VNU Journal of Science, Mathematics - Physics 25 (2009) 91-98

Boundedness and Stability for a nonlinear difference equation with multiple delay

Dinh Cong Huong*, Ngo Thi Hong

Dept. of Math, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam

R eceived 24 February 2009; received in revised form 11 July 2009

Abstract. The equi-boundedness of solutions and the stability of the zero of nonlinear difference equation with bounded multiple delay

$$
x_{n+1}=\lambda_n x_n+\sum_{i=1}^r \alpha_n^i F(x_{n-m_n}),\quad n=0,1,\cdots
$$

are investigated.

Keywork: stability, fixed point theorem, contraction mapping, nonlinear difference equation, equi-boundedness.

1. Introduction

Let R denote the set of real numbers, Z the set of integers and \mathbb{Z}^+ the set of positive integers numbers. In this paper, we study the equi-boundedness of solutions and the stability of the zero of nonlinear difference equation with bounded multiple delay

$$
x_{n+1} = \lambda_n x_n + \sum_{i=1}^r \alpha_n^i F(x_{n-m_n}), \quad n = 0, 1, \cdots \tag{1.1}
$$

where α^{i} for $i = 1, 2, \dots, r$ and λ are functions mapping Z to R; F maps R to R; m maps Z to \mathbb{Z}^{+} .

The properties of solutions of delay nonlinear difference equations has been studied extensively in rcccnt years; see for example the work in [1-6] and the references cited therein. In [1], [2] and [3], the authors studied the oscillation and the asymptotic behaviour of solutions of the following nonlinear difference equations

$$
x_{n+1} - x_n + \alpha(n)x_{n-m} = 0, \quad n = 0, 1, 2, \cdots
$$

$$
x_{n+1} - x_n + \sum_{i=1}^r \alpha_i(n)x_{n-m_i} = 0, \quad n = 0, 1, 2, \cdots
$$

$$
x_{n+1} - x_n + \alpha(n)f(x_{n-m}) = 0, \quad n = 0, 1, 2, \cdots
$$

and

$$
x_{n+1} = \lambda_n x_n + \sum_{i=1}^r \alpha_i(n) F(x_{n-m_i}).
$$

E-mail: dconghuong@yahoo.com

Coresponding author. Tel.: 0984769741

It is clear that these equations are particular cases of (1.1). We are particularly metivated by the work of the authors [1-6] on the stability, boundedness and convergence of solutions of difference equations.

Throughout this paper, we assume that there is a $K > 0$ so that if $|x| \leq K$ then $F(x) \leq K|x|$.

If m is bounded and the maximum of m is k, then for any integer $n_0 \ge 0$, we define \mathbb{Z}_0 to be the set of integers in $[n_0 - k, n_0]$. If m is unbounded then \mathbb{Z}_0 will be the set of integers in $[-\infty, n_0]$.

Let $\psi : \mathbb{Z}_0 \longrightarrow \mathbb{R}$ be an inital discrete bounded function.

We say $x_n := x_{n,n_0,\psi}$ is a solution of (1.1) if $x_n = \psi_n$ on \mathbb{Z}_0 and satisfies (1.1) for $n \ge n_0$.

The zero solution of (1.1) is Liapunov stable if for any $\epsilon > 0$ and any integer $n_0 \ge 0$ there exists a $\delta > 0$ such that $|\psi_n| \leq \delta$ on \mathbb{Z}_0 implies $|x_{n,n_0,\psi}| \leq \epsilon$ for $n \geq n_0$.

The zero solution of (1.1) is asymptotically stable if it is Liapunov stable and if for any integer $n_0 \geq 0$ there exists $r(n_0) > 0$ such that $|\psi_n| \leq r(n_0)$ on \mathbb{Z}_0 implies $|x_{n,n_0,\psi}| \to 0$ as $n \to \infty$.

A solution $x_n := x_{n,n_0,\psi}$ of (1.1) is said to be bounded if there exists a $B(n_0, \psi) > 0$ such that $|x_{n,n_0,\psi}| \leq B(n_0,\psi)$ for $n \geq n_0$.

