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A bstract. The eíĩective application of Markov chains has been paid much attention, and it has 
raised a lot of thcoreticaỉ and applied problems. In this paper, vve vvould like to approach One of 
these problems vvhich is íìnding the long-run behavior of extremely huge-state Markov chains 
according to the direction of investigating the structure of Markov Graph to reduce complexity 
of computation. We focus on the vvay to access to the íìnite-state Markov chain theory via 
Graph theory. We suggested some basic knovvledge about State classiíìcation and a small project 
of modelling the structure and the moving process of the /inite-state Aíarkov Chain modeỉ. This 
project based on the remark that il is impossible to study deeperly the finite-state Markov Chain 
theory if vve do not have the clear sense about the structure and the movement of it.

1 . Introduction

It is undcniable that the íìnite-state Markov Chain in recent years has lots of important appli- 
c a t io n s  in m o d e l l i n g  th e  n a tu r a l  a n d  s o c ia l  p h e n o m e n a .  W e  m a y  e n u m e r a t e  s o m c  b r a n c h e s  o f  Sc ience  

such as weather íbrecast, system magcmcnt, Web information searching, machine leaming which the 
model of íìnite-state Markov Chain is applied for. Markov Chain effcctive application has been paid 
much attention, and it has raised a lot of thcorctical problems as vvell as applied ones. One of these 
is th a t  h o w  to  f in d  th c  l o n g - r u n  b e h a v i o r  o f  M a r k o v  c h a in  vvhen th e  S ta te  s p a c e  is e x t r e m e ly  h u g e .  

For example, to rank Webs based on the hyperlink structure of Wcb Graph, PageRank algorithm [1] of 
information searching engine Google has to identiíy the stationary distribution of an irreducible aperi- 
odic Markov Chain vvith 6 billioĩi states. In this case, it is obvious that applying the classic methods 
to identify the stationary distribution is impractical. To solve this problem, some idcas are consid- 
ered such as measuring approximately the stationary distribution [2-6] or investigating the structure of 
Markov Graph to reduce complexity of computation [7-9].

The problcm of measuring approximately the stationary distribution of huge-state Markov chains 
has been taken into consideration by the scientists through last tvvo decades. Especially, some groups of 
scientists ofStanford university and other authoritative research centers were interested in idcntiíìngthe 
stationary distribution of Web Mcirkov chain to evaluate the important of Web. S.Kamvar, T.Havelivvala
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et al. |4, 5] suggestcd using succcssive intermcdiate iterates to extrapolate successively better estimates 
of the true PageRank values. They used the spccial properties from the second eigenvalue of Google 
matrix and Power method. J. Kleinberg [6] introduced the notion (i,k)-detection set play a role as 
the cvidence for existence of sets vvhich do not have as most k states and have the property: if an 
adversary destroys this set, after which tvvo subsets of the states, each at lcast an e íraction of the State 
space of the Markov Chain, that are not accessible from one another. Developing on J. Kleinberg^ 
basic ideas, J. FakcharoenphoI [3] shovved that the (ế,/c)-detection set for State failures can be found 
vvith probability at least 1 - 6  by randomly chossing a subset of nodes of size 0 ( - k \ o g k  log - + - log j). 
F. Chung ị2] studicd partition property of a Markov Chain based on applications of cigenvalues and 
eigenvectors of its transition probability matrix in combinatorial optimization. The partition property 
can be used to dcal with various problems that often arise in the study of huge-state Markov chains 
including bounding thc rate of convergence and deriving comparison thcorems.

ỉn this paper, wc vvould likc to access to the problcm accorđing to the direction of investigating 
the structure of Markov Graph to reduce complexity of computation. As we kncnv, the stationary 
distribution of finite-s(ate Markov Chain depends only on the link-structure of its recurrent states and 
it receives zero value at the transient states. In addition, as a consequence of solving optimally the 
State classiíìcation, we vvill recognize easilier some nevv important properties about the graph-structure 
of this Markov Chain. In [8] based on the results in Random Graph theory, B. Bollobás proved the 
correctness of the property: Let n be a positivc integer, 0 < p < 1. The random Markov chain 
M{n,p)  is a probability space over the set of Markov chains on the State set {1,2,..., n} detcrmined 
by p{pij > 0} = p, with these evcnts mutually independent. Thereíore, if 71 is so largc and p = O (^ )  
then almost sure a Markov Chain in M{n,p)  will be irreducible aperiodic. Clearly this is a property of 
authority; it makes us have a deepcr understanding about a íundamental class of fmite-state Markov 
chains, irreducible aperiodic Markov chơin class. More importantly, it allows us to think about the 
ncvv vvay to investigate deeperly the íinite-state Markov chain theory basing on the Random Graph 
Theory.

