Some results on (IEZ)-modules

Le Van $\mathrm{An}^{1, *}$, Ngo Si Tung ${ }^{2}$
${ }^{!}$Highschool of Phan Boi Chau, Vinh city, Nghe An, Vietnam
${ }^{2}$ Department of Mathematics, Vinh University, Nghe An, Vietnam

Received 16 April 2007; received in revised form 11 July 2007

Abstract. A module M is called (IEZ)-module if for the submodules A, B, C of M such that $A \cap B=A \cap C=B \cap C=0$, then $A \cap(B \oplus C)=0$. It is shown that:
(1) Let M_{1}, \ldots, M_{n} be uniform local modules such that M_{i} does not embed in $J\left(M_{j}\right)$ for any $i, j=1, \ldots, n$. Suppose that $M=M_{1} \oplus \ldots \oplus M_{n}$ is a ($I E Z$)-module. Then
(a) M satisfies $\left(C_{3}\right)$.
(b) The following assertions are equivalent:
(i) M satisfies $\left(C_{2}\right)$.
(ii) If $X \subseteq M, X \cong M_{i}$ (with $i \in\{1, \ldots, n\}$), then $X \subseteq \subseteq^{\oplus} M$.
(2) Let M_{1}, \ldots, M_{n} be uniform local modules such that M_{i} does not embed in $J\left(M_{j}\right)$ for any $i, j=1, \ldots, n$. Suppose that $M=M_{1} \oplus \ldots \oplus M_{n}$ is a nonsingular (IEZ)-module. Then, M is a continuous module.

1. Introduction

Throughout this note, all rings are associative with identity, and all modules are unital right modules. The Jacobson radical and the endmorphism ring of M are denoted by $J(M)$ and End(M). The notation $X \subseteq^{e} Y$ means that X is an essential submodule of Y.

For a module M consider the following conditions:
$\left(C_{1}\right)$ Every submodule of M is essential in a direct summand of M.
$\left(C_{2}\right)$ Every submodule isomorphic to a direct summand of M is itself a direct summand.
$\left(C_{3}\right)$ If A and B are direct summands of M with $A \cap B=0$, then $A \oplus B$ is a direct summand of M.

A module M is defined to be a CS-module (or an extending module) if M satisfies the condition $\left(C_{1}\right)$. If M satisfies $\left(C_{1}\right)$ and $\left(C_{2}\right)$, then M is said to be a continuous module. M is called quasicontinuous if it satisfies $\left(C_{1}\right)$ and $\left(C_{3}\right)$. A module M is said to be a uniform - extending if every uniform submodule of M is essential in a direct summand of M. We have the following implications:

We refer to [1] and [2] for background on $C S$ and (quasi-)continuous modules.
In this paper, we give some results on (IEZ)-modules with conditions $\left(C_{1}\right),\left(C_{2}\right),\left(C_{3}\right)$.

[^0]
2. The results

A module M is called (IEZ)-module if for the submodules A, B, C of M such that $A \cap B=$ $A \cap C=B \cap C=0$, then $A \cap(B \oplus C)=0$.

Examples

(a) Let F be a field. We consider the ring

$$
R=\left(\begin{array}{cccc}
F & 0 & \ldots & 0 \\
0 & F & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & F
\end{array}\right)
$$

Then R_{R} is a (IEZ)-module.
Proof. Let A, B, C be submodules of $M=R_{R}$ such that $A \cap B=A \cap C=B \cap C=0$. Then, there exist the subsets I, J, K of $\{1, \ldots, n\}$ with $I \cap J=I \cap K=J \cap K=\emptyset$ such that

$$
A=\left(\begin{array}{cccc}
A_{11} & 0 & \ldots & 0 \\
0 & A_{22} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & A_{n n}
\end{array}\right)
$$

where $A_{i i}=F \forall i \in I$, and $A_{i i}=0 \forall i \in I^{\prime}$, with $I^{\prime}=\{1, \ldots, n\} \backslash I$,