A solution of (1.1) is said to be equi-bounded if for any n_0 and any $B_1 > 0$ there exists $B_2 = B_2(n_0, B_1) > 0$ such that $|\psi_n| \leq B_1$ on \mathbb{Z}_0 implies $|x_{n,n_0,\psi}| \leq B_2$ for $n \geq n_0$.

For any sequence
$$
\{x_k\}
$$
, we denote: $\sum_{k=a}^{b} x_k = 0$, $\prod_{k=a}^{b} x_k = 1$ for any $a > b$.

2. Main results

2.7. *The Boundedness*

Lemma 1. *Assume that* $\lambda_n \neq 0$ for all $n \in \mathbb{Z}$. Then $\{x_n\}$ is a solution of equation (1.1) if and only *if*

$$
x_n = x_{n_0} \prod_{s=n_0}^{n-1} \lambda_s + \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(x_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s.
$$

Proof. We first prove that equation (1.1) is equivalent to the equation

$$
\Delta\left(x_n \prod_{s=n_0}^{n-1} \lambda_s^{-1}\right) = \sum_{i=1}^r \alpha_n^i F(x_{n-m_n}) \prod_{s=n_0}^n \lambda_s^{-1}.\tag{1.2}
$$

Indeed, we have

$$
x_{n+1} \prod_{s=n_0}^{n} \lambda_s^{-1} = \lambda_n x_n \prod_{s=n_0}^{n} \lambda_s^{-1} + \sum_{i=1}^{r} \alpha_n^i F(x_{n-m_n}) \prod_{s=n_0}^{n} \lambda_s^{-1}
$$

$$
x_{n+1} \prod_{s=n_0}^{n} \lambda_s^{-1} = x_n \prod_{s=n_0}^{n-1} \lambda_s^{-1} + \sum_{i=1}^{r} \alpha_n^i F(x_{n-m_n}) \prod_{s=n_0}^{n} \lambda_s^{-1},
$$

$$
\mathsf{or}
$$

$$
\Delta\left(x_n\prod_{s=n_0}^{n-1}\lambda_s^{-1}\right)=\sum_{i=1}^r\alpha_n^iF(x_{n-m_n})\prod_{s=n_0}^{n}\lambda_s^{-1}.
$$

Now, summing equation (1.2) from n_0 to $n-1$ gives

$$
\sum_{t=n_0}^{n-1} \Delta \left(x_t \prod_{s=n_0}^{t-1} \lambda_s^{-1} \right) = \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(x_{t-m_t}) \prod_{s=n_0}^t \lambda_s^{-1}
$$

$$
x_n \prod_{s=n_0}^{n-1} \lambda_s^{-1} = x_{n_0} + \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(x_{t-m_t}) \prod_{s=n_0}^t \lambda_s^{-1}
$$

$$
x_n = x_{n_0} \prod_{s=n_0}^{n-1} \lambda_s + \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(x_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s.
$$

Assume that $\lambda_n \neq 0$ for $n \geq n_0$ and there exists $M \in (0, +\infty)$, $\alpha \in (0, 1)$ such that Theorem 1.

$$
\left|\prod_{s=n_0}^{n-1}\lambda_s\right|\leqslant M
$$

and

$$
\sum_{t=n_0}^{n-1} \left| \sum_{i=1}^r \alpha_t^i \right| \left| \prod_{s=t+1}^{n-1} \lambda_s \right| \leq \alpha, n \geq n_0. \tag{1.3}
$$

Then solutions of (1.1) are equi-bounded.

Proof. Let B_1 be a positive constant. Choose $B_2 > 0$ such that

$$
MB_1 + \alpha B_2^2 \leqslant B_2. \tag{1.4}
$$

Let ψ be a bounded initial function satisfies $|\psi_n| \leq B_1$ on \mathbb{Z}_0 . Define

$$
S = \{ \varphi : \mathbb{Z} \longrightarrow \mathbb{R} | \varphi_n = \psi_n \text{ on } \mathbb{Z}_0 \text{ and } ||\varphi|| \leq B_2 \},
$$

where $\|\varphi\| = \max_{n \in \mathbb{Z}} |\varphi_n|$. We shall prove that $(S, ||.||)$ is a complete metric space.

