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A b stra c t Proper Orthogonal Decomposition and its Proper Transformations has been applied 
widely in many engineering topics including the wind engineering recently due to its advantage o f 
optimum approximation o f multi-variate random fields using the modal decomposition and limited 
number o f  dominantly orthogonal eigenvectors. This paper will present fundamentals o f the Proper 
Orthogonal Decom position and its Proper Transformations in both ứìe time domain and ứie 
frequency domain based on both covariances matrix and cross spectral matrix branches. Moreover, 
ứie most rcccnt topics and applications o f the Proper Orthogonal Decomposition and its Proper 
Transformation in the wind engineering will be emphasized and discussed in this paper as follows:
(1) Analysis and synthesis, identification o f the multi-variate dynamic pressure fields; (2) Digital 
simulation of the multi-variate random turbulent wind fields and (3) Stochastic response prediction 
o f  structures due to the turbulent wind flows. All applications o f the Proper Orthogonal 
Decomposition and its Proper Transformations will be investigated under numerical examples, 
especially will be formulated in both time domain and the frequency domain.

Keywords: Proper Orứiogonal Decomposition, Proper Transformation, wind engineering, unsteady 
pressure fields, lurbulcnce simulation, stochastic response.

1 . Introduction

Proper Orthogonal Decomposition (POD), also known as Karhunen-Loeve Decomposition [1,2], 
has been applied in many engineering fields such as the random fields, the stochastic methods, the 
image processing, the data compression, the system identification and control and so on [3-5]. In the 
wind engineering, the POD has been used in the most recent topics as follows: i) Stochastic 
decomposition and order-reduced modeling of multi-variate random fields (turbulent wind, pressures 
and forces) [6-10]; ii) Representation and simulation of multi-variate random turbulent wind fields 
[1 Ĩ-14] and iii) Stochastic response prediction of structures in the turbulent wind fields [15-18]. The 
POD has been applied to optimally approximate the multi-variale random fields through use of low- 
order orthogonal vectors from modal decomposition o f either zero-time-lag covariance maưix or cross 
spectral density one of this mulli-variate random field. According to type of basic maưix in the modal
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decomposition, the POD has been branched by either the Covariance Proper Transformation or the 
Special Proper Transformation. Main advantage of the POD is that the multi-variale random fiields 
can be decomposed and described in such simplified way as a combination of a few low-order 
dominant eigenvectors (modes) and omitting higher-order ones that is convenient for order-rediuced 
representation of the random fields, random force modeling and stochastic response prediction.

Up to now, the covariance matrix-branched POD and its transformation have been app)Iied 
favorably for analysis and synthesis of the random field, especially of dynamic surface pressure ifield 
around low-rise and tall buildings as well as bridge girders [6- 10] due to its straightforwand in 
computation and interpretation. Because low-order modes contribute dominantly to total energy olf the 
random field s and th eir  en erg y  proportions reduce very fast w ith respect to  an increase o f  m ode order, 
thus it is reason ab le  to  th in g  that th ese  low -order m od es can  represent and interpret to  an y  phyisical 
cause occurring on physical models. Some authors used the POD to analyze random pressure field and 
to find out relation between pressure field-based covariance modes and physical causes, howe'Aer, 
discussed that in many cases that consistent linkage between dominant covariance modes and phyisical 
causes may be fictitious [6,7,10]. Many effects such as number of pressure positions, pressure posiition 
aưangement, and presence of mean pressure values and so on can influence se n s it iv e ly  to resullting  
covariance modes [10], Spectral matrix-based application to decompose the random field is rare duie to 
its complexities in computation and interpretation, but it is promising due to its complete decoup'ling 
solution at every frequency, consequently decoupling in the time domain including zero-time-lag 
condition. De Grenet and Ricciardelli [19] discussed in using the Special Proper Transformatio)n to 
study the fluctuating pressure fields around squared cylinder and boxed gừder.

Representation and simulation of the multi-variate random turbulent fields surrounding structures 
is required for evaluating the induced forces and the random response of structures due to the turbuỉlent 
winds in the time domain. Spectral representation methods basing on the cross spectral density mailrix 
have been applied almost so far due to availability of the auto power spectral densities of turbuilent 
components. These simulation methods, moreover, depend on decomposition techniques of this ciross 
spectral density matrix through either the Cholesky’s decomposition [20,21] or the modal 
decomposition [11-14]. In the former, the cross spectral density matrix is decomposed by produc:t of 
two lower and upper triangular matrices, whereas the modal decomposition uses spectral eigenvectors 
(spectral modes) and spectral eigenvalues obtained from the spectral matrix-branched POD in the 
later. Main advantage of using the Specưal Proper Transformation in simulating the multi-variate 
random turbulent wind field is that only little number of the low-order dominant spectral modes and 
associated spectral eigenvalues is accuracy enough for whole simulating process. Moreover, the liow- 
order sp ecư a l m o d es  and  s p e c ia l  e igen v a lu es a lso  conta in  their p h ysica l s ig n ifica n ce  o f  the miulti- 
variate random turbulent wind field.

