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Abstract. In a previous paper [1], the identiíication algorithm is presented for feedback active 
controlled systems. However, this method can only be appỉied to complete measured systems. The 
aim of this paper is to present a combination of the identification algorithm and the modal 
superposition method to control the incomplete measured systems. The system response is 
expanded by modal eigenfiinction technique. The extemaỉ excitation acting on some íĩrst modes is 
identiíìed vvith a time delay and vvith a small error depending on the ỉocations of the sensors. Then 
the control forces vvill be generated to balance the identiíĩed excitations. A numerical simulation is 
applied to a building modeled as a cantilever beam subjected to base acceleration.

1 . Introduction

The active control method can be applied to many problems such as robot control, ship 
autopilot, airplane autopilot, vibration control of vehicles or structures... Fig 1 provides a schematic 
diagram of an active control system.

Fig. 1. Diagram of a structural controỉ system.

It consists of 3 main parts: sensors to measure either extemal excitations or system responses or 
both; Computer controller to process the measured information and to compute necessary control force
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based on a gi ven control algorithm; actuators to produce the required íòrces. When only the responses 
can be measured, thc method is called íeedback active control. In recent years, the active con troi 
method has been widely used to reduce the excessive vibrations of civil structures due to 
environmental disturbances ([1-10]). One of the basic tasks of active structural conữol problem is to 
determine a control strategy that uses the measured structural responses to calculate an appropriate 
control signal to send to the actuator. Many conừol sừategies have been proposed, such as LQR/LQG 
control [2,3], control [4,5], sliding mode control [6], saturation control [7], reliability-based
control [8], fuzzy conữol [9], neural conừol [10]... In fact, it is usually that One is unable to measure 
the extemal excitation while the structural response can often be measured. The identiíĩcation 
algorithm presented in [1] is a method, which identifies the extemal excitation from the structural 
response measured. Although this version of identification algorithm can be applied even for the 
nonlinear structures, it requires knowledge of the entire State vector o f the structure, which is not 
possible for large structures. Thus, the aim of this paper is to combine the identiíĩcation algorithm and 
the modal superposition method for the linear structures with incomplete measurement, i.e only some 
components o f State vector can be measured.

2. Problem ĩormulation

Consider a multi-degree-of-freedom system described by the linear State equation
x ( t )  = A x ( t)  + u ( t)  + f ( t ) ,  x(0) = JC0 (1)

Where, x(t) is the n-dimensional State vector , fự )  is the /1-dimensional extemal force vector, u(t) is the 
n-dimensional control vector, A is an n*n system matrix. Let yự )  be the />-dimensional measurement 
(output) vector (p<n) with:

y { i ) - C x ( t )  (2)
Where, c  is a pxn  measurement matrix. The control íorce vector u(t) is selected as a íiinction of the 
measurement vector yự). The control problem is to fmd the active control force uự) necessary to 
reduce the norm State vector. It is seen obviously that the best control law is that

« ( ' )  =  - / ( ' )  (3)
Indeed with control law (3), the extemal excitation is totally eliminated. However, it is usually 

that one is unable to measure the extemal excitation, so the control law (3) cannot be realized in the 
practical application. The idea involved in the conừol law (3) may be used in a modiíied way, in 
which the history of the extemal excitation can be identified with a time delay by a so called 
identifícation process. The process identiíying the entire extemal excitation is presented in [1] and is 
called the original identiíícation algorithm here. The original identiíĩcation algorithm requires the 
knowledge of the entire State vector to identiíy the entire excitation. However, when only the 
measurement vector in (2) can be measured, the excitation can not be identiíìed all. In this paper, by 
using modal superposition method, the identiíication algorithm will be extended to identify some most 
important excitations base on measurement vector y{t). The detail of this extension is presented in 
section 4.
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3. Original identiílcation algorithm

The original identiíication algorithm is developed in [1]. Let rbe the time duration of the action 
of extemal excitation. Let all the components o f State x(t) can be measured and all components of its 
íĩrst and second order derivatives can be calculated in a short time. The interval [0, 7] is divided into n 
small equal intervals of the length A where A is a small positive number whose value depends on 
computation speed and accuracy o f Computer. Thus One has:

T = qầ
For any given íunction vector m{t), the following notation is inừoduced:

»tl l ( 0  =  r  . . k  = \ ,2 ,. . . ,q  (4)
[0 othenvise

In Tk = [(ấ: -1) À < t  < ấ:A] , the system response is described by the following equation:

