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The total specialization o f modules over a local ring

Dao Ngoc Minh*, Dam Van Nhi

D ep a rtm en t o f  M athem atics, H anoi N a tio n a l U n iversity  o f  E ducation  

1 3 6 X u a n  Thuy Road, H anoi, Vietnam

Received 23 March 2009

Abstract, ỉn this paper we introduce the total specialization of an fínỉtcly generated module 
over local ring. This total specialization preserves the Cohen-Macaulayness, the Gorensteiness 
and Buchsbaumness of a module. The length and multiplicity of a mcxiule are studied.

1. Introduction

Given an object defined for a family o f  parameters u ~  ( u i , . . . ,  U r n )  w e can often substitute u 
by a family a  ( a j , . . . ,  a ,n) o f  elements o f  an infinite field K  to obtain a similar object which is 
called a specialization. The new objcct usually behaves like the given object for almost all a , that is, 
for all a  cxccpt perhaps those lying on a proper algebraic subvariety o f  K ^ .  Though specialization is 
a claiisical method in Algebraic Geometry, there is no systematic theory for what can be “specialized”.

The first step toward an algcbraic theory o f specialization was the introduction o f the special- 
ualiun ut an ideal by w. Krull m |1 |. (Jivcn an ideal 7 in a polynomial nng i i  — /c(u)Ịx|, where k IS 
a subficld o f  K ,  he defined the specialization o f  /  as the ideal

=  { f ( a , x ) \  f ( u , X )  e  I  n  A:|ti,a:|}

o f  the polynomial ring R o c  k{a) \x \ .  For almost all a  €  K ^ ,  l a  inherits most o f  the basic properties 
of / .  Let pu be a separable prime ideal o f R.  In [2], w e introduced and studied the specializations 
of finitely generated modules over a local ring Rp^ at an arbitrary associated prime ideal o f  pa (For 
specialization o f  modules, sceT |3|). Now, wc w ill introduce the notation about the total specializations 
of modules. Wc showed that the Cohen-Macaulayness, the Gorensteincss and Buchsbaumncss of a 
module arc preserved by the total specializations.

2. Specializations o f  prim e separable ideals

Let pu be an arbitrary prime ideal o f  R.  The first obstacle in defining the specialization o f Rp^
s

is that the specialization pa o f  pu need not to be a prime ideal. By [1], pa ~  n  pi is an unmixed
i J \

ideal o f  /?a-

* Corresponding author. E-mail: minhdn@ hnue.edu. vn
39

mailto:minhdn@hnue.edu


Assume that d im pu — d  and (^) is a generic point o f  pu over k. Without loss o f gcncralit>', 
we may suppose that this is normalised so that 0̂ ~  1- Denote by (ti) -  {vi j )  with / “  0 , 1 , . .  ., d, 
j  ~  1 , . .  . , n ,  a system o f  {d  +  l ) n  new indeterminates Vij, which arc algebraically independent over 
k{u^ Cl) • • • J 6 i ) ‘ We enlarge k{u)  by adjoining (z;). We form d +  1 linear forms

n

Vi ~  ~  ^   ̂'^ijXj, 2 =  0, 1 , . . ., d.

Then ti)[x| n /c (u , ;̂)[ỉ/Ị =  ( / ( u ,  ti; yO) M 2/ư)) is a principal ideal. We put Aj =  with

i  “  0 , 1 , . . . ,  d. Then Ao, . . . ,  satisfies / ( u ,  t;; Ao, . . .  J Ad) =  0 and is callcd the grourid-fonn  o f  
pu* The prime ideal pu is called a separable prime ideal if  it’s ground-form is a separable polvnomial. 
We have the following lemma;
Lem m a 2.1.[1, Satz 14Ị A specialization o f  a prim e separable idea l is an intersection o f  a fin ite  prim e  
ideals fo r  alm ost a ll  a .

s A
Let the prime ideal pu be separable. Assume that Pa =  n  pi set T  =  n  \  pi)- 

„  i= l  i=\
Lemma 2.2. For alm ost a ll a , we have {R o,)t  '■y sem i-local ring.
Proof. Note that T  is a multiplicative subset o f Ra- We show that {R o) t  is a sem i-local ring. Indeed, 
let m be a maximal ideal o f  { R o)t - Then, there is a prime ideal q o f R a  such that m - (\{R cx)t - 
Suppose thatm  D p i(/ỉa )T ,iT i P i( /? « )t-  We have q D p i , q  pi - Since m =  q (/? „ )r  is a maximal

ideal, q n T  =  0. Hence q c  u  pi- Therefore, it exists j  such that q c  p j. Then pi c  p j, contradiction.
i= l

