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Abstract. Let g be the m—fold convolution of the standard Cantor measure and ¢, be
the lower extreme value of the local dimension of the measure p. The values of o, for
m — 2,3, 4 were showed in [4} and [5]). In this paper, we show that
low [ -2 O i 59422:45
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log 3

| ~ 0.972638.
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This values was estimated by P. Shunerkin in [5], but it has not been proved.
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1. Introduction

m
I et {.S'j};” , be contractive similitudes on R? and {pj}_';"(() <p; <1,3 p; — 1) be a set of
=1
probability weights. Then, there exists a unique probability measure p satisfying

p(A) =D pu(S;1(A))

-

1

)
p—

for all Borel measurable sets A (sce [1]). We call p a self-similar measure and {S; };-“_] a system
Herated functions.

When Sy, ..., S, arc similaritics with equal contraction ratio p € (0,1) on R, ic., S;(z) =
p(z +b;), b; € R for j = 1, ..., m, the sclf-similar measure u can be seen as follows: Let Xy, X, ...
be a sequence of independent identically distributed random varniables each taking real values by, ..., b,
with probability p1, ..., p,, respectively. We define a random vanable § = io: p' X, then the probability

i=1
measure u, induced by S -

pp(A) = P{w : S(w) € A}
is called a fractal measure and p, = p (sce [2]).

Let v be the standard Cantor measure, then v can be considered to be generated by the two
maps Si(z) = iz + %i, t = 0,1 with weight % on each S;. Then the attractor of this system

* Corresponding author. E-mail: vu_hong_thanh@yahoo.com
57


mailto:vu_hong_thanh@yahoo.com

o8 V.T.11. Thanh et al. / VNU Joumal of Science, Mathematics - Physics 25 (2009) 57-658

llerated tunctions 1s the standard cantor set C, 1€, C = 5L ) U D I(L). Let g = v * ... % 1 be tic
m—fold convolution of the standard Cantor measure. For rn > 3, this measure dous not satisfy the
open sct condition (see [2]), so the studying the local dimension of this measure in this case 1s very
difficult. Another convenient way to look at u is as the distnbution of the random sum, i.¢,, 1 can be
obtained in the following way: Let X be a random variable taking values {0, 1, ..., m} with probality
pias P(X =)= (_T:'s}; =0,1,...,mand let {X,}>°, be a sequence of independent random variable
with the same distnbution as X. Let S = i 37X, Sp= f: 377X; and p, p, be the distribution

1=1 1=1
measurc of S, S, respectively. It is well known that u is either singular or absolutely continuous (scc

[2])-
Recall that let ¢ be a probability measure on R. For s € supp u, the local dimension of y at s
is denoted by a(s) and defined by

o(s) _ tim [OBA(BA(5)
h—0% log h
if the limit exists. Otherwise, let @(s) and a(s) denote the upper and lower dimension by taking the
upper and lower limits respectively. Let £ = {a(s) : s € supp u} be the sct of the attainable local
dimensions of the measure p and for each m = 2,3, ..., put

a,, = inf{g(s) : s € supp pu};
T = sup{@(s) : s € supp u}.

It is showed in [4] that &,, — 2922 jg an isolated point of E for all m = 2,3, ... and

log3

log 2
a, = 2% 063093 if m=2;
log 3
302 089278 if m = 3or4.
Bl log 3

This results were proved by using combinatoric, it depends on some carcful counting of the multiple

00 .

representations of s = Y 377z, x; = 0, ..., m, and the associated probability. After that, in [5], Pablo
e

Shmerkin showed the ¢, for 7n = 2, 3,4 by the other way. He used the spectral radius of matrixes

to define his results. He said that the identifying formulae for o, for m > 5 was a difficult problem,
and he only estimated the values of a,,, for 5 <m < 10.

Now, in this paper, we are intercsted in the identifying o, for m = 5 and we show that our
result coincides with Pablo Shmerkin’s estimate. We have

2. Main result

Main Theorem. Let u be the 5—fold convolution of the standard Cantor measure, then the lower

extreme value of the local dimension of p is
427

log [32s (V145 cos(m;;g‘—E) +5)]

=~ 0.972 .
log 3 | = 0.972638

as = |
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The proof of our Maim Theorem is divided in to two steps. In Section 2.1 we will give some notations
and primary results. The Main Theorem is proved in Section 2.2.

