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Abstract. In this note we consider the filtering problem for financial volatility that is an
Omstein-Ulhenbeck process from point process observation. This problem is investigated for
a Markov-Feller process of which the Omstein-Ulhenbeck process is a particular case.

Keywords. and phrases: filtering, volatility, point process. AMSC 2000: 60H10; 93E0S5.

Introduction and notations

Stochastic volatility is one of main objective to study of financial mathematics. It reflects
qualitively random effects on change of financial derivatives, interest rate and other financial product
prices.

Many results have been received recently for volatility estimation by filtering approach. Rudiger
Frey and W. J. Runggaldier [1] studied for the case of high frequency data. Frederi G. Viens [2]
considered the problem of portfolio optimization under partially observed stochastic volatility. Wolfgang
J. Runggaldier [3] used filtering methods to specify coefficients of financial market models.

A filtering approach was introduced by J. Cvitanic, R. Liptser and B. Rozovskii [4] to tracking
volatility from prices observed at random times. A filtering problem for Omstein-Ulhenbeck signal
from discrete noises was investigated by Y.Zeng and L.C.Scott [S] to applied to the micro-movement
of stock prices. Also a practical method of filtering for stochastic volatility models was given by J. R.
Stroud, N. G. Polson and P. Miller [6].

These authors introduced also a sequential parameter estimation in stochastic volatility models
with jumps [7]. And other contributions were given recently by A. Bhatt, B. Rajput and Jie Xiong, R.
Elliott, R. Mikulecivius and B, Rozovskii.

Filtered multi-factor models are studied by E. Platen and W. J. Runggaldier [8] by a so-called
benchmark approach to filtering.

1. Filtering from point process observation

Let (2, 7, P) be a complete probability space on which all processes are defined and adapted
to a filtration (F;, t > 0) that is supposed to satisfy ” usual conditions”.
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For the sake of simplicity, all stochastic processes considered here are supposed to be 1-
dimensional real processes.
We consider a filtering problem where the signal processes is a semimartingale

Xt=X0+/ H,ds + Z,, (1)
0

where Z, is a square integrable F;- martingale, H, is bounded F;-progressive process and E[sup,<, | X|]
< oo for every t > 0, Xy is a random variable such that F|X|? < oo; the observation is given by a
point process J;- semimartingale of the form

t
Vo= [ hds+ M, (2)
0
where M, is a square integrable F;-martingale with mean 0, My = 0 such that the future o- field
a(M, — My;u > t) is independent of the past one o(Yy, hy; u < t), hy = h(X,) is a positive bounded
pt
JFi- progressive process such that E JI h2ds < oo for every t.
0

Denote by F; the o-algebra generated by all random variables Y;, s < t. Thus F} records all
information about the observation up to the time ¢.
d
Suppose that the process u, = — < Z, M >, is F,- predictable (s < t) where <, > stands

ds
for the quadratic variation of Z; and M,. Denote also by i, the FY - predictable projection of u,. By

assumptions imposed on Z and M we see that < Z, M >= 0, so u, = 0.
The filter of (X,) based on information given by (Y;) is defined as the conditional expectation

m(Xe) == E(Xd| 7)), (3)

or more general
m(f) = E[f(X0)|F), (4)
where f is a bounded continuous function f € Cy(R).

Denote by m(h;) the filtering process corresponding to the process h; in (2).
Let m; be a process defined by

t
m = Y; —-/; m(hs)ds. (5)

The process m; is called the innovation from the observation process Y;.

Lemma 1.1. m, is a point process F¥ -martingale and for any t, the future o-field c(m;—m, ; t > s)
is independent of FY .
Proof. We have by definitions (2) and (5):

my —ms = Yg—Y,-—] 7 (hy)du
= M- M+ [ (b= (bl (6)

It follows from assumption of M; that

E((M; - M,)|FY] =0. (7)
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On the other hand, since for u > s
E(hlF)) = E[E(hF)F)] = E[r(h)IF,],
or
Bl [ 1ha - (hlaulY) =0, ®

and then
E[m, — m,|FY]=0, t>s. (9)

Now for any s, t such that 0 < s < ¢ we consider two families C; and D, of sets of random variables
defined as follows:

Cat = {sets C,,s < a <t} where C; = {my —my;a <a <t}
D, = {sets Dy,0 < b < t} where D, = {Y3;b < B < s}.

