On the set of periods for periodic solusions of some linear differential equations on the multidimensional sphere $Sⁿ$

Dang Khanh Hoi*

Hoa Binh University, 216 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

Received 3 August 2009

Abstract. The problem about periodic solutions for the family of linear differential equation

$$
Lu \equiv \left(\frac{\partial}{i\partial t} - a\Delta\right)u(x,t) = \nu G(u-f)
$$

is considered on the multidimensional sphere $x \in S^n$ under the periodicity condition $u|_{t=0} =$ $u|_{t=b}$ and $\int_{S^n} u(x,t) dx = 0$.

Here *a* is given real, *v* is a fixed complex number, $Gu(x, t)$ is a linear integral operator, and Δ is the Laplace operator on S^n . It is shown that the set of parameters (ν, b) for which the above problem admits a unique solution is a measurable set of full measure in $\mathbb{C} \times \mathbb{R}^+$.

This work further develops part of the authors' result in $[1, 2]$, on the problem on the periodic solution to the equation $(L - \lambda)u = \nu G(u - f)$. Here L is Schrödinger operator on sphere $Sⁿ$ and λ belongs to the spectrum of L. Particularly, the authors consider the case that λ is an eigenvalue of L (the case which can be always converted to the case $\lambda = 0$). It is shown that the main results are all right (but) on the complement of eigenspace of λ in the domain of L.

1. We consider the problem on periodic solutions for the nonlocal Schrödinger type equation

$$
\left(\frac{1}{i}\frac{\partial}{\partial t}-a\Delta\right)u(x,t)=\nu G(u-f),\qquad \qquad (1)
$$

with these conditions:

$$
u|_{t=0} = u|_{t=b}; \quad \int_{S^n} u(x,t)dx = 0.
$$
 (2)

Here $u(x, t)$ - is a complex function on $S^n \times [0, b]$, S^n - is the multidimensional sphere, $n \geq 2$; $a \neq 0$, ν - are given complex numbers, $f(x, t)$ - is a given function. The change of variables $t = b\tau$ reduces our problem to a problem with a fixed period, but with a new equation in which the coefficient of the τ - derivative is equal to $\frac{1}{k}$:

$$
\left(\frac{1}{i}\frac{\partial}{b\partial\tau}-a\Delta\right)u(x,b\tau)=\nu G(u(x,b\tau)-f(x,b\tau)).
$$

2. Thus, problem (1), (2) turns into the problem on periodic solution of the equation

$$
Lu \equiv \left(\frac{1}{i}\frac{\partial}{\partial t} - a\Delta\right)u(x,t) = \nu G(u(x,t) - f(x,t)),\tag{3}
$$

^{*} E-mail. dangkhanhhoi@yahoo.com

with the following conditions:

$$
u|_{t=0} = u|_{t=1}, \quad \int_{S^n} u(x,t)dx = 0. \tag{4}
$$

Here $Gu(x, t) = \int_{S^n} g(x, y)u(y, t)dy$ (dy is the Lebesgue-Hausdorff measure on the sphere S^n) is an integral operator on the space $L_2(S^n \times [0, 1])$ with smooth kernel $g(x, y)$ defined on $S^n \times S^n$ such that

$$
\int_{S^n} g(x, y) dx = 0 \tag{5}
$$

for all y in S^n .

The differential operation $\frac{1}{i} \frac{\partial}{\partial \partial t} - a\Delta$ is assumed to be defined for the functions $u(x, t) \in C^{\infty}(S^n \times [0, 1])$ such that $u|_{t=0} = |u|_{t=1}$ and with the condition $\int_{S^n} u(x, t) dx = 0$. Let L - denote the closure of this operation $\frac{1}{i} \frac{\partial}{\partial \partial t} - a\Delta$ in $\mathcal{H} = L_2(S^n \times [0, 1])$. So an element $u \in \mathcal{H}$ belongs to the domain $\mathcal{D}(L)$ of $L = \frac{1}{i} \frac{\partial}{\partial \partial t} - a\Delta$, if and only if there is a sequence $\{u_j\} \subset C^\infty(S$ $u_j|_{t=0} = u_j|_{t=1}$ and $\int_{S^n} u_j dx = 0$, such that $\lim u_j = u$, $\lim Lu_j = Lu$ in H. Let \mathcal{H}_0 is a subspace of space $L_2(S^n \times [0,1]),$

$$
\mathcal{H}_0 = \{u(x,t) \in L_2(S^n \times [0,1]) \mid \int_{S^n} u(x,t) dx = 0\}.
$$

It is well known that the eigenvalues of the Laplace operator Δ on the sphere $Sⁿ$ are of the form $-k(k+n-1)$, $k \in \mathbb{Z}$, $k \ge 0$ and that Δ admits the corresponding orthonormal basis of eigenfunction $w_k(x) \in C^{\infty}(S^n)$ (see, e.g [3]).