Random response prediction of structures due to the turbulent wind forces usually burdens a lot of 
computational difficulties due to projection of the full-scale induced forces on generalized sưuctLural 
coordinates. As a principle, the multi-degree-of-freedom motion equations of structures are decoupled 
into the generalized coordinates and the sưuctural modes due to the structural modal transformat;itn. 
Conventional methods of the gust response prediction of structures has used concept of the Jto.nt 
Acceptance Function to decompose the full-scale turbulent-induced forces, then to be associated wv.th 
the generalized structural coordinates. New approach of the random response prediction of structmres 
due to the turbulent wind flows has been proposed recently with concept of the Double Mocal 
Transformations, in which the sưuctural modes are associated with turbulent-induced loading modes 
that are decomposed by the Proper Transformations in order to determine the random response of 
sưuctures. The Specưal Proper Transformation has been applied for the response prediction in Lie 
frequency domain of simple frame [15], buildings [16], bridges [17], especially, its application of ne
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Cowariance Proper Transformation for the random response of bridges has discussed by Le and 
Ng^uyen [14,18].

This paper aims to present fundamentals of the POD, its Proper Transformations in both the 
coNvariance and spectral matrix branches with emphasis on recent advanced topics in the wind 
enjgineering; (1) Analyzing, identifying and reconstructing the random surface pressure fields around 
soime typical rectangular cylinders, moreover, important role of the first mode including relationship 
wiuh physical phenomena; (2) Simulating the multi-variate spatially-coưelated random turbulent field 
wiuh effect of the spectral modes; (3) Predicting the stochastic response of sưuctures in the frequency 
doimain and in the time domain. These applications will be presented with examples and discussions.

2. Proper orthogonal decomposition and its proper transformations

2.i/. Proper orthogonal decomposition
The Proper Orthogonal Decomposition is considered as optimum approximation of the multi- 

vairiate random field in which a set of orthogonal basic vectors is found out in order to expand the 
raindom process into a sum of products of these lime-independent basic orthogonal vectors and time- 
derpendant uncorrelated random processes. Let consider the multi-variate coưelated random process at 
N--node field containing correlated N-subprocesses v(t)  = approximated as:

vự)^x{tYQ=Ỳx,m (1)
i=l

wlhcrc.v(r); timc-dcpcndant uncorrelatcd random process (also called as principal coordinates) 

xi{t) = ; 0  : time-independent orthogonal modal matrix© = .

Mathematical expression of optimality is to find out the orthogonal modal matrix in order to 
m;aximize the projection of the multi-variate correlated random prcx:ess onto this modal matrix, 
normalized due to the mean square basis [ 1,2];

Max  \ ^  /  (2)
0

w / h c r e , . denote to inner product, expectation, absolute and Euclidean squared norm 

operators, respectively.
Optimum approximation of the random process in Eq.(l) using the shape function matrix defined 

iPi Eq.(2) is known as the Karhuncn-Loeve decomposition. It is proved that the shape function matrix 
mi this optimality can be found out as eigenvector solution of eigen problem from basic matrix that are 
eiuher zero-time-lag covariance matrix or cross spectral density maưix formed by the mulli-variate 
coưclated random process. It is also notable that eigenvalues gained from this eigen solution usually 
re:duce fast, accordingly, only very few number of low-order eigenvectors associated with low-order 
hiigh eigenvalues can obtain the optimum approximation and simplified description of the random 
fuelds.

2.. 2. Matrix representation o f  multi-variate random fields

Zero-time-lag covariance matrix and cross power spectrum density matrix are commonly used to
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characterize for the multi-variate coưelated random process in the time domain and in the frequemcy 
one, which are determined as follows:

(3)/« .= [^ 4 (0 )]  =
ỉQ iO ) -  V ( 0) ,(« )]  =

(n) -

-

elements of the covariance matrix and the cross power spectral one between (/) and V (/) at nodes, k,
I, are determined as follows:

(0) = E[v, ( t)v[  (Í)]: (/I) = (n)COH (n, ) (4)
where E[],T denote to the expectation and transpose operators; n; frequency variable; On) :

auto power specưal densities of v^(0 and COH^^^(n,A^): coherence function between t'Wo

separated nodes k, 1 accounting for spatial coưelation of the random sub-processes in the frequenicy 
domain which can be determined by either empừical model or physical measurement.

It is noted that the zero-time-lag covariance maưix is symmetric, real and positive definiite, 
whereas the cross spectral one is symmetric, real (because the quadrature spectrum has been  
neglected) and Hermittian semi-positive definite at each frequency.