It is easy to check that C,; and D, are w-systems, i.e. they are closed under finite intersections.
Also they are independent each of other by (9). It follows that (refer to [9]) the o-algebra o(C,:) =
o(my — m,,s < t) generated by C,, is independent of o-algebra o(D,) = FY generated by D,. The
second assertion of Lemma 1.1 as thus established.

We state here an important result by P. Bremaud on an integral representation for ' -martingale:

Lemma 1.2. Let R, be a F -martingale. Then there exists a F, -predictable process K, such that
forallt > 0,

t
/ Kym(h,)ds < co P.a.s, (10)
0

and such that R, has the following representation:

t
R,=Ro+/ K.dm,. (11)
0

Remark. Since the innovation process m; is a F¥ - martingale so it can represented by
rt
0

where K, is some .'F,Y- predictable process satisfying (10). It is known from [10] that K, is of the
form

Ky = m(he) (X p=he) — m(Xp-)m(he) + ),

and since 4; = 0 we have

Theorem 1.1. The filtering equation for the filtering problem (1)- (2} is given by:

m{(X:) = 7(Xo) +./0 n(H,)ds +/0 T (Ry) [ (X - hy) — T(X,- )7 (Rs)]dm,. (13)

provided 7(h;) # 0 a.s.
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Remark. If the observation is given by a standard Poisson process Y; then the filtering equation takes
the following form

t

(X)) = 7(Xo) + /0 n(H,)ds +/0 77 (he) X - [ (hs) — 1]dm,, (14)

where m; = Y; — t.

Quasi-filtering. There is some inconvenience in application of (13) because the appearance of the
factor[m(h,)] 1. To avoid this difficulty we introduce the unnormalized conditional filtering or quasi-
filtering in other term,

As we know in the method of reference probability, the probability P actually governing the
statistics of the observation Y; is obtained from a probability () by an absolutely continuous change
Q — P. We assume that Q) is the reference probability such that Y is a (Q, F;)- Poisson process of
intensity 1, where 7, = 7Y v FX.

Denoting for every t > 0 by F; and @, the restrictions of P and Q respectively to (2, ;) we
have F, << @;. It is known that the corresponding Radon-Nykodym derivative is the unique solution
of a Doleans-Dade equation:

Lio=1+ /‘ Le_(he — 1)dM,, (15)
0

where h; and M, are given in (2).
The explicit solution of (15) is

¢
L, = L = Mo<s<ths AY, exp/ (1 - h,)ds. (16)
dQ T 0

Let Z, be a real valued and bounded process adapted to F,, then for every history G; such that
G, C F;, t > 0 we have a Bayes formula

Eo(Z:Li|G:)
Eo(LiG) (17)

where Ep(.|G,) and Eq(.|G:) are conditional expectations under probabilities P and Q respectively.
Definition. The process o(X;) defined by

EP(Z:K/'t) =

0’(X¢) = EQ(L:X:'.F:) (18)
is call the optimal quasi-filter (or quasi-filter) of X, based on data F;. It is in fact an unnormalized
filter of X,.

Remarks.

(i) If under the probability Q, Y; is a standard Poisson process ( i.e of intensity 1) and the
process iy = Yy — t is then a (F;, Q)-martingale.
(i) We have by consequence of the definition

(19)

where | stands for function identified to for every ¢: 1(¢) = 1.
Replacing (.) by its expression given by (19) we can rewrite the filtering equation (14) as an
equation for quasi-filtering o(.):
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Theorem 1.2. The assumptions are those prevailing in Theorem 1.1. Moreover, assume that Z; and
M, have no common jumps. Then the quasi-filter o(X,) satisfies the following equation

S

t
o(X:) = a(Xo) +/ o(H,)ds + / lo(X,-hs) — o(X,-)]dn,, (20)
0 0
where
m =Y, —t. (21)
Proof. Suppose we have (13) already:
m(Xe) = m(Xo) + fy H(Xs)ds+ fy 7~ (hs)ysdm, 13y

where v, = n(X,- h,) — 7 (X,-)m(h;) and m, =Y, — ﬁ]t w(hs)ds.
By definition o(X,;) = w(L;)7(X.). Applying a formula of integration by part we get

m(Le)mw(Xe) = m(Xo) + '/0.A n(Xs)m(H,)ds + -/(:W(L,- )ysdms

t
+/ T(X-)m(Ly-)[m(hs) — l)dn,s + [w (L), n(X)]: (22)
0
where n; = Y; — t and [., .] stands for the quadratic variation.