From this observation, our paper focuses on the way to access to the íĩnite-state Markov Chain 
theory via Graph theory; then model and construct clearerly than basic properties of the finite-state 
Markov Chain thcory. Basing on some thcorctical results which have bccn buiỉt in Scction 2 and Scction
3, vvc have constructed State Cỉassiỳìcation algorithm to classiíy State of finite-state Markov Chain. 
Our purpose to build this algorithm comes from the idea “All problems will be clcarer if we give out 
the algorithm to solve them”. However, our imagination and visual images are completely diíĩerent 
from cach othcr. In the reality, no projects have modellcd specifically the movcment of finite-state 
Markov Chain process; from the theoretically basic algorithms which have just bccn constructed; in 
Section 4, vve have built a small project \vith the purpose of modelling specifically our new results. 
The signiíìcance of this project is that \ve can have a clearer and deeper image about the íaiĩìiliarly 
theoretical results of Markov Chain. More importantly, this project helps us to build a concrete model 
space Random Markov chain, then create a convenient condition for a dccper research in the dircction 
of Random Markov Chain. This is also the last section of the paper incluđcd our íuture vvorks and the 
diíTiculties we are facing up.

2. The scnse in theory graph
In the discrete time domain, a random process X  =  { X n e  s |n  ^  0} on the State space 

s  = {1,2,..., N } is a Markov chain if it is a scquence of random variables each taking values in s  and
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it satisíìes the Markov property, i.e, its future evolution is independent of the past states and depends 
only on the present State. Formally, X  is a Markov Chain if for all n ^ 1 and all i , .,11,10 € 5,

p{-^n+l = j \ x n = i, x n_i = in-li . . •» X\  = ii, Xo = io} = p{x„.f 1 = j \ X n = i}.

If the probabilities goveming X  are independent of time, X  is time-homogeneous. In this case,
vve define a matrix p = (P i j ) whose element at the i-th row and j-th column,

Matrix p is called 1 -step transition matrix or simply the transition matrix of X .
Consider a digraph Q = (V, E), where the vertex set V  = s  =s {1,2,..., N }. The edgc space of 

Q is constructcd as follows: an edge from vertex i to vertex j, denote d j , if and only if in the model 
of this finite-state M a r k o v  Chain, the proccss can visit t h e  State j  after one step if now it stays in the 
State i. In other vvords, for all i , j : eXj e E <=> P i j  > 0. We call the digraph Q the boolean transition 
graph of the Markov chain, and its associated a matrix calling the boolean transiiion matrix of this 
M a r k o v  C h a in ,  d e n o te  Q  =  Qijy is c o n s t r u c t e d  a s  fo l lo w s :

In the model of digraph Q vve give out some related concepts as íbllovving: A path V  = ioii. . .ik 
in a digraph Q = (V,E) and calling V  a path from io to ik if it is a non-empty sub-digraph of the form:

• Vertex spacc: Vp = {io,ii,.. Mifc} c V, vvhere the ih are all distinct.
• Edge space: =  {ioii,ii*2 , •. . , ú - i ú }  c  E.

The number of edges of the path, k, is called its lengíh, the vertex ĨQ is called beginning-vertex 
and the vertex i k is called end ing-vertex .