2.1 Notations and Primary Results

Let v be the standard Cantor measure and g = v * ... x v (m—fold). Then, by similar proof as
the Lemma 4.4 1n [S], we have

Proposition 1. Let v be the standard Cantor measure, i.e., v is induced by the two maps S;(x) =
lr+ 2i, 10,1 with weigh 3 Lon each Si. Then its m—fold convolution = v * ... x v is generated
by Si(x) = ta+ %i with waght ot on with S; for i = 0,1, ...,m

Proposition 2 ([4])- Let1n > 2, then als) = h'* I%| provided that the limit exists. Otherwise,
we can replace a(s) by a(s) and «(s) and c:)n;der the upper and the lower limits.

Put 2 = {0,1,...,5} and for cach n € N we denote

D" = {lxy,...,x,) : z; € D}D™ = {(z1, z3,...) : z; € D}.
For (zy,...,x,) € D™, put

mn 1
(@1, ) = {(g1, - ¥m) €D™: Y37y =) 37z}
1=1 =1

£ (21, ..., zn) € {(x1,...,x,)), then we denote (21, ..., 2,) ~ (21, ..., Tn). Clearly that if (z1,..., z,,) ~
(CL'], .....’17,,) and (3::{ Ty eery zvn) £¥ (‘Bn-é-la veey xrn) then
(21, sovy Zm) ~ (Z1, sses i) (1)
We denote
((‘EI* ~eey Tp, I)) B {(yl, --wymx) : (yls ---syu) € ((wl’ '-'uxﬂ))}'
The following lemma will be used frequently in this paper
Lemma 1. Let s, — Y. 3 a5, s, Z 3 J:z:; be two points in supp p,. If s, = s, then z,, = o,
j=1
(mod 3).
Proposition 3. Let x = (x1,x2,...) = (2,3,2,3,...) € D™, we have
i) If n 15 even then (yy, ..., yn) € {(x1, ..., 2a)) = ((2,3,...,2,3)) iff
(1, - ) € (21,1, 201,3)) of (Y1, -, Yn) € {(®1, 0y Tn-2, Tn-2, 0)).
i) If nis odd then (yy,...,yn) € ((z1, ..., za)) = {(2,3,...,2,3,2)) iff

(1, Un) € ((Z1, oy T 1,2)) OF (Y15 o, Yn) € {(Z1, ooy Tn2, Tn—2,5)).

Proof.
1) The case n is cven.
If (y1,...,9n) € (1, .-, T0)) = ((2,3,...,2,3)) then we have
(11 = 2)3" 1+ (32 - 3)3"“2 tot (a1 —2)3+ (4o — 3) = 0. (2)
Therefore, v, — 3 = 0 (mod 3). Since y, € D, we have yn =Jor yn = Q.
a) If y,, — 3 theny, —3 = 0. By (2) we have Z 3Iy; = Z 37%z;. Hence, (Y1, ..., Yn_1) €

j=
((z1, ..., ®n-1)). By (1) we have (yy, ..., 4.) € ((z1, .. .,mn_l,B)).
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b) If y, = 0 then y, — 3 = —3. By (2) we have
(31 —2)3" 2+ (12 = 33" + ..+ (Yn—2 — 3)3+ (%a—1 = 3) = 0.

Hence, (yh vony Yn—2, yn—I) € ((2= 33 LI 2a 31 3)) =3 ((331, ooy Tn—2, xn—Z))- By(l) we have (yla eny yn) €
((xl) "':xn—%xn—?so))‘
Conveserly, if (y1, ..., ¥n) € {(z1, ..., n_1,3)), then we have

(Y1, .- Un) € {(z1, .y Zn)).
So we consider the case (y1, ..., yn) € (21, ..., Tn_2, Tn-2,0)). Then we have y, = Oand (y1, ..., Yn_1) ¢
((2,3,...,2,3,3)). We will show that (y;,...,yn) € {(x1,...,2,)). In fact, since (y1,...,¥n-1) €
((2,3,..,2,3,3)), by Lemma 1 we have y,.; —3 = 0 (mod 3). This implies that y,_; = 3 or
Yn-1=0.
a)Ify,-1 =3theny,_; —3=20and
(1 =2)3"2+ (12 = 3)3" 2 + . + (Ya-3 —3)3+ (¥a—2 —3) = 0.