Because 7(Xj) = o(Xo) and there are at most countably many points where w(L,-) # (L)
sO

/; w(L,-)w(H,)ds = -/otﬂ(L,)w(H,)ds = /:O'(H,)ds.

On the other hand we have

(L) (k= 3 An(L,)An(X,) =j£ ot (hy- ) (hs) = 1), (23)

0<a<t

Then
w(Le)m(Xe) = a(Xe) = o(Xo) + /0 o(H,)ds+
+ /t w(L,-)['ir(X,-h,) - W(X,)ﬂ'(ha)]dna
0

+ ‘/ot 7(L,-)7w(X,-) [ (hs) — 1]dn,

= o(Xo) + /.t o(H,)ds + _[t [0(Xs-hs) — 0(X,-)]dn,. (24)
Jo Jo

The proof of Theorem 1.2 is thus completed.
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2. Filtering for a Fellerian system

Suppose that X; is a Markov process taking values in a compact separable Hausdorff space S
and that the semigroup (P, , t > 0) associated with the transition probability P;(z, E') is a Feller
semigroup, that is

t
Pi)= [ Piz.d)fw), (25)
maps C(S) into itself for all ¢ > 0 satisfies
lim P,/ (z) = f(2), (26)

uniformly in S for all f € C(S), where C(S) is the space of all real continuous function over S.
Assume that the observation Y; is a Poisson process of intensity by = h(X;) € C(S).
As before the filter m, is defined as:
m(f) = 7(£(Xp)) = E[f(X)IF). (27)
Also we have
ai(f) := o(f(Xe)) = Eq[Lef (Xo)|F/), (28)

where the probability @ and the likelihood ratio are defined as in subsection 1.2.
Denote by m, the innovation process of ¥;:

%= I _y,_ [ o
me .= Y, /‘;ﬂ,(h)ds—}’t /oa,(l)ds' (29)

The following results are given in [8]:

Theorem 2.1 [Filtering equation for Feller process with point process observation] If A is infinitesimal
generator of the semigroup P, of the signal process, then the optimal filter m¢(f) = n(f(X:)) satisfies
the two following equations provided m,(h) # 0 a.s.

a)
() = N+ [ ro(Af)ds +
0
+ [0 77 (B)ly-(Fh) = Tom (f)ma(R))dms , £ € Co(S), (30)
b

() = mo(Bn)+ [ AT W)l (hPims )
—Ty= (Pes f)ms(h)]dm, , f € Cp(S). (31)

Theorem 2.2 [Quasi-filtering equation for Feller process with point process observation]. The
quasi-filter o, satisfies the two following equations:

a)
o(f) = ool f) + jo 04(Af)ds + jo oo (hf) — oo (Pldm, , FECH(S),  (32)
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b
or(f) = oo(P:f) + jo (02— (hPiesf) = 0u—(Prcsf)ldm, f € Co(S). (33)

3. Ornstein- Ulhenbeck process and financial filtering

We recall in this Section some facts on Omstein- Ulhenbeck and show how to use it to our
filtering problems. This process is of importance in studies in finance. It has various 'good properties’
to describe many elements in financial models as that of interest rate ( Vacisek, Ho-Lee, Hull-White,
etc.) or stochastic volatility of asset pricing.

Let X = (X;,t > 0) be a stochastic process with initial value X of standard normal distributed:
Xp € N(O, 1).

3.1. Definition. If (X,) is a Gaussian process with
aymean EX; =0, Vt>0
b) Covariance function

R(s,t) = E(X,X,) = yexp(—a|t — s|) ,s,t > 0; a,7 € RY, (34)

then X, is called an Omstein-Ulhenbeck.
It follows from this definition that (X,) is a stationary process in wide-sense. It is also a
stationary process in strict sense since its density of the transition probability is given by

1 (y _ xe—2a(t—s))2 ]

T [_
p(s,z;t,y) = N TR ) cxvpl +(1 — 2e-2a(t-9)) [

that depends only on (t — s), where v is some positive constant.