Hence m =  p i(/? a )r -
The natural candidate for the total specialization o f  Rp^ is the semi-local ring { R„) r -  

Defínition We call ( /? „ )r  a to ta l specialization  o f Rfi, w ith respect to  a.  For short vvc will put
5  =  Rp^, Sa =  {Ra)p  and S t  =  {Ra)T,  where p is one o f  the pj. Then there is ( S r i p r  -
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3. The total specialization o f  /?p„-tnoduIes

Let /  be an arbitrary element o f  R.  We may write /  =  p{u,  x ) / q { u ) ,  p{u,  x )  €  Ả:Ị?Í, a;|, q{u) £  
fc[u] \  {0 } . For any Q such that q{a)  /  0 we define f a  :=  p (a , x ) / q { a ) .  It is easy to chcck that this 
element does not depend on the choice o f  p(u , x )  and q{u)  for almost all a .  Now, for every fraction 
« — / / ổ )  f ĩ 9  ^ R,  ổ  7̂  0, w e define Ua :=  f a / 9 a  i f  9 a Ỷ  0. Then Cq is uniquely determined for 
almost all a .

The following lemma shows that the above definition o f  S t  reflects the intrinsic substitution 
u —> a  o f  elements o f  R.
Lem m a 3.1. Let a  be  an arbitrary element o f  s .  Then a„ €  S t  fo r  alm ost a ll a .
Proof. Since pu is a separable prime ideal o f  R , pa /  Ra  for almost all a . Let a — Ị / g  with Ị ,g  £ R, 
g ị  p„. Since p is prime, pu : 5 =  p„. By ị l ,  Satz 3 |, p„ =  (pu : g)oc =  pa : 5a- Hence e  T. Then 
Oq G Sa  for almost all a .

First we want to recall ứie definition o f  specialization o f  finitely generated 5-moduIc by |2 . 
Let F, G  be finitely generated free 5-modules. Let (/>: F  —> G be an arbitrary homomoiphism o f free 
5-m odules o f finite ranks. With fixed bases o f F  and G, Ộ is given by a matrix A =  (ttý), aịj € s .
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By Lcmmu 3.1, the matrix Acc ((aij)tt) has all its entries in {R a)p  for almost all a .  Let Fa and 
b e fn;c (/?a)p-nioduIcs o f  the same rank as F  and G, respectively.

D efin ition . |2ị For fixed bases of Fa and G a, the hom om orphism  4>a ' p'a G a  given by the  
tnatri X is called the specia liza tion  o f Ộ w ith respect to  a .

The definition o f ộtỵ does not depend on the choice o f  the bases o f  F, G  in the sense that if  B  
is the matrix o f Ộ with respcct to other bases o f  F, G, then there arc bases o f  G a  such that Ba  is 
the m.atrix o f  ộct with rcspcct to these bases.

D e f ì a ì t ỉ o n .  1 2 |  L e t  L  b e  a  f i n i t e l y  g e n e r a t e d  5 - m o d u l e  a n d  F\ ^  Fo —* L 0 3, f i n i t e  f r e e  
preseiTitation of L. T he (/?«)p-niodule La '.—C okevộa  is called a specialization  OĨ L (w ith  respect
to Ộ ).

Then, wc have the following results.
Lem m a 3.2. |2, T heorem  2.2| Let O ^ L - > M - ^ N —* O b e a n  exact sequence o f  fin itely  
generated S~modules. Then 0 —> La Ma —► Â a 0 ỉ-y exact fo r  almost a ll a .
Lem m a 3.3. |2, Theorem  2.6| Let L be a fin ite ly  generated S-module, Then, fo r  alm ost a ll a , we
have

(ii) (Ann L)a ^Ann  (Lrt).
!i i) (iirn L — dim  Lf .̂

Lem m a 3.4. [2, T licoreni 3 .1 1 Lei L be a fin ite ly  generated S-module. Then, fo r  alm ost a ll a , we 
have

(j) projL,^ F>rojL.
(ii) depthL,^ depthL .