Therefore, (y1, ..., Yn-2) ~ (2,3,...,2,3) = (x1, ..., Zpn—2) and (yn-1,¥=) = (3,0). Since (3,0) ~
(21 3)’ by (1) we have (yl) ---,yn) € ((xli Bt xn))
b) If y,—1 = O then from (y1, ..., ¥n-1) ~ (2,3, ...,2,3,3) we get
(11 —2)3" 2+ (12— 3)3" 3+ ...+ (Yn—2 — 3)3—3=0.

Hence,
(1 =2)3" 2+ (12— 33"+ .+ (Y3 —2)3+ g2 -4=0. (3)

Therefore, y,,—2 —4 = 0 (mod 3). Since y,-2 € D, we have y,,_ o = 4 or y,-2 = 1. We
consider the two following cases.

Case 1. y,—2 = 4, then (Yn-2,¥n-1,%) = (4,0,0) and y, 2 —4 = 0. By (3) we
have (y1,...,¥n-3) € ((2,3,...,2,3,2);. Sincc (4,0,0) ~ (3,2,3), by (1) we have (y1, ..., ¥n) -
(W1, ) Yn-3,4,0,0) € {(2,3,..,2,3)) = (21, ..., Zn)).

Case 2. y, 2 = 1,theny, 2 —4 = =3 and (yn—2,Yn-1, %) = (4,0,0). From (3), we get

(1 —2)3" * + (g2 —3)3" 3 + ... + (Yyna — 3)3+ yn_3 — 3 = 0. (4)

Therefore, (y1, ..., Yn-3) € {(2,3,...,2,3,3)}. By similar argument, we get y,_-3 = 0 or y,_3 = 3.
+) If yn—3 = 3 then (Y3, %n-2,Yn-1,¥n) = (3,1,0,0) and from (4) we get (y1, ..., ¥n-4) €
((2,3,...,2,3)). Since (3,1,0,0) ~ (2, 3,2, 3), we get (y1,...,9n) € ((2,3,...,2,3)) = ((z1, ... 7).
+) If y,,—3 = 0 then the form (4) is similar to the form (3). Thus, by repeating about argument
we get the proof of the proposition in this case of n.
if) The case n is odd.
Assume that (y1, ..., yn) € {(z1,...,z0)) = ((2,3, ...,2,3,2)) then

(11 —2)3" '+ (12-3)3" 2+ ...+ (Yn1 — 3)3 + ¥ — 2 = 0. (5)

This implies y, = 2 or y, = 5.
a) If y,, = 2 then from (5), we have

(yl ) -")yn—l) € ((2$ 3: savy 2? 3)) = ((xli seey zn—l))'

This means
(yh ceny yn) € ((1?1, ceny Tn—1, 2))
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b) If 3, — 5 then from (5), we have
(11 —2)3" 2+ (12 —3)3" 2+ ... + (Y2 —2)3 + o1 —2=0.
Therefore, (yy, ..., yn-1) ~ (2,3, ...,2,83,2,2) = (a1, ..., Tn—2, Tn—2). This implies

(yl ) ey y"-) E ((ml ) sy xﬂ-—21 Iﬂ-—2! 5))
Comnwversely, if (11, ..., y,,) € {(z1, ..., 2,1, 2)) then we have immediatelythat (yy, ..., y,) € {(z1, ..., Tn)}.
So "we consider the following case

(yla teey yn) € ((xlr <y Tn-2yTn-2, 5))

then we have v, = 5 and

(yly Lol yn~1) € <(m11 ey :En—27xn—2)) = ((2)31 "':2731212))'

We will prove that (yy, ..., yn) € ((z1, ..., Tn))-
[n fact, since (y1,...,yn—1) € ((2,3,...,2,3,2,2)), we have

(11 —2)3" 2+ (12— 3)3" % + . + (a2 —2)3+ Y1 —2 = 0. (6)

Therefore, y,,—1 = 2 or yp,—1 = 5.

a) If y,,.1 = 2 then from (6), we have (y1,...,yn-2) € ((2,3,..,2,3,2)) and (yn-1,%a) =
(2,5). Since (2,5) ~ (3,2), by (1) we have

(y1, - 9n) € {((2,3,...,2,3,2)) = {(z1, ...y Zn))-
b) If y,,- | = 5 then from (6), we have
(1 —2)3" 3 b (2 =D (Y 3 =33+ Y 2 —1=0. (7)