(/) = A x 1*1 ụ  ) + ( t ) + (/) (5)
In this subinterval, we assume that the control force MW(/) can be lcnown (by the conứol law (7) 

below), the State vector xlkl(/) is measured and its íìrst derivatives is calculated. Thus, the extemal 
disturbance/ kl(0 can be calculated as

/ í*1(/) = i í*1( / ) - ^ í*1(0 - « í*1(0  (6)
So, at the end of the subinterval Tk, One can know all about_/(0 in this subinterval. Because the 

subinterval 7* ended, this information can be used only in the next subinterval Tk+I to calculate U|k+I|(0, 
This means that the iníbrmation about J[t) has a time delay A. Using the iníòrmation of the delayed 
extemal excitation/(/), the conữol algorithm is proposed as:

«l'1(/) = 0

' «1*1 (/) = (t -  A) = ~ [ x ỉk-'] (t -  A )-  Ax[i-'] (/ -  A)- u[k-'] (/ -  A)] k = 2,3...q (7)

As we see, the control law (7) is established in the inductive way. With control law (7), the 
delayed extemal excitation is totally eliminated. As mentioned above, the disadvantage of the 
original identiíication algorithm is the requirement o f the knowledge of entire State vector x(t).

4. Combination of the identifícation algorithm and the modal superposỉtion method

The incomplete measurement leads to the incomplete excitation identification. Two questions 
need to be addressed: which excitation is important and how to identify it? These questions are not 
easy to answer if the system is nonlinear. However, in case of linear system as modeled in (1), the 
answer can be found by well-known modal eigenfnnction technique. Let A have distinct eigenvalues A,J 
( j = \ , . . n )  and corresponding eigenvectors T|j Assuming that the eigenvalues Xj are ordered such as:

|X,|<|X2|<.^|Xn|
Define the nxp matrix Oc ,the nx(n-p) matrix <Dr, the pxn  matrix Tc and the (n-p)xn maứix Ỹr

by

^ = [ 7, n2 -  -  7, ] ;  [<I>C ^ r =  Ị '
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The pxp diagonal matrix Ac and the (n-p)x(n-p) diagonal matrix Ar is also deíìned by:
A c =diag\_ị Ả, ... Ẫp]i  A r =diag[Ắp+ì Ằ>+2 ... A . ]

Then

A=[Q'  © , ]

Applying the modal fransformation
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The State equation (1) is decoupled

K = \ x c + uc + fc
xr = A rxr +ur + /r

(8)

(9)
Where

*c = H>cx ;  x r = 4 V ; uc = ; «r = ; f c = V  cf ; f r = % /
The measurement vectory(t) is also revvritten in modal space:

y  = Ccxc + Cr xr (10)
Where

Cc =COc;Cr =COr
As one knows, the vibrational modes corresponding to large eigenvalues often contribute 

insigniíìcantly to the response [1 1 ], so attention needs to be paid only to a few vibrational modes.
Thus, the important excitation is /c and we need to identiíy it. The identiíĩcation process here is
implemented in the same manner of the process in section 3. The interval [0, T\ is also divided into n
small equai intervals of the length A. Using the notation (4), in Tk =[(£ - l )A < t  < , the
equation (8) has form:

4 *’ { ' ) = ( 0 +«!*'(')+X1*1 ( 0
Using (10), we have

jrỊ*i ( , ) = c ; ' / i  (í) -  c ; 'c ,4 ‘' (/) -  A .c ; 1/ 1 ( 0 + a cc ; 'c ,4 ‘I (/) -  «ị* I (/)

=> /1*1 (,)+£<*> (<)= c ; ' / 1 ( / ) -  Acc ; ' / I  (/) -  »1*1 (/) (1 1 )
Where

E [k] (t ) = c ; 'c r4*] (/) -  A <c ; xc j P  (/) (12)
In the subinterval Tỵ, we assume that the control force Uc^/) can be known (by the conứol law 

(13) below), the measurement vector is known and its first derivatives is calculated. But the error 
term £^'(0 introduced through the truncation process is still unknown. Thus, from (11), we can not 
know the exact e x c i t a t i o n b u t  only an estimate of/clk|(0 with an error £tk|(/). To attenuate Ihis 
eưor term, the sensors should be located to obtain a signiíicant contribution of the information of xc. 
This means a large norm of Cc in comparison with the norm of c r. Because the subinterval Ty enđed, 
the iníormation known can be used only in the next subinterval 7it+1 to calculate M,k+11(/). ưsing the 
delayed iníbrmation, the control force uc acting on the significant modes xc is proposed as:
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w[,)(0 = o

• "í*1 (0 = -  {/cM  ( ' - A ) + E[k~'] (' - A)} (13)

= - [ c ; ' ỷ [M  ( t - A ) -  Acc ; ' / - ' ] (t -  A) -  u[k-'] ụ  -  A)] k = 2 ,3 . . .q

Besides, because it is unnecessary to control the insigniíicant vibrational mode x„ we choose 
«r=0 for the entire time duration. At last, wc determine u(t) by transformation from moda! space to 
State space:

u -  <&cuc + O rur = Ocwc (14)
The control lavv using the combination of the identification algorithm and the modal 

superposition method is described as (13) and (14).