2,5. Covariance proper transformation

The covariance maưix-based orthogonal vectors are found as the eigenvector solution of the eig^en 
problem of the zero-time-lag covariance matrix /?„(0) of the N-variate correlated random process v(i) :

/? ,© ,= r„0„ i(5)

whereFj,,©: covariance maưix-based eigenvalue and eigenvector matrices Fy = ) ’
©u respectively. Due to symmetric, real, positive-definite covariance matrix, thus tthe
covariance eigenvalues are real and positive, and the covariance eigenvectors (also called as 
covariance mcxies) are also real, satisfy the orthogonal conditions:

0 „©i = /; ((6) 
Then, the multi-variate correlated random process and its covariance matrix can be reconstructied 

approximately using j-order truncated number of low-order eigenvalues, eigenvectors as follows:

v( t )  = e , x , ( t )  = ỵ e . x ^ X í ) ; R , = 0 „r„0ĩ = ‘(7)
>1

w herex(í) = {x ,JC low-order covariance principal coordinates as uncorrelatted

random subprocesses; Ĩ Ĩ : number of truncated covariance modes {N « N ) .  Expressions in Eq.(7) is 
also known as the Covariance Proper Transformation.

Covariance principal coordinates can be determined from observed data as follows:

AT„ (/) = ©„-'y(0  = y (i)0 „ = X  Vjự)ỡ,^ ((8)

If the random field contains the zero-mean subprocesses, furthermore, the covariance principial 
coordinates also are zero-mean uncorrelated random subprcx:esses. satisfy some characteristics:
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Where : Kronecker delta.

2,4. Spectral proper transformation

The spectral matrix-based orthogonal vectors are found as eigenvector solution of the eigen 
problem from the cross specưal density matrix 5y(«) of the N-variate correlated random process v(i):

S M ) ^ ^ n ) ^ A , { n ) % { n )  ( 10)

where specưal eigenvalue and eigenvector matrices A ,̂{n) = diag{Ẫ^ị{n\Ẳ^^(n),..Ầ^{n)),

^  in) = [ĩ/ ị{n),y/ 2Í )̂» respectively. It is noted that the specưal eigenvalues are real and
positive, whereas the spectral eigenvectors (spectral modes) are generally complex, however, if the 
cross spectral matrix is real then spectral mcxies are also real ones. The specưal eigenvalues and the 
spectral modes satisfy such orthogonal conditions as follows:

T 7 (n )'P ,(n )  = /; (n)S , (n)^ , {n)  =  A ,(n ) 0 1 )
Accordingly, the Fourier ưansform and the cross special density maưix of random process i;(/) 

can be represented approximately due to terms of the spectral eigenvalues and eigenvectors as follows:

v{n) = {n)y,^ (n) ; 5„(n) = (n) = X ( « ) ^  ( « ) <

wheret)(n): Fourier transform of the random process spectral principal coordinates as

Fourier transform of uncoưelated random subprocesses = »^1, TV : number of

truncated spectral modes { N « N ) \  * denotes to complex conjugate operator. Frequency-domain 
optimum approximation in Eq,(13) is also known as the Spectral Proper Transformation.

The spectral principal coordinates have some characteristics as follows:

3. Analysis and synthesis, identiricatioii o f multi-variate dynamic pressure fields

In this application, multi-variale dynamic pressure field around some rectangular sections have 
been analyzed in the time domain and the frequency one using both the Covariance and Spectral 
Proper Transformations. Next, synthesis and identification of these originally pressure fields using few 
low-order covariance and spectral modes as well as linkage between these low-order modes and 
physical phenomena on the rectangular sections have been discussed. The dynamic pressure data have 
been directly measured in the wind tunnel.

3.1. Wind tunnel measurements o f  dynamic pressure

Pressure measurements have been caưied out on three typical rectangular models with side ratios 
B/D =l, B/D=l with splitter plate and B/D=5 in the wind tunnel. Pressure taps are arranged in 
chordwise dừeclions labeled from position 1 to position 10 (mcxlel B /D =l) and from position 1 to 
position 19 (model B/D=5) (see Figure 1). Artificial turbulent flows are generated by grid device at 
mean wind velocities 3m/s, 6m/s and 9m/s corresponding to intensities of turbulence as Iu=11.46%,
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Iw=11.23%; Iu=I0.54%, Iw=9.28% and Iu=9.52%, Iw=6.65%, respectively. Dynamic surface pressures 
are simultaneously measured by the multi-channel pressure measurement system (ZOC23, Ohte 
Giken, Inc.), then discretized by A/D converter (Thinknet DF3422, Pavec Co., Ltd.) with sampling 
frequency at lOOOHz in 100 seconds. Normalized mean pressures and normalized root-mean-square 
fluctuating pressures can be determined from measured unsteady pressures as follows:

C -  = p ' \ ' { ữ .5 p u %  C<-,L = ( j ;7 (o .5 p ơ ^ ) (14)

where i: index o f pressure positions; Q,5pU^: dynamic pressure; p , ơ  : mean value, standard 

deviation of unsteady pressure, respectively.
B /D = I B /D = l w U hS .P B/D =5

W iịid Wi^id SoIiUer Plate fS.P) Wigd

0-J. I I I I I

p o l... po1 pol pol
p o l... P01

Fig 1. Experimental models and pressure lap layouts.