Now we w ill define the total specialization o f  an arbitrary finitely generated 5-m odule as follows. As 
above, the matrix ((ajj),^) has all its entries in S t  for almost all a . Let Ft  and G t  be free
5r-ni odulcs o f the same rank as F  and G, respectively, and is the matrix o f  ỘT with respect to 
thcsi bases.
Dcfiiiiition. Let L be a finitely generated 5-rnodule and Fi Fo —> L —> 0 a finite free 
Ị)rc\<cĩìlation of L. T he 57’-n iodule L r  Coker^x is called a to ta l specialization  o f L (w ith  
re.spCK:t to  Ộ), The module L t  depends on the chosen presentation o f  L, but L f  is uniquely determined

up to isom()q-)hisms. Mcncc the finite free presentation o f  L w ill be choscn in the form
L -  0 .

L enm a 3.5. Let L be a fin ite ly  generated S-module. Suppose that p =  p \. JTien {Lr)piT^ — L<xfor 
alm)isi a ll a .

 ̂ 0 be a finite free presentation o f L, There exists an exact sequence
\4>r\vr

aim js i  a il a .
Pro)f. Let iS'* > L ^  0 be a finite free presentation o f  L, There exists an

( lĩc) Ỷ ^   ̂  ̂ 0. This w ill induces also an exact sequence |(/?a )r |p

Lq\p>.j- —̂ 0. By an easy computation Afx =  ((a jj)a ) =  ịị follows that
(ổ t j )a / l

Since |(/?a)rlpr ”  “  *5«} w e have a commutative diagram

{Rah 

{<ỉ>t ) pt

r
Pt

ệa-

<ỉ>a
Pt { ỉ ĩ a h r

Pt \ L t Pt

q s V'a
L c 0,



where to rows are finite free presentations o f and and an isomorphism ^
Hence {L t ) p't ~  Î OI for almost all a .
Proposition 3.6. L et L  be  a fin ite ly  generated S-module. For alm ost a ll  a , we have

(i) { k x m L ) o ,^  kxm {L T )pT ’
(ii) dim L  =  dim Lx-

Proof, (i) Since {L t ) pt -  L,ol by Lemma 3.5, there is A m \{L T )pT  =  A nn((LT)p7-) ^  Ann(Lc^). 
Since A nn(L )a  =  A nn(L a) by Lemma 3.3, therefore A rm (L )a — A nn (L r)p 7̂ for almost all a .
(ii) We have d im L  =  dim  La by Lemma 3.3. Then d im L  =  dim (LT)p^. Semilarly, (h m L  ~  
dim (Lx)p 7* f o r i — 1 , . . . ,  s . Hence dim L =  dim L t  for almost all a .
Theorem 3.7. Lei O —̂ L —̂ M ^ N —̂ O b e a n  exact sequence o ffin ite ly  generated S-m odides. 
Then 0 —> L r  M t  N t  0 is exact fo r  alm ost a ll  a .
Proof. Since 0 —> L —► M —̂ A T ^ O i s a n  exact sequence, the sequence 0 —► La M a  —» 0
is also exact by Lemma 3.2, or the sequence 0 —> {L t ) pt  ̂ —> {N t ) pt 0 exact for
every maximal ideal pT- Hence 0 —> L r —► M t  N t  —> 0 is exact for almost all a .
Proposition 3.8. Let L be  a fin ite ly  generated S-module. F or alm ost a ll a , we have

(i) projL =  prcjLT,
(ii) depthL  =  depthL x-

Proof, (i) Since projL =  projLa for almost all a  by Lemma 3.4, there is projL r — sup
tn^supi^x)

{proj(La)m } =  projL„ =  projL.
(ii) By [4, Lem m a 18 .Ij, there is a maximal ideal m o f  S t  such that d ep th L r =  dep th (L 7-)„, =  
à im {L r)p ^ . Then d ep th L x  =  depthL a =  depthL by Lemma 3.4.
Proposition 3.9. Let L  be  a S-m odule o f  fin ite length. Then L t  is a  S r-m odu le  o f  fin ite  length fo r  
alm ost a ll a . Moreover, i ị L r )  =  s t ( L) .
Proof. Since t { L a )  =  i { L )  by [2 , Proposition 2.8] and í { L t ) =  ^((Lr)m ) by |5, 3.