5. Numerical simulation

Considering a base excited building modeled as a vertical cantilever beam as shovved in Fig 2.

Fig. 2. Model of a cantilever beam subjected to base acceleration.

The characteristics of the beam are taken from [12]. The beam has a square cross-section with 
the dimension of 21 m X 21m. The total mass is 153,000 tons, the total height is 306m, the modulus of 
elasticity is 40 GPa and the damping ratios for all modes are assumed to be 2%. Using the method of 
separation of variables, the goveming partial differential equation of the beam is represented by a 
system of iníìnite ordinary điíĩerential equations. After that, the system of infinite equations is 
truncated to derive the State equation [11]. In this calculation, the truncated system retains five 
diíĩerential equations. We assume that there is only one sensor measuring the displacement of a certain 
point of the beam. Because the velocity can be calculated from the displacement, the measurement 
vector contains 2 components: the displacement and the velocity of the point, where the sensor is 
located on. That means the measurement matrix c  in (2) has 2 rows. The State vector of the beam has 
10 components, in which only 2 first modes are controlled by the identification algorithm. The 
numerical simulations are taken when the sensor is placed at the distances LIA, LI2 and L from the 
base. In Fig 3, the shapes of the lst mode, the 3rd mode and the 5th mode are drawn from Ieft to right. 
As we see, if the sensor locates at the distance L/4, the contribution to the measurement information of 
the lst mode (vvhich is retained) is smaller than that of the higher modes (vvhich are truncated). Thus, 
in this case, the error produced through the truncation process in (12) might be large.
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Fig. 3. The lst, 3rd and 5th mode shapes of the beanx

To see more clearly, we plot the history of the eưor term. Since the measurement matrix c has 
2 rows, the error terrr E(t) in (12) is a 2-dimensional vector. The histories of 2 components of E{t) are 
plotted in Fig 4 and 5 for each case of the location of sensor .

a) b)

Fig. 4. The history of the lst component of error term £(f), 
sensor locates at the distance 1/4 (a), LI2 (b) and L (c).

c)

a) b) c)
Fig. 5. The history of the 2nd component of eưor term E(t), 

sensor locates at ứie distance Lỉ4 (a), LI2 (b) and L (c).

It can be seen that, locating the sensor at the distances LI2 and L is better than at the distance 
LI4. However, more investigate need to be done in the future to fmd the method seeking the optimal
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locations of the sensors. The time delay is taken with 1/500 and 1/800 of total duration time T. Some 
of the controlled results are shown in table 1 and Fig 6 and 7. In Fig 6 and 7, thin and dotted lines are 
uncontrolled responses

Table 1: The peak displacement in the numerical simulation

Distance locate the sensor L/4 L/2 L
Time delay (% of total time) 0.2 0.125 0.2 0.125 0.2 0.125

Top point displacement (cm) Controlled 29.9 26.45 19.34 17.43 6.02 4.16
Unconữolled 52.22

a) b) c)

Fig. 6. The history of top point displacement, À= 0.2%r, 
sensor locates at the distance L/4 (a), L/2 (b) and L (c).

Fig. 7. The history of top point displacement, À= 0.125%r, 
sensor locates at the distance L/4 (a), L/2 (b) and L (c).

As we see, locating the sensor at the distances L/2 and L leads to the smaller response than 
locating at the distance LI4. Retum to íĩgures 4 and 5, this situation can be understood because the 
eíĩect of identiíĩcation algorithm depends on the error term E(t).

6. Conclusion

This paper proposes a combination of the identification algorithm and the modal superposition 
method for feedback active control of incomplete measured systems. The system is expanded to the
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modal space. A limited number of sensors are used to measure some components of the State vector. 
Using this incomplete iníòrmation, an algorithm is presented to identify the extemal excitation acting 
on some íĩrst modes. The excitation is identiíied with a time delay and a small eưor term. The 
magnitude of the error temri depenđs on the number and the locations of the sensors. The numerical 
simulation is applied to a base excited cantilever beam to illustrate the algorithm. The effects of the 
time delay and the location of sensor are considered.
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