In the directcd graph ợ, vertex j  is said to be accessible from vertex iy dcnote i —> j, ịf there is a 
path from vertex 2 to vertex j. Othervvise, vertex j  is saiđ to be umccessible from vertex i and denote 
ỉ j .  Two vertices i and j  that are acccssible to each other are s a i d  to communicate, and denote
i «-* j . Vertex i is said recurrenỉ if for all vertex j  such that i —> j  then there will have a path from
j  to i, j  —♦ i. Vertex i is said transient if it is not recurrent. Clearly the relation of communication 
satisfies three properties reflexive, symmetric, and transitive so it is an equivalence. Two vertices that 
communicate with each othcr are said to be in the same class; the concept of communication divides 
the vertex space up into a number of separate classes.

From giving out the concepts: accessible, communicate, recurrení and transient in the model 
digraph ợ, we see the similarity between these concepts and the corresponding concepts in thc model 
of finite-state Markov Chain. In other vvords, if a vertex i is accessible or communicate to a vertex j; or 
vertex i is recurrent then in the íìnite-state Markov Chain model which is corrcsponded vvith, the State i 
w il l  b e  a c c e s s i b l e  o r  c o m m u n i c a t e  to  th e  S ta te  j; o r  th e  S ta te  i is r e c u r r e n t  S ta te . W i t h  t h i s  c o n s t r u c t io n ,  

it is obvious that we, basing on its boolean transition graph ợ , can solve the basic problems of the 
í ì n i t e - s t a t e  M a r k o v  C hain  th e o ry .  F r o m  th e  d e f in i t i o n ,  i f  a  v e r t e x  is  t r a n s i c n t  t h e n  a l l  o t h e r  v e r t i c e s  th a t  

accessible vvith this vertcx will be transient, or if this vertex is recurrcnt then all othcr vcrtices that it 
accessible vvith wiil be recurrent. Thus, when we determine a vertex to be transient or recurrent, the 
transient and recurrent propcrties of other vertices that are accessible vvith these vertices are deduccd 
and of course they are removed from further consideration. Moreover, this identification only depends

Pij = P{Xn+l = j \ x n = i} = P { X ,  = j\Xo = *}.
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on boolean transition graph Q or boolean transition matrix Q. These íòllovving concepts and results 
vvill specificialize this statement.

We start by defining the forward and backward scts 0f a vertex.

Deíìnition 2.1. The forward set o f vertex i e V , deĩìote by !F(i), is the set o f  vertices thai ì is 
accessibles with. That is, i) = {j € V I i -» j}. Similarly; the backward set o f  vertex i, denoted by 
B(i), is the set o f  vertices that ơre accessible with ỉ. Thai is, B(i) = {j  € V I j  —> i}.

We have the following results:
Proposition 2.1. A veriex  i £ V  is recurrení i f  a n d  Oĩìỉy i f  T { i )  c  B{i). In  o th er  words, i is tra n sien t 

i f  and onìy i f  T{%) ị  B(i).

Theorcm 2.1. [10] I f  vertex i € V is transient, then aỉl vertices in B(i) are ỉransienỉ. l f  vertex i is 
recurrení, OYÌ the other hand, aỉl vertices in F(i) are recurrent. In the latter cơse, the set TỤ) is a 
recurrent class, and the set B(i) -  f ( i )  ( if  noi empty) contains only transietìt veríices.
Proof. Suppose vertex 2 is transient. By Proposition 2.1, !F(i) ^ i.e., 3k € ĩ ( i )  such that k ị  B(i).
Novv, suppose vertex j  e B(i), then k G Jr(j). This is because i € T{j )  so that !F{i) c  T(i) .  On the 
other hand, B{j) c B(i) since j  € B{i). Thereíore, we have vertex k e p{ j )  but k ị  B(j) since k ị  B(i)y 
vvhich implies J:(j) % B(j) so that j  is transient by Proposition 2.1.

Novv, if vertex i is recurrent, i.e., i) c  B(i) from Proposition 2.1, then, Vj G ^(i) => i «-»j .  So 
vve havc T{j )  c  T{i) and B(i) c B(j). Thus, T{i)  c  T(i )  c  B(i) c  B{j), vvhich implies j  is recurrent 
from Proposition 2.1. Pinally, if i is rccurrent and ổ(i) -  T ự )  is not empty, let vertex k e B{i) -  F{i)i 
vve merely need to show that T(k)  ị  B(k) so that k is transient. In íact, k € B{i) ^  i £ and
k ị  T(i) i Ệ B(k), vvhich implies ^ ( k )  (Ị. B(k).

