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Abstract. In this note we consider the ĩiltering problem for íinancial volatility that is an 
Om ste in-U lhenbeck process from  po in t process observation. Th is  problem  is investigated for 
a M arkov-Fe lle r process o f  w h ich  the O m ste in-U lhenbeck process is a particu lar case.
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Introduction and notations

Stochastic volatility is one o f  main objective to study o f  financial mathematics. It reílects 
qualitively random effects on change o f íinancial derivatives, interest rate and other íìnancial product 
prices.

M any results have been received recently for volatility estimation by íiltering approach. Rudiger 
Frcy and w . J. Runggaldier [1] studied for the case o f  high ữequency data. Frederi G. Viens [2] 
considered the problem o f  portíòlio optimization under partially observed stochastic volatility. Wolfgang 
J. Runggaldier [3] used íĩltering methods to speciíy coeíĩicients o f  íìnancial market models.

A filtering approach was introduced by J. Cvitanic, R. Liptser and B. Rozovskii [4] to tracking 
volatility from prices observed at random times. A íiltering problem for Omstein-Ulhenbeck signal 
from discrete noises was investigated by Y.Zeng and L.C.Scott [5] to applied to the micro-movement 
o f  stock prices. Also a practical method o f  filtering for stochastic volatility models was given by J. R. 
Strouđ, N. G. Polson and p. M uiler [6 ].

These authors introduced also a sequentỉal parameter estimation in stochastic volatility models 
with jum ps [7]. And other contributions were given recently by A. Bhatt, B. Rạịput and Jie Xiong, R. 
Elliott, R. M ikulecivius and B, Rozovskii.

Filtered multi-factor models are studied by E. Platen and w . J. Runggaldier [8 ] by a so-called 
benchmark approach to íiltering.

1. Filtering from point process observation

Let (fĩ, T , p ) be a com plete probability space on which all processes are defmed and adapted 
to a íiltration (Pt, t >  0 ) that is supposed to satisíy ” usual conditions”.
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For the sake o f  simplicity, all stochastic processes considered here are supposed to be 1 
dimensional real processes.

We consider a íiltering problem where the signal processes is a semimartingale

where zt is a square integrable T t-  martingale, H t is bounded T t -Progressive process and £ [s u p a<t |X S|] 
<  oo for every t >  0, Xo  is a random variable such that E \X o\2 < oo; the observation is given by a 
point process T ị -  semimartingale o f  the form

where Mt is a square integrable ^t-m artingale with mean 0, Mo =  0 such that the íìiture ơ- íìeld 
ơ(M u -  M t \u  >  t) is independent o f  the past One ơ(Yu, hu\u  <  t), ht — h (X t ) is a positive bounded

Tt~ Progressive process such that E  /  h%ds < oo for every t.

Denote by Tị the ơ-algebra generated by all random variables YS1S < t. Thus t ỵ  records all 
iníormation about the observation up to the time t.

Suppose that the process us = -7 - <  z ,  M  >s is F 3- predictable (s <  t) where < , >  stands
ds

for the quadratic variation o f Zị and M t. Denote also by ủs the ĩ Ỵ - predictable projection o f ut . By 
assumptions imposed on z  and M  we see that <  z ,  M  > =  0, so u3 =  0.

The ĩilter o f (X t ) based on iníormation given by (y t) is defined as the conditional expectation

The process m t is called the innovation from the observation process Yt .

Lemma 1.1. m t is a point process tỵ-m artingale and fo r  any t, the f,'uture ơ-fìeld ơ (m t - m s \ t >  s) 
is independent o f  !FỴ.
ProoỊ. We have by definitions (2) and (5):

(1)

(2)

(3)

(4)

(5)

(6)

It follows from assumption o f  Mt that

\TỴ ] =  0. (7)
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On the other hand, since for u >  s
E{hu\rỴ) = E[E{Ktâ)\rỴ\  =  E[k{K)\FỴ\,

or

E [ J  [hu -  iĩ(hu)]du\TỴ] = 0, (8)

and then

E [m t -  771,1^/] -  0 , t > s .  (9)

Now for any s, t such that 0 <  s < t we consider two íamilies Ct and T>t o f  sets o f  random variables 
deíined as fol!ows:

C3 1 = {sets Ca , s < a < t} where Ca =  {m É — m Q ; a < a  <  t}

T>a = {sets Db,0 < b < t} where Db =  {V/3 ; b <  0  < s}.

It is easy to check that c s t and T>s are 7T-systems, i.e. they are closed under íinite intersections.
Also they are independent each o f other by (9). It follows that (refer to [9]) the ơ-algebra ơ(Cs t) =
ơ(m t — m 3, s < t) generated by c , t is independent o f (7 -algebra ơ (V 3) =  t ỵ  generated by V ,. The 
second assertion o f Lemma 1.1 as thus established.