Theorem  12|, there is £{Lt ) =  s£{L).
Proposition 3.10. Let L be  a fin ite ly  generated S-m odule o f  dimension d and  q =  ( a i , . . . ,  Ufi)S a 
param eter ideal on L. Then, we have e{qx,  Lt ) =  se(q , L) fo r  alm ost a ll a , where e {qr ,  W )  
e(q, L) are the m ultiplicities o f  L t  and L with respect to (\T ond  q, respectively.
Proof. First, w e w ill to show that e(qa, La) =  e(q, L). Indeed, Since a i , . . . ,  a j  €  p5, for almost all 
a  there are ( a i ) a , . . (a^)a G paSa- By Lemma 3.2 and by Lemma 3.3, dim  L a / ( ( a i ) „ , . . («d)a)  
La  =  dim L / ( a i , . . . ,  a j ) L  =  0. Then ( a i ) c , . . . ,  (a<i)a is a system o f  parameters on La-  The multi
plicity symbol o f  a j , . . . ,  a j  with respect to L  w ill be denoted by e ( a i , . . . ,  OfilL), and the multiplicity 
symbol o f  ( a i ) a , . . . ,  {ad)a w ith respect to L a  by e ( ( a i ) a , . . . ,  (a<i)a|La). Then we have

e(qa;L„) =  e((ai)a, . . . , (ad )a |La)  
e(q ;L ) =  e { a x , . . .  , ad \L) .

We need only show tìiat e ( a i , . .  . , ad \L)  =  e ( ( o i ) a , . . {a d )a \L o ). This claim w ill be proved by 
induction on d. For d =  0 , by applymg [2, Proposition  2.8], there is

e (0 |L„) =  £ ( L „ ) - £ ( L ) - e ( 0 |L ).

42 D.N. Minh, D .v. Nhi /  VNƯ Journal o f  Science, M athem atics - Physics 25 (2009) 39-45



N ow  w e assume that d >  Ỉ, and the claim is true for all 5-m odules with the dimension <  d — 1. By
[2 , L em m a 2 .3  and Lem m a 2.5Ị, there are

Loc/ {ai )aLa  ~  { L / a i L ) c  and Oi,„ : (a i)a  =  (Oi : a i )„ .

Since the dimensions o f these modules <  d — 1, therefore

• -i {(^d)oi Lct/{<xi)fỵLa) ”  e (a 2, . • . ,  L /a iL )  

e ( ( t t 2 ) a ,  • • • ,  ( « d ) a | 0 £ „ ,  : ( a i ) a )  =  e ( c 2 , . .  . , a d | O i  ; U i ) .

The statment follow s from the definition o f  the multiplicity.
N ow  w e prove tíie result e(qx , L t ) =  se(q , L)  Smce

e(q r , L t ) =  e ( ( a i ) r ,  • ■ - , ^m(a<i)T|(^T)m)
meECfir)

by Ị5, 7.8. T heorem  15], there is e{qTi L t ) =  se(q , L)  for almost all a .
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4. Preservation o f  som e propertíes o f m odules

By virtue o f  Proposition 3.10 one can show that preservartion o f Cohen-Macaulayness by total 
specializations.
Theorem  4.1. Let L be a fin ite ly  generated S-module. For alm ost a ll a , we have

(i) L t  is a Cuhen-M acaulay S r-m odu le  i f  L is a Cohen-M acaulay S-module.
(ii) L r  is a m axim al Cvhen-M acaulay S r-m odu le  i f  L is a maximal Cohen-Macaulay S-module.

Proof. Wc need only show that { L t ) p t  is a (maximal) Cohen-Macaulay (5 r)pj7.-module if  L is a 
(iiiux.inial) Cuhcn-Macaulay iS module.
(i) Assume that L is a Cohcn-Macaulay 5-m odule. Therefore dim  L =  depthL. Since dim L =  dim Lcfc 
by Lemma 3.3 and ciepthL — depthL a by Lemma 3.4, we get d im  La ~  depthLrt* Hence Loc is 
also a Cohen-Macaulay 5a-m odule for almost all a .  Since La =  (L x )p ^ , it follows that Lt  is a 
Cohen-Macaulay 5r-naodule for almost all a .
(ii) Assume that L is a maximal Cohcn-Macaulay 5-m odule. Therefore dirnL =  dim  5. Since 
(limLfj =  c l imL and dim  5a  =  dim  5 , it follows that dim  La =  dim 5a- Hence L r  is a maxi
mal Cohen-Macaulay 5 7^-module.

The iih  B ass  and ith B e tti num bers  o f  L, which are denoted by respectively,
are defined as follows:

ị i ị ( L )  =  d im 5/^Ext*5 (5 / m , L ) ,  A (^ )  =  dim 5/ „ T o r f ( 5 /m , L), V i >  0.

Lemma 4.2. Let L be fin ite ly  generated S-m odules. Then, fo r  alm ost a ll a ,  we have

=  A ( L ) ,  V i  >  0.