It is previously clarified about bluff-body flow pattern around these sections that in the model 
B/D=l it is favorable condition for the Karman vortices occur frequently at the wake of model; these 
Karman vortices are suppressed thanks to presence of splitter plate, whereas the bluff-body flow 
exhibits complex presence of separation bubble, reattachment, vortex shedding in the B/D=5 model.

3.2. Covariance proper transformation-based analysis

Eigenvalues and eigenvectors have been determined due to the eigen solution from the covariance 
maưix of the dynamic pressure fields. Energy contribution of the first covariance modes contribute 
respectively 76.92%, 65.29%, 43,77% to total energy of the system corresponding to models B/D=i 
with the splitter plate, B /D =l without the splitter plate and model B/D=5. Then, the covariance 
principal coordinates are conipuied using meuiiured pressure data.

B /D =l

Covdmkỉ

B /D = l w ith S .P

Cov4nitii CnớrềỊÌ
iO(-------

C09tM(4

5 10Tmifi

Fig. 2. Fừst four principal coordinates (Iu=l 1.46%, Iw=i 1.23%).
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Figure 2 shows first four uncorrelated principal coordinates of the three models associated with the 
covariance modes, whereas Figure 3 indicates power spectral densities of theừ corresponding principal 
coordinates. It is noteworthy that first coordinates not only dominate in the power spectrum but 
contain frequency characteristics of the random pressure field, whereas the other coordinates do not 
contain these frequencies.

Fig. 3. Power spectra of first four principal coordinates (Iu=I 1.46%, Iw=I1.23%).

Thus, it is discussed that the first covariance modes and associated principal coordinate play very 
important role in the identification and order-reduced reconstruction of the random pressure field due 
to their dominant energy contribution and frequency containing of physical phenomena.

3.3. Spectral proper transformation-based analysis

Spectral eigenvalues and eigenvectors have been obtained from the cross spectral matrix of the 
observed fluctuating pressure field. Figure 4 shows first five specưal eigenvalues on frequency band 
0-t50Hz at the flow case 1. As seen that all first spectral eigenvalues from three models exhibit much 
doiUHianiiy than Ihe other, especially theses first eigenvalues also contain characlerislic frequency 
peaks of the pressure fields, whereas the other does not hold theses peaks. The fừst three spectral 
modes (eigenvectors) of the fluctuating pressure fields of the three models in the flow case 1 are 
shown in Figure 5.

B/D=1

spacnf •««rv»iuai
B/D=l w ilhS .P

Fig. 4. First five spectral eigenvalues of experimental models (Iu=l 1.46%, Iw=l 1.23%).
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B /D =I B /D = l w ith S .P B/D =5

Fig. 5. Fừst three spectral modes of experimental models (Iu=l 1.46%, Iw=l 1.23%).

Energy conưibutions of the spectral modes are estimated with cut-off frequency 50Hz. Similar to 
the covariance modes, the fừst specưal modes contain dominantly the system energy, for example. Ihe 
first mode contribute 86.04%, 81.30%, 74.77%, respectively on total energy (Iu=l 1.46%, Iw=l 1.23%). 
In comparison with the covariance modes, it clearly observed that the first spectral modes are better 
solution than the first covariance one due to higher energy conưibution.

It is argued that the first spectral mode and associated specưal eigenvalue play very important role 
in the identification and order-reduced reconstruction of the observed pressure fields due to their 
dominance in the energy contribution and containing of characteristic frequencies of the physical 
phenomena.

4. Digital simulation o f  multi-variate random turbulent wind Held

4. Ĩ .  S p ec tra l ren resen ta tio n  m eth o d

Digital simulation of the multi-variate random turbulent wind fields using the Special 
Representation Method is widely used so far and will be presented here, in which the cross specL-al 
matrix is decomposed by the Proper Spectral Transformation. Accordingly, the N-variate random 
turbulent process = can be represented [11-14];

t;(/)=  (-5)
—«0

w h ereổ (n )= {fi (rt)}: mean-zero uncorrelated orthogonal increment process

satisfying as (n )j= 0 , dBẠn) = dB Ạ n )\E \dB Ạ n JdB Ạ n S ^ \= S ,^ S ^ S ,{n )dn \ s , {n) :  cross

specưal matrix.
Using the Spectral Proper Transformation to decompose and approximate the cross specL'al 