 $+$ ||.|| is a metric. i) $\forall \varphi, \eta \in S : ||\varphi - \eta|| = \max_{n \in \mathbb{Z}} |(\varphi - \eta)_n| \geq 0,$

$$
\|\varphi - \eta\| = 0 \iff \max_{n \in \mathbb{Z}} |(\varphi - \eta)_n| = 0
$$

$$
\iff (\varphi - \eta)_n = 0, \forall n \in \mathbb{Z}
$$

$$
\iff \varphi_n - \eta_n = 0, \forall n \in \mathbb{Z}
$$

$$
\iff \varphi_n = \eta_n, \forall n \in \mathbb{Z}
$$

$$
\iff \varphi \equiv \eta.
$$

ii) $\forall \varphi, \eta \in S$, we have

$$
\|\varphi - \eta\| = \max_{n \in \mathbb{Z}} |(\varphi - \eta)_n| = \max_{n \in \mathbb{Z}} |\varphi_n - \eta_n|
$$

=
$$
\max_{n \in \mathbb{Z}} |\eta_n - \varphi_n| = \max_{n \in \mathbb{Z}} |\langle \eta - \varphi \rangle_n| = \|\eta - \varphi\|.
$$

iii) $\forall \varphi, \eta, \psi \in S$, we have

$$
\|\varphi - \eta\| = \max_{n \in \mathbb{Z}} |(\varphi - \psi)_n| = \max_{n \in \mathbb{Z}} |\varphi_n - \psi_n| = \max_{n \in \mathbb{Z}} |\varphi_n - \eta_n + \eta_n - \psi_n|
$$

\$\leq\$ $\max_{n \in \mathbb{Z}} (|\varphi_n - \eta_n| + |\eta_n - \psi_n|) \leq \max_{n \in \mathbb{Z}} |\varphi_n - \eta_n| + \max_{n \in \mathbb{Z}} |\eta_n - \psi_n|$
= $\|\varphi - \eta\| + \|\eta - \psi\|$.

+ Suppose that $\{\varphi^{\ell}\}\$ is a Cauchy sequence in S. We have

 $\forall \varepsilon > 0, \exists \ell_{\mathbf{0}} : \forall k,\ell \geqslant \ell_0 : \|\varphi^\epsilon - \varphi^\kappa\| < \varepsilon$ or $\forall \varepsilon > 0, \exists \ell_0 : \forall k, \ell \geqslant \ell_0 : \max_{n \in \mathbb{Z}} |(\varphi^{\varepsilon} - \varphi^{\kappa})_n| < \varepsilon$ or

$$
\forall \varepsilon > 0, \exists \ell_0 : \forall k, \ell \geqslant \ell_0 : \left| \left(\varphi^{\ell} - \varphi^k \right)_n \right| < \varepsilon, \forall n \in \mathbb{Z}.
$$

Fixed n, $\{\varphi_n^{\ell}\}\$ is a Cauchy sequence in R. In view of R is a complete metric space,

$$
\exists \varphi_n \in \mathbb{R} : \varphi_n = \lim_{\ell \to \infty} \varphi_n^{\ell}.
$$

We prove $\varphi \in S$. Indeed, since $\varphi^{\ell} \in S$, $\varphi^{\ell}_n = \psi_n$ on \mathbb{Z}_0 . It implies $\varphi_n = \lim_{\ell \to \infty} \varphi^{\ell}_n = \psi_n$ on \mathbb{Z}_0 Moreover, since $||\varphi^{\ell}|| \leq B_2$, $||\varphi|| \leq B_2$.

Define mapping $P : S \longrightarrow S$ by $(P\varphi)_n = \psi_n$ on \mathbb{Z}_0 and

$$
(P\varphi)_n = \psi_{n_0} \prod_{s=n_0}^{n-1} \lambda_s + \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s, n \geq n_0.
$$
 (1.5)

We first prove that P maps from S to S . Indeed, we have

$$
|(P\varphi)_n| = \left|\psi_{n_0} \prod_{s=n_0}^{n-1} \lambda_s + \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s \right|, n \ge n_0
$$

\$\leqslant |\psi_{n_0}| \left|\prod_{s=n_0}^{n-1} \lambda_s\right| + \sum_{t=n_0}^{n-1} \left|\sum_{i=1}^r \alpha_t^i\right| |F(\varphi_{t-m_t})| \left|\prod_{s=t+1}^{n-1} \lambda_s\right|, n \ge n_0.

