}
$$

From (26) and (27)

$$
\int_{-T}^{T}\left|\frac{\varphi_{0}(t)-\varphi_{1}(t)}{t}\right| d t \leqslant 2 C \varepsilon \frac{1}{3}+C_{4} \varepsilon \frac{1}{6} \leqslant C_{5} \varepsilon \frac{1}{6}
$$

where C_{5} is constant independent of ε.
Indecd, by using Essen's inequality (see [3]) we have

$$
\rho\left(\Psi ; \Psi_{1}\right) \leqslant C_{5} \varepsilon^{\frac{1}{6}}+C_{6} \varepsilon^{\frac{1}{4}} \leqslant K_{1} \varepsilon^{\frac{1}{6}}
$$

where K_{1} is a constant independent of ε.

Acknowledgements. This paper is based on the talk given at the Conference on Mathematics, Mechanics, and Informatics, Hanoi, 7/10/2006, on the occasion of 50th Anniversary of Department of Mathematics, Mechanics and Informatics, Vietnam National University.

References

[1] Tran Kim Thanh, On the characterization of the distribution of the composed random variables and their stabilities Doctor thesis, Hanoi 2000.
[2] Tran Kim Thanh, Nguyen Huu Bao. On the geometric composed variables and the estimate of the stable degree of the Renyi's characteristic theorem, Acta Mathemaica Vietnamica 21 (1996) 269.
[3] C. G. Essen. Fouricr analysis of distribution functions, Acta Math. 77 (1945) 125.

[^0]: - Tcl.: 84-4-5634255.

 E-mail: nhuubao@yahoo.com