= = multi-variate random
>=.1 H

turbulent process can be decomposed and approximated by N  summation of N-variate independent 
orthogonal prcKesses:
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N  ̂ r “f ____________  ^
v(t )  = ịự /^ (n)^fỤ jĩ)Q xpự 2m ii)dn

H  >=• V-« >
(16)

Subprocesses of the N-variate random turbulent process y(r) can be simulated in the discrete 
frequency domain as:

v,(t) = 2 Ỳ  Ỳ  ¥v, («/ ('í/) e x p ( i 2 ; o i / ) (17)
>=I /=1

where i: index of simulated subprocess; j: index of spectral modes; 1: index of frequency points;/!^: 

frequency value at moving point 1; N  : number of frequency intervals; ìiị: frequency interval at point 1.
If the frequency domain is discretized constantly at every frequency interval An, then the Eq.(17) 

can be expanded:

v,{í) = Ĩ^JXHỲ  + + (18)
;=l /-I

where Aĩĩị: frequency interval at point /; A/i; constantly frequency interval An = n ^ / N  and

rĨỊ = ( l - \ ) A n y  n : upper c u t-o ff  frequency; ớ^inị) : phase angle of complex eigenvector

('i/))’ determined as (n )̂ = ian“'(lm(Ị/„^(n/))/Re(t/„.(n,))); Ộị '. phase

angle considered as random variable uniformly disưibuled over [0,2Ji].
In many cases, the specưal eigenvectors are real due to auto spectral densities are real and positive, 

Eq.(18) can be simplified as follows;

V , ( t ) =  2 ^ Ỉ M 2 ]  X ( « / c o s ( 2 ;z m /•¥ ộ^) (1 9 )
;=I /=!

The phase angles can be randomly generated using the Monte Carlo technique.

4.2, Numerical example and discussions

The spectral proper transformation has been applied to simulate the two multi-variate correlated 
random turbulent processes at 30 discrete nodes along a bridge deck:«(i) =

ịv(/) = {vvj(/), W2(0 ...-,vv3q(/)}^. Sampling rale of simulated turbulent time series is lOOOHz for total time 

interval 100 seconds. The cross spectral density matrices of U-, w-turbulences have been formulated 
based on auto specưal densities and spanwise coherence function. Targeted auto power spectral 
densities of U-, w-components are used the Kaimairs and Panofsky’s models as well as the coherence 
function between two separated nodes along bridge deck used by exponentially empừical model [22]:

 ̂ 200/wi ,  3 3 6 f u ỉ

- y , (20b)COH^ A n , A u )  = t \ p
*' \  0 . 5 ( U , + U , ) ]

where f: non-dimensional coordinates; u*: friction v e l o c i t y ; : mean velocities at two separated

nodes k, 1; Cyi decay factor, c = 10,c = 6.5[16]; =1 y* - y / 1- distance between two nodes; Jfo yr.
longitudinal coordinates.
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Cross spectral matrices5 (n ),5  ( n ) o f  two random turbulent processes u(t), w(t) at the 30 strucĩuxal
deck nodes have been formulated. Spectral matrix-based analysis has been carried out to find out pa.irs 
of the spectral eigenvectors (also called spectral turbulent modes) and asscx;iated spectral eigenvaiuies. 
Figure 6 shows the first five spectral eigenvalues /ỉ^(n)-r/ĩ,(n)on frequency band O.Ol-rlOHz. It is 

observed that the first spectral eigenvalue /?,(/!) exhibits much higher than the others on the very low
frequency band 0.0I-r0.2Hz with the u-turbulence, 0.01-r0.5Hz with the w-turbulence, however, all 
spectral eigenvalues not to differ beyond these frequency thresholds. This implies that only fừst pair of 
the spectral eigenvalue and the spectral eigenvector seems to be enough for representing a.nd 
simulating the whole turbulent fields at the very low frequency bands, however, many more pairs atre 
requừed at higher frequency bands.

a. u 't u r b u le n c e b. w-turbulence
SOi

Fig. 6. Fừst five spectral eigenvalues: a. u-turbulence, b. w-turbulence.

mode Ỉ mode 2 mode 3

mode 1 mode 3

b. w- turbulence

Fig. 7. Fừst three spectral turbulent modes: a. u-turbulence, b. w-turbulence.
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The first three spectral turbulent modes y/ 2{n\y/^y(n)\ v - u , w  on the same specưal band

Oh- lOHz is expressed in Figure 7. It can be seen from Figure 7 that the turbulent modes of u-,w- 
coimponenls look like as symmetrically and asymmetrically sinusoidal waves, in which number of 
waive halves increases incrementally with the order of eigenvectors.

a. U=?Om/s
N o d c 5 :u (0 Node I5:u(i)

b. u=30m/s
Node 5: u(0 Node lS :u (t)

11 ■ ill n 1 ■1' Hill I I I   ̂ I iViRiii T' n ^ f 11'I f  ' 1̂ llf'll f I Í M r
T0̂20~3« 40 50 w 70 nìrSK) 1«) 10 20 3tì 4Í) S() 60 70 80 9(1100

N o d c 5 ;w (0  N o d c l5 :w (i)
----------------- -̂-----------  ̂ lOj--------------- ------- -̂--------- -

Jtyij Ị  'iiằ{Ị|yjb^jyjJ{ắii|
fpWWpfllf I " ffP w fP p i

10 20 30 4() 50 60 70 80 i n o o  10 20 30 40 so  60 70 80 90 100
Time (sec.) Time (see.)