Thercfore, y,, 2 = L or y, o = 4.
b1) If y,_2 = 1 then from (7), we have (i1, ..., yn-3) € ((2,3,...,2,3)) and (yn—2, Yn—1,¥n) =
(1,5,5). Since (1,5,5) ~ (2,3,2), by (1) we have

(Y1, s ¥n) € ((2,3,..,2,3,2)) = (21, ..., T0)).

b2) If 35,2 = 4 then from (7), we have (g1, ..., yn-3) € {(2,3,...,2,3,2,2)) and (Yn—-2, Yn-1,¥n) =
(4,5,5). Since (4,5,5) ~ (5,3,2),by (1) we have (y1,-..,yn) € {((2,3,...2,3,5,3,2)). Therefore, by
repeating above argument for the case 3,2 = 5 and

(yh wery yn~3) € ((wlv ooy Tp—2, wn—2)) = ((21 3) reey 2) 3) 2) 2))

We have the assertion of the proposition.
From Proposition 3 we have the following corollary.

n -
Corrolary 1. Let z = (z1,2,...) = (2,3,2,3,...) € D®. For each n € N, put s, = Y, 3 *x; and
i=1

n

! Q—1../ / ! Py

sy, = ». 37 'z}, where (21, ...,x,_1,2,,) = (%1, ..., Zn_1,%n_1). Then we have
i=1

i) p(s)) = m(s)) = 28, pa(s2) = 58, pa(sh) = 3%
0

”) P—n("’lu) = %-'?a“'n—l(sn—-l) + %5#1'1—1 ("‘.i;—])‘
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Proof. i) For n = 1 we have ((z1)) = {(z})) = {(2)}. Therefore,
pr(sr) = m(sh) = P(X1 =2) = 35.
For n = 2 we have ((z, z2)) = {(2,3), (3,0)} and {(z}, z3)) = {(2,2), (1,5)}. Therefore,

1010 101 110
pu2(s2) = 2595 + 25°95 — o107

,, 1010 5 1 105
wals2) = 535 + 555 = 0

i) By Proposition 3, we have
a) If n is even then

(@15 Z0)) = {(Z1) 0y =1, 3)) U{(Y, ooy Tny, 0)).
b) If nn is odd then

((231, Viny .’17")) = ((xll sy T, 2)) u ((mlh "*11:;—1) 5))
Therefore, for all n € N we have

tn(sn) = P(Xn = 2)tin—1(Sn-1) + P(Xn = 5)ttn—1(s},_,)

10

, . 1 , .
= :-Zgﬂn—l(sn—!) T Pn—ll-"':.-l)-

25
The corollary is proved. O

To have the recurrence formula of u,(s,,), we need the following proposition.
Proposition 4. Let x = (z,22,...) = (2,3,2,3,...) € D*®. For each n € N, put (z},...,2},) =
(1, .cey Tr—1, Znn—1)- Then we have
i) If n is even then (yy,...,yn) € {(z, ..., x})) = ((2,3,...,2,3,2,2)) iff
(Y15 -y Yn) € ((Z1y 0oy Tn1,2)) U (21, ooy T2, 1,8)) U (2], ..., 25,4, 5)).
i} If n is odd then (y1, ..., yn) € ((z, ..., 20)) = ((2,3,...,2,3,3)) iff

(yh sy yﬂ) € ((SE], sy L1, 3)) U ((271, reey xn—-234’ 0)) U ((.’If;, svuy x:;-2a la 0))

Proof. i ) The case n is even.
a) If (y1,..-,9n) € {(21,..-)Tn-1,2)) then y, = 2 and (y1,...,¥n-1) € {(z1, ..., Tn_1)). Therefore,
by (1) we have
(yl’ b | yn) E ((2’ 3’ "'72’ 37 2’ 2)) = ((x’l’ ""x:l))'
b) If (y1, -, ¥n) € {(z1, .-, Tn-2,1,5)) then y, =5, y,—1 =1 and
(11y -y Yn-2) € {(21, ...y Zp—2)) = {(2,3, ..., 2, 3)).
Since (1,5) ~ (2,2), by (1) we have
(yh "'vyn) € ((2) 3’ "'r21 3’ 2v 2)) = ((z‘;l 12::;))
c) If (w1, .., ¥n) € ((=1, -y Tn-2,4,5)) = {(2,3, ..., 2,3,2,2,4,5)) then by (1) we have
(y11 "',yn) E <(2’ 3, ""2,3, 2, 2)) s ((z’l’ "‘,x‘l:l.))
since (2,2, 4,5) ~ (2,3,2,2).
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Conversely, if (y1,...,yn) € ((2,3,...,2,3,2,2)) then we have
(1 —2)3" "+ (12-3)3" "+ .+ (Yn-1 — 2)3+ Yy — 2 =10.