Since $||\varphi|| \leq B_2$, $|\varphi_{t-m_t}| \leq B_2$. So $F(\varphi_{t-m_t}) \leq B_2||\varphi_{t-m_t}|| \leq B_2^2$. Hence,

$$
|(P\varphi)_n| \leq B_1M + B_2^2 \sum_{t=n_0}^{n-1} \left| \sum_{i=1}^r \alpha_t^i \right| \left| \prod_{s=t+1}^{n-1} \lambda_s \right|, n \geq n_0
$$

$$
\leq B_1M + B_2^2 \sum_{t=n_0}^{n-1} \left| \sum_{i=1}^r \alpha_t^i \right| \left| \prod_{s=t+1}^{n-1} \lambda_s \right|, n \geq n_0
$$

$$
\leq B_1M + \alpha B_2^2 \leq B_2.
$$

Hence P maps from S to itself. We next show that P is a contraction under the supremum norm. Let $\varphi, \eta \in S$, we get

$$
|(P\varphi)_n - (P\eta)_n| = \left| \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s - \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\eta_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s \right|
$$

\n
$$
\leq B_2 \sum_{t=n_0}^{n-1} \left| \sum_{i=1}^r \alpha_t^i \right| \left| \prod_{s=t+1}^{n-1} \lambda_s \right| ||\varphi - \eta||
$$

\n
$$
\leq B_2 \alpha ||\varphi - \eta||.
$$

Next, we prove that $B_2\alpha \in (0,1)$. Indeed, since $\frac{MD_1}{B_2} > 0$, $1 - \frac{MD_1}{B_2} < 1$. On the other hand, from $MB_1 + \alpha B_2^2 \leqslant B_2$ we have $\alpha B_2^2 \leqslant B_2 - MB_1$, which implies that

$$
\alpha B_2 \leqslant 1 - \frac{MB_1}{B_2} < 1.
$$

This shows that P is a contraction. Thus, by the contraction mapping principle, P has a unique fixed point $\varphi^* \in S$. We have

$$
(P\varphi^*)_n = \varphi_n^* = \psi_{n_0} \prod_{s=n_0}^{n-1} \lambda_s + \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}^*) \prod_{s=t+1}^{n-1} \lambda_s.
$$

Since $n_0 \in \mathbb{Z}_0$ and $\varphi^* \in S$, $\psi_{n_0} = \varphi_{n_0}^*$. Hence

$$
\varphi_n^* = \varphi_{n_0}^* \prod_{s=n_0}^{n-1} \lambda_s + \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}^*) \prod_{s=t+1}^{n-1} \lambda_s,
$$

i.e φ_n^* is a solution of (1.1). This prove that solutions of (1.1) are equi-bounded.

2.2. The Stability

Theorem 2. *Assume that there exists* $\gamma \in (0,1)$ *such that* $|\sum \alpha_n^*| \leq \gamma$ and $|\lambda_n| < 1 - \gamma$ for all $\bm{i} =$ $n \in \mathbb{Z}$. *Then the zero solution of (1.1) is Liapunov stable.*

Proof. Put

$$
M = (1 - \gamma)(n - n_0), N = (1 - \gamma)^{n - t - 1}, \alpha = \gamma(n - n_0)N.
$$

We have

$$
\sum_{s=n_0}^{n-1} |\lambda_s| < \sum_{s=n_0}^{n-1} (1-\gamma) = (1-\gamma)(n-n_0) = M
$$
\n
$$
\prod_{s=t+1}^{n-1} \lambda_s < \prod_{s=t+1}^{n-1} (1-\gamma) = (1-\gamma)^{n-t-1} = N
$$
\n
$$
|\sum_{s=n_0}^{n-1} \lambda_s| < \sum_{s=n_0}^{n-1} |\lambda_s| < M
$$
\n
$$
\sum_{s=n_0}^{n-1} |\sum_{i=1}^r \alpha_s^i| < \gamma(n-n_0)
$$
\n
$$
\sum_{s=n_0}^{n-1} |\sum_{i=1}^r \alpha_s^i| |\prod_{s=t+1}^{n-1} \lambda_s| < \gamma(n-n_0)N = \alpha.
$$