We State here an important result by p. Bremaud on an integral representation for t ỵ -martingale:

Lem m a 1.2. Let Rt be a t ỵ -martingale. Then there exists a t ỵ -predictable process K t such thai 
for all t >  0 ,

I  K 3ĩr(ha)ds < oo p.a.s, ( 1 0 )
J 0

and such that Rị has the following representation:

R t = R o+  [  K sdm a. (11)
J 0

R em ark. Since the innovation process mt is a t ỵ  - martingale so it can represented by

rriỊ =  mo +  /  K sdm sì ( 1 2 )
J  0

where K t is some t ỵ  - predictable process satisíying ( 1 0 ). It is known from [ 1 0 ] that K t is o f the 
form

Kt = ir{h t)-x\K{Xt-h t) -  n {X t-)iĩ(h t) + ủ t]}

and since ú( =  0  we have

Theorem  1.1. Thefìltering equation fo r  the filtering problem (1)- (2) is given by:

n (X t) = Tĩ(X0) +  [  iĩ(H a)d s+  Ị  n~ l (h3)[n(X s- h 3) -  Tr(Xa-)ir(hs)]dms. (13)
J 0  J 0

provided Tĩ(ht) Ỷ  0  CL S.
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R em ark . If the observation is given by a Standard Poisson process Yị then the filtering equation takes 
the following form

7r(X f) =  n(X0) + Ị  7T(Hs)ds+ [  n~l (h3)X3-[n(h3) -  l]dma, (14)
J 0 J 0

where m t — Yt — t.

Q u asi-n itering . There is some inconvenience in application o f (13) because the appearance o f the 
factor[7r(/iJ)]_1. To avoid this đifficulty we introduce the unnormalized condỉtional íĩltering or quasi- 
nitering in other term.

As we know in the method o f reference probability, the probability p  actuaily goveming the 
statistics o f the observation Yị is obtained from a probability <5 by an absolutely continuous change 
Q —* p .  We assume that Q  is the reference probability such that Y  is a (Q , !Ft)- Poisson process o f 
intensity 1 , where Tt =  T Ỵ  V -̂ TO-

Denoting for every t > 0 by Pt and Qt the restrictions o f  p  and Q respectively to (Í2, Ft) we 
have p t «  Qt- It is known that the corresponding Radon-Nykodym đerivative is the unique solution 
of a Doleans-Dade equation:

Lị = \ +  [* Ls-(hs — l)dMa, (15)
J 0

vvhere ht and Mi are given in (2).
The explicit solution o f  (15) is

Lt = = n 0<a<thsA Y 3exp [  (1 -  ht )ds. (16)
dQt J  0

Let z t be a real valued and bounded process adapted to Ti, then for every history Qt such that 
í >  0 we have a Bayes íòrmula

p,,(7 \c \ -  EQ(ZtLt\Ợt) . .Bp(Z,  Ịft) =  (17)

vvhere Ep{.\Qt) and Eọi.ịGt) are conditional expectations under probabilities p  and Q  respectively. 
Dcfínition. The process ơ {X t) defined by

a ( X t) =  E Q( L tX t \Tt )  (18)

is call the optimal quasi-íilter (or quasi-filter) o f x t based on data Tị. It is in fact an unnormalized 
ĩilter o f  x t .
R em arks.

(i) If  under the probability Q, Yt is a Standard Poisson process ( i.e o f  intensity 1) and the 
process Ht = Yt - t  is then a (Pt, Q)-martingale.

(ii) We have by consequence o f the definition

< x t) =  (19)

where 1 stands for íunction identifíed to for every t: l( t)  = 1.
Replacing 7r(.) by its expression given by (19) we can revvrite the ĩiltering equation (14) as an

equation for quasi-filtering ơ(.):
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Theorem 1.2. The assumptions are those prevailing in Theorem 1.1. Moreover, assume thai Zt and 
Mị have no common jumps. Then the quasi-fỉlter ơ (X t) satisfies the/oỉlom ng equation

ơ{Xt) = ơ (X 0) +  Ị  ơ(H a)ds + Ị  [ơ(X3- h a) -  ơ (X s-)]dn3ì ( 2 0 )
J 0  J 0

where

nt = Yt - t .  (21)