Herice, y,, = 2 or y,, = 5.
a) If y, = 2 then y,, — 2 = 0. Hence, from (9), we get

(yla "'?yn-—l) € ((21 31 !2:312» = ((xla “'1'1:1'1—1))‘
Therefore, (y1, ... yn) € {(z1, ..., Tn-1,2)).
b) If 3, = 5 then y,, — 2 = 3. Hence, from (9), we get
(1 =23+ (12 -3)3" " + .+ (Y2~ 3)3+ yn-1 — 1 = 0.
This imiplies y,, 1 = lory,; = 4.
bl) If 4,1 = 1 then from (10) we have
(yli s ey yn—?) € ((2a 31 . 213)) = ((2?1, sai) .’I;n_z))-

Therefore, (y1, ..., yn) € (21, ..., Zn_2, 1,5)).
b2) If y,,-; = 4 then from (10) we have

(ylv ey yn—?) € ((2s 31 '-')2’ 3) 2’ 2)) - ((mll: seey m:z.—Z))'

Therefore, (y1, ..., ¥n) € ((x1, ey Tn-2,4,5)).
ii) The case nt is odd.
a) Clearly that if (yi,...,yn) € ((z1, ..., T,—1,3)) then

(yl‘) i | yrl) G ((2’ 37 "',2, 3, 3)) = <(m‘i1 b | x:l))‘

b) If (g1, ey yn) € {1y ey Tn2,4,0)) = ((2,3,...,2,3,2,4,0)) then by (1) we have
(y].’ s yrl) e <(27 3, R | 2’ 3, 3)) = ((x{l, "'1I:I)>!

since (4,0) ~ (3,3).

) If (1, ooy ) € (=), .., 20, 5, 1,0)) = {(2,3,...,2,3,3,1,0)) then by (1) we have

(W10 9n) € ((2,3,..,2,3,3)) = {(&}, ..., 2,),
since (3, 1,0) ~ (2, 3, 3).
Conversely, if (y1,...,yn) € {(2],...,2})) = ((2,3,...,2,3,3)), then we have
(i —2)3" "+ (12— 3)3"* + . 4 (Yno1 = 3)3+ ¥ —3=0.
Hence, v, = 3 or y,, = 0.
a) If 4, — 3 then v, — 3 = 0. Hence, from (11) we have
(Y1) s Yn—1) € ((213) vy 2y 3)) = ((mlz "':xn—l»'
Therefore, by (1) we have (y1,...,4n) € ({z1,...,Tpn_1,3)).
b) If y, = 0 then y, — 3 = —1. Hence, from (11) we have
(1 —2)3" 2+ (12 -3)3" 3 + .. 4+ (Wn-2 —2)3+ Y1 —4 = 0.
This implies y,, 1 = Ll or y,,_; = 4. |
bl) If y,—1 = 1 then y,_; — 1 = —3. Hence, from (12) we have
(Y1, Un—2) € ((2; 3,..42,3, 3)) = <(:U'1, ey $:z—2)>-
This implies (y1, ..., ¥n) € (2], ..., 2],_5, 1,0)}.

63

(10)

(11)

(12)
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b2} If y,-1 — 4 then ¥,y — 4 = 0. llence, from (12) we have
(1, n-2) € {(2,3,...,2,3,2)) = ((z1, ..., Tn2)).
This implies (1, ..., yn) € {{(z1, ..., 2,2, 4,0)). The proposition is proved. O

From Proposition 4, we have the following corollary, which will be used to establish the re:cur-
rence formula of i, (s,,) for cach n € N.
Corrolary 2. Let x = (x),22,...) = (2,3,2,3,...) € D>, Foreachn € N, puts,, ~ > 3 ‘z; and
1=1

T

S:I = Z] 3 f.l’:- where (‘r,lt ._...I':' 1: -'-".’;x} - (“;1: "'1:1:11—1)1771-‘1)' we have
1=
10 5
f-f-n(”:;) = TrHn- l(sn 1) R (“11—2(511—2) + l"’n—2(s:1,—2))'

25 210

Proof. By Proposition 4, we have
a) If n is even then

({5 <oy ) = (B ooy =15 YAy 005 B2y 1,5)U((z), ...,z 4,4,5)).