Let $\epsilon > 0$. Choose $\delta > 0$ such that

$$
M\delta + \alpha \epsilon^2 \leqslant \epsilon
$$

Let ψ be a bounded initial function satisfies $|\psi_n| \le \delta$ on \mathbb{Z}_0 . Define

$$
S = \{ \varphi : \mathbb{Z} \longrightarrow \mathbb{R} | \varphi_n = \psi_n \text{ on } \mathbb{Z}_0 \text{ and } ||\varphi|| \leq \epsilon \},
$$

where $\|\varphi\| = \max_{n \in \mathbb{Z}} |\varphi_n|$. It can be verified that $(S, ||.||)$ is a complete metric space.
Consider the map $P : S \longrightarrow S$ by (1.5). We have

$$
|(P\varphi)_n| = \left|\psi_{n_0} \prod_{s=n_0}^{n-1} \lambda_s + \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s \right|, n \ge n_0
$$

\n
$$
\leq |\psi_{n_0}| \left|\prod_{s=n_0}^{n-1} \lambda_s\right| + \sum_{t=n_0}^{n-1} \left|\sum_{i=1}^r \alpha_t^i\right| |F(\varphi_{t-m_t})| \left|\prod_{s=t+1}^{n-1} \lambda_s\right|, n \ge n_0
$$

\n
$$
\leq \delta M + \varepsilon^2 \sum_{t=n_0}^{n-1} \left|\sum_{i=1}^r \alpha_t^i\right| \left|\prod_{s=t+1}^{n-1} \lambda_s\right|, n \ge n_0
$$

\n
$$
\leq \delta M + \varepsilon^2 \alpha < \varepsilon
$$

and

$$
|(P\varphi)_n - (P\eta)_n| = \left| \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s - \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\eta_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s \right|
$$

$$
\leq \varepsilon \left| \sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i \prod_{s=t+1}^{n-1} \lambda_s \right| ||\varphi - \eta|| \leq \varepsilon \sum_{t=n_0}^{n-1} \left| \sum_{i=1}^r \alpha_t^i \right| \left| \prod_{s=t+1}^{n-1} \lambda_s \right| ||\varphi - \eta||
$$

$$
\leq \varepsilon \alpha ||\varphi - \eta||.
$$

It is easy to check that $\alpha \in (0,1)$. This show that P is a contraction map and for any $\varphi \in S$, $||P\varphi|| \le$ ϵ . Therefore the zero solution of (1.1) Liapunov stable.

96

Theorem 3. Assume that the hypotheses of Theorem 2 are satisfied. Assume, in addition, that

$$
n - m_n \to \infty \text{ as } n \to \infty. \tag{1.6}
$$

Then the zero solution of (1.1) is asymptotically stable.

Proof. Since $|\lambda_n| < 1 - \gamma$ for all $n \in \mathbb{Z}$ and $\gamma \in (0, 1)$, it follows that $|\lambda_n| < 1$. Consequently,

$$
\prod_{s=n_0}^{n-1} \lambda_s \to 0 \text{ as } n \to \infty. \tag{1.7}
$$

Let ψ be a bounded initial function satisfies $|\psi_n| \le r(n_0)$. Define

 $S^* = \{ \varphi : \mathbb{Z} \longrightarrow \mathbb{R} | \varphi_n = \psi_n \text{ on } \mathbb{Z}_0, ||\varphi|| \leq \varepsilon \text{ and } |\varphi_n| \to 0, \text{ as } n \to \infty \}.$

Define $P: S^* \longrightarrow S^*$ by (1.5). From the proof of Theorem 2, the map P is a contraction and it maps from S^* to itself.

We next prove that $(P\varphi)_n$ goes to zero as n goes to infinity.