10 20 30 40 50 60 70 80 9 i )  100 

Node 5; w(0

10 20 30 40 50 60 70 80 90 100 

Node iS ;w « )

10 20 30 40 50 60 70 80 90 100 
Time (sec.)

iO 20 30 40 50 60 70 80 90 100 
Tưnc (sec.)

Fig. 8. Simulated lime series in nodes 5&15: a. u=20m/s . b. u=30m/s.
Figure 8 shows simulated time series of two turbulent subprocesses at representative nodes 5 

& 15 during 100-second interval at mean wind velocities 20m/s and 30m/s, respectively. Simulating 
tiaie series of the random turbulent wind fields acting on discrete deck nodes are going to be used as 
input data to predict the random response of structure in the lime domain in next application.

?. R iin do m  respon se p re d ic tio n  o f  s tru ctu re s  in tu rb u lc n c c  w in d  field

Structural modal transformation and turbulent-induced forces

Multi-degree-of-freedom motion equation of structures immersed in the atmospheric turbulent 
fOiW subjected to the turbulent-induced forces is expressed:

MU{ t ) - ị - CÚ{ t ) - ¥KU{ t ) = F, { t )  (21)

where Af, c, K: globally mass, damping and stiffness matrices, respectively; u , u , u  : deflection 
^ector and its derivative vectors; turbulent-induced forces.

Transforming into generalized coordinates normalized by the mass matrix using M ưuncated low-
crder structural modes ( A/ «  A/ . M: number of dynamic degree-of-freedom of structure), it satisfies:

=  =  <í)"C<ĩ> =  H;4)^Ả:4> =  n  (22 )

vh ere^ : generalized coordinate vector ^(r) = i ^  • modal matrix
^ matrix; S :  diagonal damping maưix; Ũ. : diagonal stiffness maưix

containing squared natural frequencies ÍÌ = dỉagicOị^ .
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Thus, single-degree-of-freedom motion equi tion in the i“th generalized coordinate excited loy 
generalized turbulent-induced forces can be obtaii ed:

^ . ( / )  +  ( f )  +  ( Í )  =  ậỊF ,  ( t )  (23)
where ct)X  • cừcular frequency and damping ratio, respectively.

Turbulent-induced forces lumped at discrete sưuctural nodes are generated by laterally amd 
vertically turbulent fluctuations u(t), w(t) which are considered as N-variate correlated randotm 
processes (N: number of structural nodes) as follows, see Figure 9:

m(í) = {m,(/),M2(/)......w(i) = {W|(i),W2

Fig. 9. Turbulent loading processes. Fig. 10. Turbulenl-induced forces on section.

The uniform turbulent-induced forces are modeled due to quasi-steady theory corrected Iby 
frequency-dependant admittance functions as follows [22], see Figure 10:

u
2u(t)

u  
MO

(25a)

(25b)

(25c)

2 ' " u .......  u

whereQ,c„,c„ : aerodynamic coefficients at balanced angle of attack; c, , C j , , : first-order 
derivatives with respect to angle of i lack; p,B\  air density and deck widith;

(F = L , D, M\ v  = u,w):  aerodynamic transfer unctions between turbulences and forces. Thus, r;he 

full-scaled global forces are obtained [ 14,18]:

F, (0  = ị  pưB[< + C^ZrM O ] (2(5a)

' k Á O '
■,C^=\pUB

2C ,L  ‘ ■ Q  L ■

D,.iO 2 Q Z ; C  = C~L
L

IBC^L BC\,L

■,L = diag(L,y,L, =

0 . 5 l > - , - y , l ,  /  =  1

O.siyyv-y^-l I. i = N 

where c ,c : full-scale force coefficient matrices; i: index of structural nodes
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5.*2. Spectral proper transformation-based formulation

Power specưa of the generalized responses can be obtained thanks to the second-order Fourier 
trainsform of Eq.(23) with the full-scale global forces Eqs.(26a),(26b) and optimum approximation 
fr(om the Specưal Proper Transformation:

S ị.(n )= iịpU B )ÌH in yỉK :y ,in )A M ^ ;;^ ĩ^ (r‘ý ' t ‘" m n )'^ + H (n )^ y jn )A J n W :^ K in ý< Ị> ^ H irir ](2 1 ) 