Proof. Suppose we have (13) already:

ir (Xt)  =  n{Xữ)  +  Jq H { X a)ds  +  Ị q n ~ l (h a)'Ỵad m a ( 1 3 ) ’

where 7 ,  =  n (X 3- h3) -  n (X s- )n (h 3) and m 3 — Y3 -  f*Tr(hs)ds.
By deíinition ơ ( X t) =  ĩ r (L t )n (X t). Applying a íormula o f integration by part we get

ir(Lt)n(X t) = tĩ(Xq) +  [  n (X 3)n (H 3)ds+  Ị  7r(L í - ) 7 sá m s
J 0 J 0

+ [  n (X a- )n (L 3-){Tĩ(ha) -  l]dn3 +  [7r ( L ) , 7r(X )]t (22)
J 0

where n t = Yt -  t and [.,.] stands for the quadratic variation.
Because 7r(Xo) =  ơ(Xo) and there are at most countably many points where n (L t-)  ỹỂ 7r(L<)

so

[ n (L a-)ir(H s)ds = Ị ir{L,)-K(H3)ds = Ị  ơ(H s)ds.
J 0 J 0 J 0

On the other hand we have

[7r (L ) , i r ( * ) ] t  =  E  =  -  l]dY,. (23)
0  <?<t Jữ

Then

n(Lt)ir(X t) =  ơ(X t) = <r{X0) + [  a{H 3)ds+
J 0

+  [  n (L a-)[n {X 3- h a) -  TT(Xs)ir(hs)]dn3 
J 0

+ [  n {L 3- ) n ( X a-)[n (h s) -  l]dns 
J 0

=  a {X 0) +  r  ơ(H a)ds +  r  [ơ {X ,-h 9) -  ơ (X ,- )] d n , .  (24)
J 0 J 0

The proof o f Theorem 1.2 is thus complcted.
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2. F iltering  fo r a Fellerian system

Suppose that Xt is a Markov process taking values in a compact separable Hausdorff space s 
and that the semigroup ( P t , t >  0) associated with the transition probability P ị ( x , E )  is a Feller 
semigroup, that is

P tf( x )=  Ị  P t{x ,d y)f(y ), (25)
J 0

maps C (S ) into itselí for all t >  0 satisfies

lim  p tf{x )  = f ( x ) ,  (26)
€

uniíormly in s for all /  € C(S), where C (S ) is the space o f all real continuous íunction over s. 
Assume that the observation Yị is a Poisson process o f intensity hị =  h ( x t) 6  C{S).

As beíòre the filter nt is deíìned as:

n ư )  = x( f (Xt ) )  :=  E \ f ( X t)\rỴ).  (27)
Also we have

ơt ( f )  :=  c ( f ( X t)) = E Q[Lt f ( X t ) \ ? Ỵ ] t (28)

whcre the probability Q  and the likelihood ratio are defined as in subsection 1.2.
Denote by TTĩt the innovation process o f Yt',

at{f) := = EQ[Ltf(X t)\rỴ)t
1 the likelihood ratio are defined as in subsect 
ìovation process o f Yt:

mt :=  Yt — [  ĩr3(h)ds =  Yt -  [  Ơ3[^lds.
J 0  J 0  ơ , ( l )

(29)
J 0

The following results are given in [8 ]:

Theorem  2.1 [Fìltering equationfor Fellerprocess with pointprocess observation] I f  A  is in/ìnitesimal 
generaíor o f the semigroup p t o f  the signalprocess, then the optimal/ilter 7rt ( / )  =  satisýìes
the two following equations provided 7Ts (/i) Ỷ  0 O.S. 

ắ)

M f )  =  7ro ( / ) +  /  na(A f)d s  +
J 0

+  [  -  ira-{f)Tra{h)]dm3 , /  e  Cb{S), (30)
J 0

b)

*tư) = *o(Ptf)+ Ir Tĩal{h)[ira-(hPt-sf)
J 0

—7TS-  (Pt-sf)Tra(h)]dma J  6  Cb(S). (31)

Theorem  2.2 [Q uasi-fíltering equation fo r Feller process w ith  po in t process observation]. The
quasi-fìlter ơt satisfies the two following equations:

a)

ơ tU )  =  ơ o ự ) + f  ơg(A f)ds  +  f  [ơ9- ( h f )  -  ơa- ( f) ] d m a , f  €  C 6 (S ), 
J 0  J  0

(32)
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b)

M ĩ )  = M P t f ) +  í  [ơ„-{hPt-3f )  -  ơs- ( P t - 3f)]d m a f  G Cb(S). (33)J 0

3. Ornstein- Ulhenbeck process and iĩnancial nitering

We recall in this Section some facts on Om stein- Ulhenbeck and show how to use it to our 
íiltering problems. This process is o f importance in studies in fmance. It has various ’good properties’ 
to describe many elements in íinancial models as that o f  interest rate ( Vacisek, Ho-Lee, Hull-White, 
etc.) or stochastic volatility o f  asset pricing.

Let X  = (X t , t  >  0) be a stochastic process with initial value Xo o f  Standard normal distributed: 
Xo € ^ ( 0 , 1 ) .