Since (1.7), it follows that $\psi_{n_0} \prod_{s=n_0}^{n_0} \lambda_s$ goes to zero as *n* goes to infinie. We have only to prove $\sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s, (n \ge n_0) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$ Let $\varphi \in S^*$ then $|\varphi_{n-m_n}| \le \varepsilon$. Also, since $\varphi_{n-m_n} \to 0$ as $n-m_n \to \infty$, there exists a $n_1 > 0$ such that for $n > n_1$, $|\varphi_{n-m_n}| < \varepsilon$ $\varepsilon_1>0$.

Indeed, by the condition (1.7), there exists $n_2 > n_1$ such that

$$
\left|\prod_{s=n_1}^n \lambda_s\right| < \frac{\varepsilon_1}{\alpha \varepsilon^2} \quad \forall n > n_2.
$$

Hence, for all $n > n_2$, we have

$$
\left|\sum_{t=n_0}^{n-1} \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s \right| \leq \sum_{t=n_0}^{n-1} \left| \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s \right|
$$

\n
$$
\leq \sum_{t=n_0}^{n_1-1} \left| \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s \right| + \sum_{t=n_1}^{n-1} \left| \sum_{i=1}^r \alpha_t^i F(\varphi_{t-m_t}) \prod_{s=t+1}^{n-1} \lambda_s \right|
$$

\n
$$
\leq \epsilon^2 \sum_{t=n_0}^{n_1-1} \left| \sum_{i=1}^r \alpha_t^i \prod_{s=t+1}^{n-1} \lambda_s \right| + \epsilon_1^2 \sum_{t=n_1}^{n-1} \left| \sum_{i=1}^r \alpha_t^i \prod_{s=t+1}^{n-1} \lambda_s \right|
$$

\n
$$
\leq \epsilon^2 \sum_{t=n_0}^{n_1-1} \left| \sum_{i=1}^r \alpha_t^i \prod_{s=t+1}^{n-1} \lambda_s \prod_{s=n_1}^{n-1} \lambda_s \right| + \epsilon_1^2 \alpha
$$

\n
$$
\leq \epsilon^2 \left| \prod_{s=n_1}^{n-1} \lambda_s \right| \sum_{t=n_0}^{n-1} \left| \sum_{i=1}^r \alpha_t^i \right| \left| \prod_{s=t+1}^{n-1} \lambda_s \right| + \epsilon_1 \alpha
$$

\n
$$
\leq \epsilon^2 \alpha \left| \prod_{s=n_1}^{n-1} \lambda_s \right| + \epsilon_1^2 \alpha \leq \epsilon^2 \alpha \cdot \frac{\epsilon_1}{\epsilon^2 \alpha} + \epsilon_1^2 \alpha.
$$

\n
$$
\leq \epsilon_1 + \epsilon_1^2 \alpha.
$$

97

Now, by the above, it follows that $(P\varphi)_n \to 0$ as $u \to \infty$. By the contraction mapping principle, *P* has a unique fixed point that solves (1.1) and goes to zero as n goes to infinity. The proof is complete.

Acknowledgement. The authors would like to thank the referees for useful comments, which improve the presentation of this paper.

References

- [1] R.p. Agarwal, *Difference Equations and Inequalities. Theory, Methods, and Applicationsy* Marcel Dckkcr Inc 2000.
- [2] B.s. Lalli, B.G. Zhang, Oscillation of diíTerence equations. *Colloquium Mathematicum* Vol. LXV (1993) 25.
- [3] Dinh Cong Huong, On the asymptotic behaviour of solutions of a nonlinear diíĩercnce equation with bounded multiple delay, *Vietnam Journal of Mathematics*. Vol 34 (2006) 163.
- [4] Dang Vu Giang, Dinh Cong Huong, Extinction, Persistence and Global stability in models of population growth. *J Math. Anal. Appl.* 308 (2005) 195.
- [5] Dang Vu Giang, Dinh Cong Huong, Nontrivial periodicity in discrete delay models of population growth, *J. Math. Anal. Appi.* 305 (2005) 291.
- [6] Dinh Cong Huong, Phan Thanh Nam, On the Oscillation, Convergence and Boundedness of a nonlinear difference equation with multiple delay, *Vietnam Journal of Mathematics* 36 (2008) 151.