Therefore, : f =
’ 10 1
/Jn'\S:;) = 5 a5 Hn— 1(Sn 1) 2_r %un—2(sn 2) + ﬁ-"2_5p'n—2(sz1— 2)
10 5

= 25 e Hn— I\Sn 1) 210[/1'11—2(371—2) +P4n—2(3:1—2)l-
b) If n is odd then

(@), oy zh)) = (21, oy T—1, 3)) U {(T1, oovy Tn—2, 4, O U (], ..., 2,5, 1,0)).

Therefore,
- 10 1 5 1 5 r
pn(S,,) 2_r“n 1(8p-1) 4 2_2_ n-2(Sn-2) + 25" 2)»”?: 2(8y,_2)
10 )
= 25”:1 ]("rr 1)‘ t 21 |:un 2(sn 2) + pn 2\811 2)]
Hence,
’ 10 O '
ﬂ":l(“'ln) — 25 ~EHn— l("'n l) + 2?(“’!1--2('&1—2) + /"'11-2(371-2))'

The corollary is proved.
From Corollarics 1 and 2, we have

Corrolary 3. Let z = (=, 22,...) = (2,3,2,3,...) € D™. Foreachn € N, put s,, = Z 37'w; Then
i=1

we have
’ 10 15 45
/Lnksn) = 2r .“n-l("n l) + mﬂ-u 2(3n 2) 215 i Hn—- 3(‘:: 3)
Proof. By Corollaries 1 and 2, we have
10 1
p’n(sn) 25,“4: ](Sn—l) + 25#11—1(3:1-—1) (13)
4 10 5 ' .
Hn- 1( n— 1) = ?2_5)[1'71— (311—2) + W(I—tn—S(sn—S) + Nn—3(3n—3)) (14)
10 1 =
Pn—2(8p-2) = —pn-3(Sn-3) + 5 Hn- 3(sn,_3)- (15)

20
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From (13), (14) and (135), the asscrtion of the corollary follows.

= i 3 'z;. Then

2.2 The proof of the main theorem
) = (2,3,2,3,...) € D>®. For each n € N, put s,
i=1

Lermma 2. [et x — (x), 29,
we thave 1,(s,) > w,(t,) for all t,, € supp p,.
We will prove the lemma by induction. For n = 1 we have

1 1 5 10
}

o

> i (ty) € {

3|

pi(s1) = P(Xy =2) =

for all ¢; € supp p1. Assume that the lemma is true for n = k, 1.e,,

mr(sk) > pk(ty) for all tx € supp p.
n -
We will show that the lemma is true for n = k& + 1. Forany y = (y1,y2,...) € D=, putt, = > 37y
i=1

k+1

for each n € N, then £, = > 3 'y;. We consider the following cases of yg+ .
t=1

Case 1. If y,.1 = 1 (or 4), then by Lemma 1, ¢4 has at most two representations

ther =t + 1.37 ) = ¢ 4 4,3 (kH1),

Thercfore, by induction hypothesis, we have
fre 1 (treer) = pa(te) P(Xiepr = 1) + pe(ty) P(Xgi1 = 4)

10

9 5
< k(e )€ o5 t 2! = 2—5i£kk1k)-
By Corollary 1 (i1), we have
10
Hiee1 (Ske1) > semtk(sk) 2 den(tes).

-0 (or 3), then by Lemma 1, ¢4 has at most two representations

CaSe 2. lf yk+1
tier =t +0.370F) = ¢ 4 3 3-(k+1),

a) If y, = 0 (or 3), then (yk, yx+1) € {(0,0), (0,3)}. Therefore, by Lemma 1 we have (1, ..., y4,) €

<(yl; ceny yk+1)> iff
(yl/c:y;c+l) € {(O¢O), (3,0), (2,3), (5,3), (0’3), (1’0)’ (3’3)’ (4’0) }
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By induction hypothesis, we have

(b)) < sk (86-1)[P( Xk = 0) P(Xi41 = 0) + P(Xi = 3) P(Xi41 = 0)
+P(Xix = 2)P(Xgy1 = 3) + P(Xk = 5)P(Xiy1 = 3)
+P(Xk = 0)P(Xis1 = 3) + P(Xx = 3)P(Xps1 = 3)
+P(Xe = 1)P(Xgy1 = 0) + P(Xp = 4)P(Xpy = 0)]