$$
B=\left(\begin{array}{cccc}
B_{11} & 0 & \ldots & 0 \\
0 & B_{22} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & B_{n n}
\end{array}\right)
$$

where $B_{i i}=F \forall i \in J$, and $B_{i i}=0 \forall i \in J^{\prime}$, with $J^{\prime}=\{1, \ldots, n\} \backslash J$,

$$
C=\left(\begin{array}{cccc}
C_{11} & 0 & \ldots & 0 \\
0 & C_{22} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & C_{n n}
\end{array}\right)
$$

where $C_{i i}=F \forall i \in K$, and $C_{i i}=0 \forall i \in K^{\prime}$, with $K^{\prime}=\{1, \ldots, n\} \backslash K$.
Therefore,

$$
B \oplus C=\left(\begin{array}{cccc}
X_{11} & 0 & \ldots & 0 \\
0 & X_{22} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & X_{n n}
\end{array}\right)
$$

where $X_{i i}=F \forall i \in(J \cup K)$, and $X_{i i}=0 \forall i \in H$, with $H=\{1, \ldots, n\} \backslash(J \cup K)$. Since $I \cap(J \cup K)=\emptyset$, thus $A \cap(B \oplus C)=0$.

Hence R_{R} is a (IEZ)-module.

Remark. Let

$$
\begin{aligned}
& M_{1}=\left(\begin{array}{cccc}
F & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) \\
& M_{n}=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & F
\end{array}\right),
\end{aligned}
$$

then M_{i} which are simple modules for any $i=1, \ldots, n$ and $R_{R}=M_{1} \oplus \ldots \oplus M_{n}$ where R_{R} in example. Therefore, M_{i} are uniform local modules such that M_{i} does not embed in $J\left(M_{j}\right)$ for any $i, j=1, \ldots, n$.
(b) Let F be a field and V is a vector space over field F. Set $M=V \oplus V$. Then M is not (IEZ)-module.
Proof. Let $A=\{(x, x) \mid x \in V\}, B=V \oplus 0, C=0 \oplus V$ be submodules of M. We have $A \cap B=A \cap C=B \cap C=0$ but $A \cap(B \oplus C)=A \cap M=A$. Hence, M is not (IEZ)-module. We give two results on (IEZ)-module with conditions $\left(C_{1}\right),\left(C_{2}\right),\left(C_{3}\right)$.

Theorem 1. Let M_{1}, \ldots, M_{n} be uniform local modules such that M_{i} does not embed in $J\left(M_{j}\right)$ for any $i, j=1, \ldots, n$. Suppose that $M=M_{1} \oplus \ldots \oplus M_{n}$ is (IEZ)-module. Then
(a) M satisfies $\left(C_{3}\right)$.
(b) The following assertions are equivalent:
(i) M satisfies $\left(C_{2}\right)$.
(ii) If $X \subseteq M, X \cong M_{i}$ (with $i \in\{1, \ldots, n\}$), then $X \subseteq \subseteq^{\oplus} M$.

Theorem 2. Let M_{1}, \ldots, M_{n} be uniform local modules such that M_{i} does not embed in $J\left(M_{j}\right)$ for any $i, j=1, \ldots, n$. Suppose that $M=M_{1} \oplus \ldots \oplus M_{n}$ is a nonsingular (IEZ)-module. Then M is a continuous module.

3. Proof of Theorem 1 and Theorem 2

Lemma 1. ([3, Lemma1.1]) Let N be a uniform local module such that N does not embed in $J(N)$, then $S=\operatorname{End}(N)$ is a local ring.