Sịị(n) = { ịpUBÝị H{ n) A^i n) A^(n) K( nỹ / C{ n) H^i n)  + H ( n ) AJ n ) A„ ( n) K( nÝ A ; j i n ) H{ n f ]  (28) 

wihere \ i n )  = Ỳ \ ( n )  = Ỳ ^ ĨC ^K ,W -^  = ỉ \ i n )  = Ỳ ^ Ĩ C .ự .^ in ) -Cross modal factor
>=I ’ >=l ;=1 >=I

miatrices accounting for interaction between spt :ưal modes and structural ones; H( n ) : frequency 

reisponse function (FRF) matrix H(n) = diag{\ Hị n) u  / / j i/i )  I,... I H - { n )  I) in which I / / .  (n) I denotes 

lot FRF at natural frequency n,; K{nÝ  • squared aeiodynamic admittance function.
Next, power specưa and root mean square (RMS) of the global responses can be estimated as 

fo)llows:

(29)

wFhere5(y(n),ơ^ : spectra and root mean square of global responses, respectively.
Finally, global responses with respect to vertical, longitudinal and rotational dừections can be 

combined from single-modal responses due to the principle of the squared root of the sum of the 
sq^uares:

(30)

Ŵ here r denotes to displacement components: ven cal (h), longitudinal (p), rotational (a); A /r: number 
oF component modes in the response combination

5..5. Covariance proper transformatiori’basedfon lulation

The two N-variate correlated random turljulent processes u(t), w(t) can be decomposed 
orrthogonally using the optimum approximation from the Covariance Proper Transformation:

u(t) = Q M t )  = t w o  ; w(i) = = t (31)
M  >=•

Putting Eq.(31) into Eq.(23) with the full-scale turbulent-induced forces in Eqs.(26a),(26b), the 
simgle-degree-of-freedom motion equation can be obtained in the time domain:

l ( t )  + 2^,0),I  i t )  + (o X  (Í) = 1  pU B

N N

;=1 ý=.|

(32)

(33)
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N N fi N
w h e r e ^ = ^ ậ ^ C Ớ  • = =Ỵ ^ Ộ ^ C 0  • cross modal factor matrices accounting

j= i '  ;= I  '  ý=I '  >=l

for interaction between covariance modes and structural ones; X ( t ) * x  (0 - covariance principal 

coordinates determined by Eq.(8), in such form
as X. (0  = it), (/).....(Í) f , x j t )  = [x[̂  ( t ) , ;c,' (r) f .

Generalized response can be solved using any direct integration methods such as the fourih-order 
Runge-Kutta method, the Newton-P method. Finally, the globally sưuctural responses are obtained.

5.4. Numerical example and discussions

In this application, the gust response of structures is estimated using both proper uansformations 
with numerical example of cable-stayed bridge. Effect of the first covariance mode and the first 
special mode on the global response of structures is discussed.

A bridge has been taken for numerical exaraple. 3D frame model is built thanks to the Finite 
Element Method (FEM) with total 30 nodes on l*ridge deck. Fừst ten sưuctural modes are analyzed. 
Damping ratio of each structural mode is assumed to be 0.005. Aerodynamic static coefficients of 
cross section at balanced angle (ơjj = 0®) and their first derivatives are experimentally determined as:

Q  =0.158.Co =0.041,Cw = 0 .1 7 4 .Q  = 3 .73 ,Co =2.06. Squared aerodynamic admittance
functions are used the Liepmann’s function as approximation of Sears’ function.
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Fig. 11. Normalized sưuctural mcxies: a. vertical modal displacement, b. rotational modal displacement.

Figure 11 shows the fist ten normalized structural modes associated with vertical and rotational 
displacements. It is observed that natural frequencies of the first ten modes vary at very low frequency 
band between 0.61-rl.85Hz.

In this first application, the random response of sưucture is predicted in the frequency domain the 
using the Spectral Proper Transformation. Specưal eigenvalues and spectral turbulent modes of the 
random turbulent fields have been computed and shown in Figures 6 , Figure 7. As seen that shapes of 
the spectral turbulent modes of u-,w-turbulences, are unchanged during the natural frequency band. 
Figure 12 shows effects of number of the special turbulent modes (first mode, 5 modes, 10 modes and
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tot;ally 30 modes) on power special densities of generalized responses of vertical and rotational 
displacements at mid-span node 15 ai mean velocity u = 20m/s.