Proof. Since L and La  are the finitely generated modules, all integers f igiL)  and (La)  are finite. 
We have

4 (L ) =  ^ ( E x 4 ( 5 /m ,  =  ^ ( E x 4 j 5 « /m „ ,  L „)).



t ìy  Ị2, Proposition 3 .3 |, there IS Ext^ ( S c / m a , L c )  -  Ex t s {S / xn ,  L)c.  Sincc pa IS a radical ildcal, 
from |2, Proposition 2.8| it follows that

^ ( E x t ^ ^ ( 5 „ / m « ,  L „ ) )  =  i { E x t s { S / m ,  L ) a )  =  ^ ( E x t 5 ( 5 / m ,  L ) ) .

Hencc fẨ. {̂L) =  ỊẤg (L ,i). Similar, we obtain Pi{L) ~  Pi {La) .
Before invoking Lemma 4.2 to reprove Corollary 3.8 in |2], we w ill define a quasi'Buchsbaum  

module. A finitely generated module over a Noetherian commuUitivc ring is said to be a (fuasz- 
Buchsbaum  module if  its localization at every maximal ideal is a suijective Buchsbaum.
C orollary 4.3. Let L be fin ite ly  generated S-modules. Then, fo r  allm ost a ll a , we have

(i) I f  L is a surjective Buchsbaum S-moduIe, then La dlso a surjective Buchsbaum Sf^-module.
(ii) I f  L is a quasi-Bnchsbatim S-module, then Lt  is also  a quasi-Buchsbaum Sr-m odule.

Proof, (i) Put d  — dim  L. By Lemma 3.3, dim Lc  — d. Since S' is a regular ring, by [6 , Chapt€^r 2. 
Theorem  4.2| w e known that L is a surjective 5-m odule i f  and only if

i
f/s(L ) =  ỵ ^ ạ ,^ j{S /m )e {I P J L )) ,i^  

j =0

Since Í { H Ì { L ) )  <  oo, therefore í {Hịn^{La))  =  í {Hịn{L))  by [2, Theorem  3.G|. N ow  the proof is 
immedialtely from Lemma 4.2.
(ii) It is easily seen that the localization o f L t  at every maximal ideal is a surjcctive Buchsbaum, 
Hence L t  is also a quasi-Buchsbaum 5r-m odule.

We w ill now recall the definition o f  the Gorcnstcin module. A non-zero and finitely generated 
L is said to be a G orenste in  module if  and only i f  the cousin complex for L provides a injcctivc 
resolution for L, see |7]. Before proving the preservation o f  Gorensteiness o f  modulo, wc w ill show  
that the injective dimension o f  module L is not change by specialization.
I .emma 4.4. ỉ.et ỈJ he fin ite ly  generated S-m ndulea Then, fo r  alm ost a ll fv, we have

inj.dim (La) =  inj.dim  (L).

In particular, i f  L is an injective module, then La is also an injective module.
Proof. Since s  and 5a  have finite global dimensions, therefore inj.diniL  and inj.ciiniLtt arc finite. 
From |8, Theorem  3.1.17] w e obtain the following relations

inj.dim L,, =  d ep th 5c  =  d cp th 5  =  inj.diniL.

If L  is an injectivc module, then inj.dirnL =  0. Hence inj.dim La =  0, and therefore La is also an 
injective module.
Theorem 4.5. Let L be fin ite ly  generated S-modules. I f  L is a Gorenstein S-module, then { L t ) pt 
again a Gorenstein {ST)pr-f^odule fo r  alm ost a ll a .
Proof. Assume that L is a Gorenstein 5-m odule o f  dimension d. Then L is a Cohen-Macuulay S -  
module and dim 5  =  inj.dim L =  d by |7, Theorem  3.11 |. Since dim La  =  dim L =  li by Lemma 
3.3 and inj.dim (L a) =  inj,dim (L ) by Lemma 4.2, therefore d im 5 a  =  inj.diniL^ =  di inL„.  IIciicc 
{L t )pt is again a Gorenstein (5r)pT^-module for almost all a.
C orollary 4.6. Let I  be  an idea l o f  s .  I f  S / 1 is a  Gorenstein ring, then S t / I t  again a Gorenstein 
ring fo r  alm ost a ll a .
Proof. We first w ill recall the definition about the Gorenstein ring. A Noctherian ring is a Gorcnstein 
ring if  its localization at every maximal ideal is a Gorenstein local ring. Sincc the localization of
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S t / I t  every maximal ideal is also a Gorenstein ring by Theorem 4.5, therefore S t / I t  is again a 
Gorenistcin ring for almost all a .
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