Proposition 2.1 states that \ve can chcck if a vertex is recurrent by simply checking if its forward 
set is containcd in its backward set. If it is, then a recurrent class has been found vvhich equals to 
the forward sct so that the vertices of this forward set can be rcmoved from consideration. Moreover, 
according to Theorem 2.1 if the backward set properly contains the forward sct, those vertices in the
b a c k w a r d  s c t  n o t  b e lo n g in g  to  t h e  f o r w a r d  s e t  a re  a ll  í ò u n d  to  b c  t r a n s i c n t .  In t h e  c a s e  t h e  f o r w a r d  s e t

is not contained in the backvvard set, vve have íbund a subsct of transient vcrtices equal to {i} u B(i).
The important problcm in analyzing the long-run behavior of a finite-state Markov chain is 

detcrmining the recurrcnt states as exactly as possible. The following results will make Thcorem 2.1 
clcarcr and help us to look for the recurrent states easily.

Thcorem 2.2. I f  vertex i € V is (ransient, then all vertices in B{i) are transient. Moreover, there are 
some vertices in J ‘(i)\S(i) are recurrení; set T(i)\B(i)  contains a recurrení class.
Proof. As vve know, if j  e i), iyj € V , then F( j )  c T{i). So we can prove this theorem vvith
indưction method according to the number of vertex of set F(ì).

Lct vertex i e  V is transient. Suppose the theorem is right vvith all transient vertices u e  V such 
that |^(u)| < |JF(2)|. Consider any vertex j  G T{ì). If vertex j  is recurrent, the theorem is right; then 
T(i) contains a recurrent class, which is B(j). Othenvise, if j  is transient. |^*(j)| < 1 (̂01 so PU)  
contains a recurrent class. The theorem is still right.

We consider a digraph QR (correspond vvith V R) which has the same vertex space as Q (corre- 
spond with V) but in vvhich all edges have been reversed in direction. If vve call Ti(i) and m(i) tuong 
ung be the number of paths starting and ending at vertex i. From Theorem 2.2 we have an important 
result as follows:
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Theorem 2.3. The vertex i is recurrent in the digraph Q i f

n(i) = min{n(u) I u € V)

The vertex j  is recurrent in the digraph QR i f

m( j )  =  m i n { m ( u )  I u  €  V )

Proof. Consider a vertex i such that n(i) = mìn{n(u) I u £ V"}. If vcrtcx i is transient in (7, from 
Theorem 2.2 it exists a vertex io such that

(i) Vertex io is recurrent,
(ii) and existing a path V  = i ì\ . ..ikio, where vertex ỉk is transient.

Obviously from all paths starting at vertex i0, we can make another path starting at vertex i and 
containing this path by adding path V  forward to this path. ỉn addition, path V  is not a path starting 
at vertex ÌQy so n(z) > n(io), contradiction. Thereíore, vertex i is recurrcnt in digraph Q.

Basing on the statement that the class property are not aíĩected by reversing all the directed 
graph’s edges, we prove similarly the second idea.

From Theorem 2.3, each recurrent vertex in ợ or QR is identiíìed the effectiveness via the number 
of paths starting and ending at it. As we know, in Graph Theory, Depth-First Search algorithm (DFS) 
is known as the most eíĩective algorithm in íìnding the number of paths starting at One vertex and 
ending at one vertex. In the íbllovving section, we will use the idca of DFS algorithm and Thcorcm 2.3 
to  c o n s t r u c t  a n  a lg o r i t h m  to  c la s s i f y  S ta te  o f  f in i t e - s t a t c  M a r k o v  C hain  b a s i n g  o n  its b o o le a n  t r a n s i t io n  

graph.

3. State classification algorithm

In this section, our main purpose is to give State Cỉassificaíỉon algorithm based on the ideas 
of Strong Components algorithm and DFS algorithm to classiíy vertex in a digraph according to 
transience and recurrcnce properties. Strong Components algorithm can be found throught any materials 
mentioning “Design and Analysis of Algorithm & Directed graphs”.