3.1. Dẹfỉnition. If  (Xt) is a Gaussian process with
a) mean E X t  =  0 , Ví >  0
b) Covariance íiinction

R(s, t) =  E (X 3X t) = 7 e x p ( - a | í  -  s |)  , s, t > 0; Q , 7  6 R + , (34)

then x t is called an Omstein-Ulhenbeck.
It follows from this definition that (x t ) is a stationary process in wide-sense. It is also a 

stationary process in strict sense since its density o f the transition probability is given by

1  Ị  (y — xe~2a^~ 3̂ )21  ( y - x e - 2aV -s>)2 \

that depends only on (í -  s), where 7  is some positive constant.

(35)

3.2. Stochastic Langevin equation. An Om stein-Ulhenbeck (X f) can be deíìned also as (he unique 
solution o f  the form

dX t =  - a X td t  + 7 dWt , Xo ~  7 ^ (0 ,1 ) , (36)

where a  > 0  and 7  are constants.
The explicit form o f this solution is

and its expectation, variance and covariance are given by

'íEX, = e~at

Vt := Var(Xt) = ị -  ,

7 2
where is denoted by /3 in (34) 

2a
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3.3. Ornstein - ưlhenbeck process as a Feỉỉer process. Consider a Standard Gaussian measure on R

It is known that an Om tein - Ulhenbeck process (X t ) is a Markov process and its semigroup is 
defined by a family (pt , t >  0) o f  operations on bounded Borelian fi)nctions / :

then x t is really a Feller process and the family (P t,t>  0) is called an Omstein- Ulhenbeck semigroup.

3.4. Filtering fo r  Ornstein-Uỉhenbeck process from  point process observation. We will apply results 
o f Section II to the following íiltering problem:

•  Signal process: An Om stein-Ulhenbeck process x t that is solution o f the equation (36).
•  Observation process: A point process N t o f  intensity xt > 0.
So the signal and observation processes (X t, N t) can be expressed in the form

where a ,  7 >  0  , xt is a ^ t-adapted  process, Mt is a point process martỉngale independent o f  Wt. 
Denote by pị*  the ơ-algebra o f observation that is generated by (N ,, s < t)
The íĩlter o f (x t ) based on data given by (rỊ*)  is denoted now by Xt'.

and dm t — dYị — Xtdt.
Since the semigroup (Pt , t  > 0) for X t  is defmed by (37), the iníìnitesỉmal operator At is given

(37)

It is obvious that

v}™(ptỉ)(x) = f ( x)y (38)

dX t = —a X ịd t  +  nfdWt , Xo ~  A T(0,1), (39)

dNt — Xịdt +  Mị, (40)

Xt  =  v t ( X )  = E { X tự Ỵ )

and also M f )  = fC *t) = E ự ( X t ) \ r Ỵ )  , /  6  Cb(R).
The innovation process r r i ị  is given by

(41)

by

M Ị  =  Ịim j { P t f  -  ỉ )  = - a x f ( x )  +  ^ - 7 2ỉ"{x ) . (42)

On the other hand, p tf  can be expressed under the form:

(43)

where Y  is a Standard gaussian variable, Y  ~  A ^(0 ,1). 
Then from Theorem 2.1 we can get:
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Theorem 3.1. a)

Mf) = Mf) + Ị*n,[-aXf'(X) + £-f"(X))ds
+  [  (A)[7T ,-(A /) -  7rs_ ( / ) 7rs (A)](dYs -  7Ts(À)ds), (44)

J 0
b)

7Tf ( / )  =  M p t f )  + í  -  7rs_ ( P t_ a/)7Ts (A )][cirs -  7T,(A)đa], (45)J 0
yvhere Pị is given by (43).

T heorem  3.2. The quasi-fìlter ơt ( f )  for the fìltering (39)- (40) is given by One o f two following 
equations:

a)

Mf) = CJỒ{Ị) + Ị \ a[-aXỊ'{X) + ịỉ"{X)\ds
+  f \ a a. ( X f )  -  <7s- ( / ) ] Ị d F s -  7T3(A )dS], (46)J 0

b) ơ t ự )  = (TO(Ptf) + f \ a a-(X P t. af )  -  ơa-(Pt-sf )][dY3 -  na(X)ds}.
J  0

The fisrt author was supported by the Royal Golden Jubilee Ph.D Program o f Thailand (TRF). 
R em arks.

(i) The above results can be applied also to term structure models for interest rates, where the 
rate is expressed as an Orstein-ưlhenbeck process and the observation is given by a point process o f 
form

Nt = 1 h(Ss)ds + M t ,  0 <  t < T,
J  0

where St is the a process observed stock prices the models for Vacisek, Ho-Lee, Hull-W hite ... can be 
included in this context.

(ii) The assumption that the volatility o f  asset pricing is o f form of an O m stein-ưlhenbeck 
process is quite ửequently met in various íinancial models. So above results can give another approach 
to estimate this volatility.
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