11,101 101 1010

25795 25795 25725 25725

+i9+1010+5 l+5 1

25795 1 25795 1 257925 © 25795
241

= Wﬂk—l(-‘ik-l)-

= pk—1(Sk-1)(

)

By hypothesis induction and Corollary 1 (ii), we have

10 241
Pt (ske1) > smk(sk) 2 Srgtk-1(sk-1) = His1ltir).

b) If yi = 4 (or 1), then (y&, ye11) € {(4,0), (4, 3)}. Therefore, by Lemma 1 we have (3], ..., yi, ) €
(¥, s i41)) IF

(y;c,y;;,{,l) € {(2)0)5 (510)1 (1)3)1 (413)$ (073)’ (110)1 (3:3)1 (410))}

By induction hypothesis, we have

fea1{te ) < e (e DIP(XL = 2)P( Xy =0)+ P(Xe = 5)P( Xy — 0)

+P(Xk = 1)P(Xg+1 = 3) + P(Xi = 4)P(Xg 41 = 3)
+P(Xik = 0)P(Xx41 =3) + P(Xx = 1) P(Xi41 = 0)
+P(Xk = 3)P(Xgy1 = 3) + P(Xy = 4) P(Xi 41 = 0)]
= He=1{8k-1)\ 7 5°95 25 20 25" 95 2595
10,51 1010 05 1
20 25 20 25 25'25 25'25

231
= 510 Mk 1(sk-1)-

By hypothesis induction and Corollary 1 (1i), we have

10 231
Hr+1(Sk+1) > guk(sk) < 510 1o Hk-1(8k=1) = sk (tes).

¢) If yx = 2 (or 5), then (yg, yk+1) € {(2,0), (2,3)}. Therefore, by Lemma 1 we have (3], ..., %, ,) €
((yl) reey yk+'1)) Wff

('."J":--.U:--?) € {(O, O)a (3v0)3 (233)1 (5w3)1 (1-3)7 (413)1 (2=O)a (5s0)1}
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By iinduction hypothesis, we have

ki (tes1) < peo1 (=) [P( Xk = 0)P(Xk41 = 0) + P(Xk = 3) P(Xk41 = 0)
+P(Xi = 2)P(Xk+1 = 3) + P(Xi = 5)P(Xk+1 = 3)
FP(Xk = 2)P(Xiky1 = 0) + P(X = 5) P(Xk41 = 0)
+P( Xk = 1)P(Xk41 = 3) + P(Xi = 4) P(Xi+1 = 3)]
1 1 10 1 10 1 10 10
T s st s m T s T E S
5 10 5 10 10 1 1 1.
wE T E et Ey
231

- Wiik 1{Sk-1)-
Therefore, by Corollary 1 (11), we have

10 231
fr1(Skt1) > 5 Hk(8k) 2 5yg He- 1(8k-1) > pict1(+1)-

Case 3. If yx41 = 2 (or 5). This case is proved similarly to the Case 2.
Therefore, the lemma is proved.

By resolving Fibonacei recurrence formula of u,(s,) in Corollary 3, we have the following
corcillary.

Corrolary 4. Let x = (xy, 22, ...) = (2,3,2,3,...) € D*. Foreachn €N, put s,, = E 37'z;. Then
we Mave

ﬂn(sn) = alX{‘ +0,2Xg + a.;;X:’,'
for

2 arccos
Xy = soplV145e0s( 39;‘4 ) + 5| ~ 0, 3135055158
I 2

arccos 01214
Mocos(-—-———~——

<\

&

Xz

) + 5] ~ 0,04959875748

w|=l

arccos ;ﬁ%—
N [\/ 145 COS(_—i—— ) + 5] ~ —0, 08060427328

and ay, a, az are root.s of the following system of three equations
pi(s1) = a1 Xy + a2 Xz + aaXa
p2(s2) = a1 X? + a2 X2 + aa X2
pa(sa) = a1 X3 + ag X3 + az X3,
where p(s1), p2(s2), na(ss) are the values in Corollary 1.
From Lemma 2, Corollary 3 and Proposition 2, we have

Theorem. Let u is the H—fold convolution of the standard Cantor measure, then the lower extreme
value of the local dimension of u is

7
log [q—zg's (V145 cos(m) +

3

)]
or3 | ~ 0,972638.
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