(35)

3.2. Stochastic Langevin equation. An Omstein-Ulhenbeck (X;) can be defined also as the unique
solution of the form

dX, = —aX.dt +ydW, , Xo ~ N(0, 1), (36)

where a > 0 and v are constants.
The explicit form of this solution is

¢
X: = Xoe ™™ + 'y/ e~t=2)gw,,
0

and its expectation, variance and covariance are given by

EXt = 6—at 5
,72
‘/t = VGT(XI) = % ]

R(s,t) = g;e-““-’h

2

where ;— is denoted by 3 in (34)
o
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3.3. Ornstein - Ulhenbeck process as a Feller process. Consider a standard Gaussian measure on R

ufde) = \/—;_;exp ( - %g)dx.

It is known that an Orntein - Ulhenbeck process (X,) is a Markov process and its semigroup is
defined by a family (P, ,t > 0) of operations on bounded Borelian functions f:

(FD)@) = [ 1t + LVT= e ty)uld) (37)

It is obvious that
lim(P.f)(@) = /() (38)

then X, is really a Feller process and the family (P, ¢t > 0) is called an Ornstein- Ulhenbeck semigroup.

3.4. Filtering for Ornstein-Ulhenbeck process from point process observation. We will apply results
of Section Il to the following filtering problem:

e Signal process: An Omstein-Ulhenbeck process X, that is solution of the equation (36).

e Observation process: A point process Ny of intensity A; > 0.

So the signal and observation processes (X;, V) can be expressed in the form

dXe = —aX,dt + vdW, , Xo ~ N(0, 1), (39)

ANy = Mdt + M, (40)

where a,y > 0, A, is a Fy-adapted process, M; is a point process martingale independent of W,.
Denote by F/ the o-algebra of observation that is generated by (N.,s < t)
The filter of (X;) based on data given by (F/¥) is denoted now by X;:

Xt = 7rt(X) = E(thft )
and also m(f) = f(X:) = E(f(X)|FY) , f € Co(R).

The innovation process m; is given by

t
— / Suds, (41)
0

and dm, = dY; — Adt.
Since the semigroup (P, ,t > 0) for X, is defmed by (37), the infinitesimal operator A, is given
by

1
Af =lim = (Pf — f) = —azf'(z) + 2 "(z). (42)
t—0 ¢ 2
On the other hand, P, f can be expressed under the form:
(Pcf)(z) = E[f(e™z + \/ Bl a9 (43)

where Y is a standard gaussian variable, Y ~ N(0, 1).
Then from Theorem 2.1 we can get:
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Theorem 3.1. a)

t ,7,2
m(f) = molf)+ [ ml-aXfX) + L (X0lds
+ [ 5 O ) = 7o (s N@Ys — (), (44)

b)

¢
me(f) = mo(Fef) +/0 Ty (N [me=(APe—sf) = Mo (Pems f)ms (A))[dYs = 7, (N)ds],  (45)
where P, is given by (43).

Theorem 3.2. The quasi-filter o,(f) for the filtering (39)- (40) is given by one of two following
equations.

a)

t 2
(f) = aulf)+ [ al-aXf0+ L p"(X)lds
t
+ [ 0= - o (N]laY, - ma(N)ds], (40)
0

D) (1) = oo(Pef) + [ [04-(WP-af) = 0= (Pros [AY, = 7o),

0
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Remarks.

(1) The above results can be applied also to term structure models for interest rates, where the

rate is expressed as an Orstein-Ulhenbeck process and the observation is given by a point process of

form
rt

Nt=j h(S,)ds+M,, 0<t<T,
0

where S; is the a process observed stock prices the models for Vacisek, Ho-Lee, Hull-White ... can be
included in this context.

(ii) The assumption that the volatility of asset pricing is of form of an Ornstein-Ulhenbeck
process is quite frequently met in various financial models. So above results can give another approach
to estimate this volatility.
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