From definition of DFS, when we cnter a class, every vertex in the class is reachable, so DFS 
docs not terminate until all the vertices in this class have been visited. Thus all the vertices in a class 
may appear in the same DFS tree of the DFS íbrest. Uníortunately, in gencral, many classes may 
appcar in the same DFS tree. Does there alvvays exist a way to order the DFS such that just have 
only one class appear in any DFS tree? Fortunately, the answer is yes. State Classiíication algorithm 
will explain the reason why this ansvver is yes. ín oder to investigate (he idea of State Classification 
algorithm, íĩrstly, we study on the idea of Depth-First Search algorithm (DFS).

3.1. Depth-First Search

Assume that vve are given a digraph Q = (y, E). To compute eíĩectively all paths starting and 
ending at a vertex in Q vve submit an optimal surf-proposal to surf all paths in Q. Concretely, we might 
use the following strategy. Firstly, we maintain a color for each vertex: vhite means undiscovered, 
gray means discovered but not fmished Processing, and black means f\ìnished. Then as the process 
enter a vertex in V , the color of this vertex will be changed from vhite to gray to remind itself that 
it vvas already there. Successively travel from vertex to vertex as long as the process comes to a place
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it has not already been. When thc proccss retums to the same vertex, try a diíĩer^nt edge leaving thc 
vcrtex (assuming it goes somevvhere the process has not already been). When all vertices have been 
tried in a given vertex, the color of this vertex will be change from gray to black and backtrack. 
This is the general idea behind Depth-First Search. We vvill associate tvvo numbers with each vertex. 
There are íime síamps. When we íìrstly discover a vertex i store ?. counter in d[i] and when we finish 
Processing a vertex we store a counter in f[ỉ\. The algorithm is shovvcd in Table 1.

Table 1. The code of Depth-First Search Algorithm.

Depth-First Search(Ợ) { Visit(i) {
color [.]<— vhite; pred [.] ♦— null; color [i] 4— gray; d[i]«— time + 1;
time<— 0; for each j in Adj(i)
for each i in V if (color[j] = white) {

if (colorti] = vhite) pred[j]<— i;
Visit(i); Visit (j);

} }
color[i] black; f[i]4— time + 1;

}

3.2. State cỉassi/ìcaíion

We have a statcment without proof as following: A vertex i of which fmish time value, /|i], is 
maximum will be recurrent in digraph QR. Moreover, if consider in a new digraph vvhich is createđ 
from the digraph QR after destroying the vertex i and all its relative edgcs, then the vertex vvith maximal 
íìnish time value vvill be recurrcnt. Otherwise, clearly once the DFS stans vvithin a given class, it must 
visit every vertex within the class (and possibly some others) beíbre íìnishing. If we do not start at a 
recurrent class, then the search may “leak out” into other classes, and put them in the same DFS tree. 
However, by visiting vertices in reverse topological order of finish timcs sequence {f[i} ị i € V }, each 
search cannot “leak out” into other classcs, because the DFS always starts vvithin a recurrent class.

Tabel 2. The code of State Classiíìcation Algorithm.

StClass(Ợ) {
Run DFS(£7) , computing íinish times f[i] for each vertex i;
Compute Q R <—  Reverse(Ợ);
Sort the vertices of Q R (by QuickSort) in decreasing order of f [i] ; 
DFS(ổ^) using this order;
Classes DFS tree;
If there exists an edge connected this class to another class 
This class 4— recurrent class;

}

This leaves us vvith the intuition that if we could somchow order thc DFS, so that it hits the 
vertices accorđing to a reversc topological of fmish times sequence {/|ĩ| I i € V},  then we will have
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an easy algorithm for íinding recurrent classes and transient classes of a directed graph. The code of 
State Classifìcation algorithm to slove the class problem is given out in Table 2.