Lemma 2. Let M_{1}, \ldots, M_{n} be uniform local modules such that M_{i} does not embed in $J\left(M_{j}\right)$ for any $i, j=1, \ldots, n$. Set $M=M_{1} \oplus \ldots \oplus M_{n}$. If $S_{1}, S_{2} \subseteq^{\oplus} M ; u-\operatorname{dim}\left(S_{1}\right)=1$ and $u-\operatorname{dim}\left(S_{2}\right)=n-1$, then $M=S_{1} \oplus S_{2}$.
Proof. By Lemma 1 we have $\operatorname{End}\left(M_{i}\right)$ which is a local ring for any $i=1, \ldots, n$. By Azumaya's Lemma (cf. [4, 12.6, 12.7]), we have $M=S_{2} \oplus K=S_{2} \oplus M_{i}$. Suppose that $i=1$, i.e., $M=S_{2} \oplus M_{1}=\left(\oplus_{i=2}^{n} M_{i}\right) \oplus M_{1} ; M=S_{1} \oplus H=S_{1} \oplus\left(\oplus_{i \in I} M_{i}\right)$ with $|I|=n-1$. There are cases:

Case 1. If $1 \notin I$, then $M=S_{1} \oplus\left(M_{2} \oplus \ldots \oplus M_{n}\right)$. By modularity we get $S_{1} \oplus S_{2}=$ $\left(S_{1} \oplus S_{2}\right) \cap M=\left(S_{1} \oplus S_{2}\right) \cap\left(S_{2} \oplus M_{1}\right)=S_{2} \oplus\left(\left(S_{1} \oplus S_{2}\right) \cap M_{1}\right)=S_{2} \oplus U$, where $U=\left(S_{1} \oplus S_{2}\right) \cap M_{1}$. Therefore, $U \subseteq M_{1}, U \cong S_{1} \cong M_{1}$. By our assumption, we must have $U=M_{1}$, and hence $S_{1} \oplus S_{2}=S_{2} \oplus M_{1}=M$.

Case 2. If $1 \in I$, then there is $k \neq 1$ such that $k=\{1, \ldots, n\} \backslash I$. By modularity we get $S_{1} \oplus S_{2}=S_{2} \oplus V$, where $V=\left(S_{1} \oplus S_{2}\right) \cap M_{1}$. Therefore, $V \subseteq M_{1}, V \cong S_{1} \cong M_{k}$. By our assumption, we must have $V=M_{1}$, and hence $S_{1} \oplus S_{2}=S_{2} \oplus M_{1}=M$, as desired.

Proof of Theorem 1. (a), We show that M satisfies (C_{3}), i.e., for two direct summands S_{1}, S_{2} of M with $S_{1} \cap S_{2}=0, S_{1} \oplus S_{2}$ is also a direct summand of M. By Lemma 1 we have $\operatorname{End}\left(M_{i}\right)$, $i=1, \ldots, n$ is a local ring. By Azumaya's Lemma (cf. [4, 12.6, 12.7]), we have $M=S_{1} \oplus H=S_{1} \oplus$ $\left(\oplus_{i \in I} M_{i}\right)=\left(\oplus_{i \in J} M_{i}\right) \oplus\left(\oplus_{i \in I} M_{i}\right)($ where $J=\{1, \ldots, n\} \backslash I)$ and $M=S_{2} \oplus K=S_{2} \oplus\left(\oplus_{j \in E} M_{j}\right)=$ $\left(\oplus_{j \in F} M_{j}\right) \oplus\left(\oplus_{j \in E} M_{j}\right)$ (where $F=\{1, \ldots, n\} \backslash E$). We imply $S_{1} \cong \oplus_{i \in J} M_{i}$ and $S_{2} \cong \oplus_{j \in F} M_{j}$. Suppose that $F=\{1, \ldots, k\}$. Let φ be isomorphism $\oplus_{i=1}^{k} M_{j} \longrightarrow S_{2}$. Set $X_{j}=\varphi\left(M_{j}\right)$, we have $X_{j} \cong M_{j}, S_{2}=\oplus_{i=1}^{k} X_{j}$. By hypothesis $S_{2} \subseteq^{\oplus} M$, we must have $X_{j} \subseteq \oplus M, j=1, \ldots, k$. We show that $S_{1} \oplus S_{2}=S_{1} \oplus\left(X_{1} \oplus \ldots \oplus X_{k}\right)$ is a direct summand of M.