Figure 13 shows effect of number of the spectral turbulent modes on the power specưal densities 
of the global responses at node 15 (representative node 15 is illusưated here for a sake of brevity). As 
can be seen from Figure 16, there is no much different among investigated cases of cumulatively 
specưal turbulent modes in power spectral contribution on targeted responses. Concretely, there are no 
differences at resonant responses, but minor differences at background responses can be observed. It 
alsio indicates that the fừst spectral turbulent mode significantly and dominantly conưibutes on the 
poAver spectra of the global responses. Power specưa of resonant responses, moreover, can be 
observed at the structural modal frequencies due to influence of frequency response functions at these 
modal frequencies.

F r e q u ^ y  n(Hz)

Fig. 12. Effect o f  number o f spectral turbulent modes on power specưa o f generalized responses in node 15.

Fig. 13. Effect o f  number o f specưal turbulent modes on power spectra o f  global responses in node 15.

In the second application, the response analysis is caưied out in the time domain using the 
Covariance Proper Transformation. The time series of the turbulent wind fields u(t), w(t) have been 
simulated firstly using procedure mentioned in the previous part, then these simulated fields have been 
js.ed to formulate the zero-lime-lag covariance matrix. The covariance eigenvectors (or covariance
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turbulent modes) and associated eigenvalues have been found out from the eigen solution of this 
covariance matrix. Turbulent fields and full-scale turbulent-induced forces are approximated optimially 
using the Covariance Proper Transformation to formulate the generalized response equation in the 
time domain.

a. Node 5
N odes N odes

0 10 20 30 40 50 60 70 80 90100

10 
7.5

0  1020  30 40 50 60 708090100 

Node15

0 10 2 0 3 0 4 0  50 60 70 80 90100 

Time (»ec.)

0 10 20 30 40 50 60 70 80 90100 
Time (tec.)

NoJcS
0.05 r

B 0 025 Ẽ 2 
Ị
I 0 
i
I"

-0.05
0 10 20 30 40 50 60 70 80 90 100 

Node IS

_______ Node 5 __________

l u y i i ằ i ấ ẳ i

'Ố  Í0  20 30 40 SO To 9<0 100 

Node 15

0 10 20 30 40 50 60 70 80 90 100 
Time ( k c .)

0 10 2Ỡ 30 40 50 60 70 80 W i  100 
T im c (M C )
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The Newton-p method has been used to solve Eq.(33) to compute generalized responses, bef.ore 
the global responses of structures can be obtained. Figure 14 shows resulted time series of global lift 
and global moment as well as ứiose of globally vertical and rotational displacements in tu o  
representative nodes 5, 15 at also mean velocity u=20m/s during 100-second interval. Maximum air.d 
minimum amplitudes of responses can be determined directly from these resulted time series of 
responses. Figure 15 shows amplitudes of maximum vertical and rotational displacements at all bridje 
deck nodes at mean velocity u=20m/s in comparison between the Specia l Proper Transformation- 
based response (frequency-domain analysis) and the Covariance Proper Transformation-based ore
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(time-domain analysis) as well as to investigate effect of number of the turbulent modes on the global 
res ponses. As can be seen in Figure 15, the first turbulent mode contributes significantly on the global 
res ponses of structure in both the spectral matrix-based and covariance matrix-based responses, 
moreover, the first spectral turbulent mode in the frequency-domain analysis plays more important 
role than the first covariance turbulent one in the time-domain analysis because of its higher 
contribution on the global responses of structure.

6. Conclusion

Three recent advanced topics and applications of the POD and its Proper Transformations in 
the wind engineering have been presented here relating to (1) The analysis, synthesis and 
identification of the dynamic pressure field; (2) The digital simulation of the multi-variate random 
tur bulent wind field; (3) The random response prediction of structures under the turbulent wind fields. 
Especially, all presented topics have been formulated and developed using both Covariance Proper 
Transformation in the time domain and the Spectral Proper Transformation in the frequency domain. 
Numerical examples have been presented for demonstrations and discussions. The turbulent wind 
fie lds, the pressure fields can be decomposed by concept of orthogonal modes either in the time 
do-main or in the spectral one. Important role of the first covariance mode and the first spectral mode 
ha;s been verified. It is observed that the first mode usually contains certain frequency peaks of hidden 
physical phenomena, moreover, it contributes dominantly on the field energy. Furthermore, new and 
co.mprehensive approach on the stcx:hastic response prediction of structures in the frequency domain 
and in time domain has been discussed. Correlated turbulent wind fields have been represented and 
simplified due to either orthogonally covariance or spectral turbulent modes in which only limited 
nu mbcr of low -order turbulent modes dominantly contributes on the random response of structures. It 
is also discussed that the first spectral turbulent mode plays very significant role and seems to be 
accuracy enough in predicting the random response of structures in the frequency domain, but more 
covariance turbulent modes should be required for accuracy of the random response prediction in the 
lurac (Juinain. Il is iligh lig lilcd  llia i Ulc fiiitl spccliu l m udc, in o lh ci w u id s, is better lliaii the i'iibi 
covariance one to analyze the random response prediction of structures.
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