3. Our project and future work

As vve knovv, the basic knovvledge to build the íinite-state Markov Chain theory is really siniple 
and understandable. However, because of the simple theory, we will find diíĩiculties in realizing some 
important properties of the fmite-state Markov Chain iheory without basing on experimental images 
or results in the reality. For example, by means of experiment, we find out an interesting property 
t h a t  “ C o n s i d e r  a  f in i t e - s t a t e  M a r k o v  Chain  w h i c h  its S ta te  s p a c e  is b i g  e n o u g h  ( |S |  >  100). I f  its 

transition matrix is determined by P{pij > 0} = 10%, Vi,j, with these events mutually independent, 
then almost sure we can affirm that it is an irreducible aperiodic Markov Chain” (See in [8)). Indeed, 
when the requirement of Science is higher and higher, the íìnite-state Markov Chain theory is certainly 
to be investigated deeperly. We believe that it is impossible to do that if vve do not have the clear 
sense about the structure or the movement of finite-state Markov Chain modcl. From this point, in 
the time to study on the finite-state Markov Chain theory, vve havc made a small prọịcct with the 
purposc of helping get a good sense to the íìnite-state Markov Chain model. Our project is written 
with Vìsual ữ s language and its code program is very simple and understandable. This prọịect deals 
with the important problems of finite-state Markov Chain theory such as classifying State, íinding 
stationary distribution. More interestingly, this project gives out the speciíìc images about the digraph 
modelling finite-state Markov Chain, and shows clearly (he acting process of DFS algorithm and State 
Classiíication algorithm.

To model the finite-statc Markov Chain model by a digraph according to its transition matrix, 
our porject is written with Visual C6, and is constituted of threc Form and two Class: Fonn Finite 
State Markov Chains, Form Table, Form Graph, Class MouseMove and Class PanelArray. With the 
purpose of constructing the transition matrix, the Form Table brings out the t\vo dimcnsion array boxes 
\vhich allow us to input the data of transition matrix. Form Finite State Markov Chains combines 
with Form Table to form a control system. In the Form Finite State Markov Chains, we have three 
groups of control button. The group Conslruction helps us to build the digraph to model the íĩnite- 
state Markov Chain; the group Classificaíion makes the acting process of DFS and State Classiíìcation 
algorithms; and the group Distribution allows us to compute the stationary distribution of fmite-state 
Markov chains. To help the Form Graph modelling thc finite-state Markov Chain model, the class 
PanelArray presents a vertex or an cdge in digraph as a control panel, and the class MouseMove, with 
the purpose of moving a control panel, helps us to movc a vertex or an edge easily. Thus, the Form 
Graph creates successfully the active digraph niodel that we ữeely move the vertices and the curveness 
of edges. Moreover, when a digraph is created with its transition matrix, we can change this graph 
such as omitting some edges or vertices by changing values in its transition matrix. Hovvevcr, the most 
interest we are self-assuređ in this prọịect is thai the group of buttons Construction can construct the 
model of random directed graphs. As we knovv, Random Graphs, an interesting and important branch 
o f  S c ie n c e ,  h a s  s o m e  p r o p e r t i e s  w e  c a n  a p p l y  fo r  M a r k o v  C hain  th e o ry .  T h e r e í o r e ,  w e  h o p e  th a t  f rom  

our project Random Graphs will be easily studied and beneíìcial from researching íinitc-state Markov 
Chain theory.

In recent years, lots of scientists all over the world are interested in constructing State classiíi- 
cation algorithm and íinding the stationar>' distribution of íìnite-state Markov chains. Many prọịects
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like [11] are carried out to solve the above problems. Hovvever, vvithout the purpose of studying on the 
íìnite-state Markov chain theory deepcrly, almost prọịects only focus on the results, not be concemed 
with the structure and thc movemcnt of Markov Chain modcl. From this situation, the establishment of 
our project has significance in studying the íìnite-state Markov Chain theory deeperly. Besides giving 
out the result of State classifying and stationary distribution searching, our prọịect has modeỉled exactly 
the structure and the acting proccss of the Markov Chain models vvith 200 states. Hovvever, due to the 
limit of time and our knovvledge, our project is poor in both content and formation. It’s hope that with 
thc supplementary databasc knovvledge, wc will solve all important problems of Markov chains which 
its State space is large. Whcn the number of State of Markov Chain is extremely large, the important 
propcrties vvill be recognized easily. The diíĩiculty we arc facing in upgrading this project in order to 
work vvith thc huge-state Markov Chain is hovv to construct the Form Graph observing and describing 
the modelled digraph. That’s our main íuture work!
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