We first prove a claim that $S_{1} \oplus X_{1}$ is a direct summand of M. By Azumaya's Lemma (cf. [4, 12.6, 12.7]), we have $M=X_{1} \oplus L=X_{1} \oplus\left(\oplus_{s \in S} M_{s}\right)=M_{\alpha} \oplus\left(\oplus_{s \in S} M_{s}\right)$, with $S \subseteq\{1, \ldots, n\}$ such that $\operatorname{card}(S)=n-1$ and $\alpha=\{1, \ldots, n\} \backslash S$. Note that $\operatorname{card}(S \cap I) \geq \operatorname{card}(I)-1=m$. Suppose that $\{1, \ldots, m\} \subseteq(S \cap I)$, i.e., $M=\left(S_{1} \oplus\left(M_{1} \oplus \ldots \oplus M_{m}\right)\right) \oplus M_{\beta}=Z \oplus M_{\beta}$ with $\beta=I \backslash\{1, \ldots, m\}$ and $Z=S_{1} \oplus\left(M_{1} \oplus \ldots \oplus M_{m}\right)$. By M is a $(I E Z)$-module and $X_{1} \cap S_{1}=$ $X_{1} \cap\left(M_{1} \oplus \ldots \oplus M_{m}\right)=S_{1} \cap\left(M_{1} \oplus \ldots \oplus M_{m}\right)=0$, we have $Z \cap X_{1}=0$. By $Z, X_{1} \subseteq \oplus M$, $u-\operatorname{dim}(Z)=n-1, u-\operatorname{dim}\left(X_{1}\right)=1$, i.e., $u-\operatorname{dim}(Z)+u-\operatorname{dim}\left(X_{1}\right)=n$ and by Lemma 2 we have $M=Z \oplus X_{1}=S_{1} \oplus\left(M_{1} \oplus \ldots \oplus M_{m}\right) \oplus X_{1}=\left(S_{1} \oplus X_{1}\right) \oplus\left(M_{1} \oplus \ldots \oplus M_{m}\right)$. Therefore, $S_{1} \oplus X_{1} \subseteq^{\oplus} M$.

By induction we have $S_{1} \oplus S_{2}=S_{1} \oplus\left(X_{1} \oplus \ldots \oplus X_{k}\right)=\left(S_{1} \oplus X_{1} \oplus \ldots \oplus X_{k-1}\right) \oplus X_{k}$ is a direct summand of M, as desired.
(b), The implication $(i) \Longrightarrow(i i)$ is clear .
$(i i) \Longrightarrow(i)$. We show that M satisfies $\left(C_{2}\right)$, i.e., for two submodules X, Y of M, with $X \cong Y$ and $Y \subseteq^{\oplus} M, X$ is also a direct summand of M.

Note that, since $u-\operatorname{dim}(M)=n$, we have $u-\operatorname{dim}(Y)=0,1, \ldots, n$, the following case is trival: $u-\operatorname{dim}(Y)=0$.

If $u-\operatorname{dim}(Y)=1, \ldots, n$. By Azumaya's Lemma (cf. [4, 12.6, 12.7]) $X \cong Y \cong \oplus_{i \in I} M_{i}, I \subseteq$ $\{1, \ldots, n\}$. Let φ be isomorphism $\oplus_{i \in I} M_{i} \longrightarrow X$. Set $X_{i}=\varphi\left(M_{i}\right)$, thus $X_{i} \cong M_{i}$ for any $i \in I$. By hypothesis (ii), we have $X_{i} \subseteq^{\oplus} M, i \in I$. Since $X=\oplus_{i \in I} X_{i}$ and X satisfies (C_{3}), thus $X \subseteq \subseteq^{\oplus} M$, proving (i).

Lemma 3. Let $M=M_{1} \oplus \ldots \oplus M_{n}$, with all M_{i} uniform. Suppose that M is a nonsingular (IEZ)-module. Then M is a $C S$-module.
Proof. We prove that each uniform closed submodule of M is a direct summand of M. Let A be a uniform closed submodule of M. Set $X_{i}=A \cap M_{i}, i=1, \ldots, n$. Suppose that $X_{i}=0$ for any $i=1, \ldots, n$. By hypothesis, M is $(I E Z)$-module, we have $A=A \cap M=A \cap\left(M_{1} \oplus \ldots \oplus M_{n}\right)=0$, a contradiction. Therefore, there is a $X_{j} \neq 0$, i.e., $A \cap M_{j} \neq 0$. By property A and M_{j} are uniform
submodules we have $A \cap M_{j} \subseteq^{e} A$ and $A \cap M_{j} \subseteq^{e} M_{j}$. By A and M_{j} are closure of $A \cap M_{j}, M$ is a nonsingular module, we have $A=M_{j} \subseteq \oplus$. This implies that M is uniform - extending.

Since M has finite uniform dimension and by [1, Corollary 7.8], M is extending module, as desired.

Proof of Theorem 2. By Lemma 3, M is a $C S$-module. We show that M satisfies $\left(C_{2}\right)$. By Theorem 1, we prove that if $X \subseteq M, X \cong M_{i}$ (with $i \in\{1, \ldots, n\}$), then $X \subseteq{ }^{\oplus} M$.

Set X^{*} is a closure of X in M. Since M_{i} is a uniform module, thus X is also uniform. Therefore X^{*} is a uniform closed module. We imply X^{*} is a direct summand of M. We have $X^{*}=M_{j}$, thus $X \subseteq M_{j}$.

If $X \subseteq M_{j}, X \neq M_{j}$ then $X \subseteq J\left(M_{j}\right)$. Hence $M_{i} \cong X \subseteq J\left(M_{j}\right)$, a contradiction. We have $X=M_{j} \subseteq{ }^{\oplus} M$, as desired.

Acknowledgments. The authors are grateful to Prof. Dinh Van Huynh (Department of Mathematics Ohio University) for many helpful comments and suggestions. The author also wishes to thank an anonymous referee for his or her suggestions which lead to substantial improvements of this paper.

References

[1] N. V. Dung, D.V. Huynh, P. F. Smith, R. Wisbaucr, Extending Modules, Pitman, London, 1994.
[2] S.H. Mohamed, B.J. Muller, Continuous and Discrete Modules. London Math. Soc. Lecture Note Ser. Cambridge University Press, Vol 147 (1990).
[3] H.Q. Dinh, D.V. Huynh, Some Results on Self-injective Rings and E-CS Rings, Comm. Algebra 31 (2003) 6063.
[4] F.W. Anderson, K.R Furler, Ring and Categories of Modules, Springer - Verlag, NewYork - Heidelberg - Berlin, 1974.
[5] K.R. Goodearl, R.B. Warfield, An Introduction to Noncommutative Noetherian Rings, London Math. Soc. Student Text, Cambridge Univ. Press, Vol. 16 (1989).
[6] D. V. Huynh, S. K. Jain, S. R. López-Permouth, Rings Characterized by Direct Sum of CS-modules, Comm. Algebra 28 (2000) 4219.
[7] N.S. Tung, L.V. An, T.D. Phong, Some Results on Direct Sums of Uniform Modules, Contributions in Math and Applications, ICMA, December 2005, Mahidol Uni., Bangkok, Thailan, 235.
[8] L.V. An, Some Results on Uniform Local Modules, Submitted.

[^0]: - Cortcsponding author. Tcl.: 84-0383569442.
 [E-mail: levanan_na@yahoo.com