Lemma 1. The functions $e_{km}(x,t) = e^{i2\pi mt}w_k(x)$, $k, m \in \mathbb{Z}$, $k > 0$ are eigenfunctions of the operator L in the space \mathcal{H}_0 that correspond to the eigenvalues

$$
\lambda_{km} = \frac{2m\pi}{b} + ak(k+n-1) = \frac{2m\pi}{b} + \lambda_k \tag{6}
$$

These functions form an orthonormal basis in \mathcal{H}_0 . The domain of L is given by the formula

$$
\mathcal{D}(L) = \{u = \sum_{m,k \in \mathbb{R}, k>0} u_{km} e_{km} + \sum |\lambda_{km} u_{km}|^2 < \infty, \sum |u_{km}|^2 < \infty\}
$$

The spectrum $\sigma(L)$ in the closure of the set $\{\lambda_{km}\}.$ Lemma 2.

$$
||G||^2 \le M_0^2 = \int_{S^n} \int_{S^n} |g(x, y)|^2 dx dy.
$$

Proof. We have

$$
|Gu(x,t)|^2 = |\int_{S^n} g(x,y)u(y,t) dy|^2 \le \int_{S^n} |g(x,y)|^2 dy \int_{S^n} |u(y,t)|^2 dy
$$

$$
||Gu(x,t)||^2 = \int_0^1 \int_{S^n} |Gu(x,t)|^2 dx dt \le
$$

$$
\int_0^1 \int_{S^n} \left(\int_{S^n} |g(x,y)|^2 dy \int_{S^n} |u(y,t)|^2 dy \right) dx dt
$$

$$
||Gu(x,t)||^{2} \leq \int_{S^{n}} \int_{S^{n}} |g(x,y)|^{2} dx dy \int_{S^{n}} \int_{0}^{1} |u(y,t)|^{2} dy dt = M_{0}^{2} ||u||^{2}
$$

$$
||G|| \leq M_{0}.
$$

The lemma is proved.

We note that the Laplace operator is formally selfadjoint relative to the sealar product (u, v) $\int_{S^n} u(x)v(x)dx$ on the space $C^{\infty}(S^n)$. The product $\Delta_x \circ G = \Delta_x G$ coincides with the integral operator with the kernel $\Delta_{x}g(x, y)$. Let the function $\Delta_{x}g(x, y)$ be continuous on $S^{n} \times S^{n}$. We put $M = \max{\{||\Delta_x G||, ||G||\}}.$

Lemma 3. Let $v = Gu = \sum_{m,k \in \{k\geq 0\}} v_{km} e_{km}$, then

$$
|v_{km}|^2 = \frac{|\alpha_{km}|^2}{(k(k+n-1))^2} \le \frac{M^2||u||^2}{(k(k+n-1))^2},\tag{7}
$$

where $\alpha_{km} = \langle \Delta_x Gu, e_{km} \rangle$, and $\sum |\alpha_{km}|^2 \leq M^2 ||u||^2$. *Proof.* Since the Laplace operator is selfadjoint, for $k > 0$ we have

$$
\alpha_{km} = \langle \Delta_x Gu, e_{km} \rangle = \langle Gu, \Delta_x e_{km}(x, t) \rangle = \langle Gu, -k(k+n-1)e_{km}(x, t) \rangle
$$

$$
\alpha_{km} = -k(k+n-1)\langle Gu, e_{km}(x, t) \rangle = -k(k+n-1)v_{km}.
$$

It follows that

$$
|v_{km}|^2 = \frac{|\alpha_{km}|^2}{(k(k+n-1))^2}.
$$

By the Parseval identity, we have $\sum |\alpha_{km}|^2 = ||\Delta_x Gu||^2 \le M^2 ||u||^2$, whence

$$
|v_{km}|^2 \leq \frac{M^2 ||u||^2}{(k(k+n-1))^2}.
$$

The lemma is proved.

We assume that a is a real number. Then by Lemma 1, the spectrum $\sigma(L)$ lies on the real axis. Most typical and interesting is the case where the number $ab/(2\pi)$ is irrational. In this case, $0 \neq \lambda_{km} \forall k,m \in \mathbb{Z}, k > 0$ and the H.Weyl theorem (see, e.g., [4]), says that, in this case, the set of the numbers λ_{km} is everywhere dense on R and $\sigma(L) = \mathbb{R}$. Then in the subspace \mathcal{H}_0 the inverse operator L^{-1} is well defined, but unbounded. The expression for this inverse operator involves small denominators.

$$
L^{-1}v(x,t) = \sum_{k=m} \frac{v_{km}}{\lambda_{km}} e_{km}, \qquad (8)
$$

where v_{km} is the Fourier coefficient of the series

$$
v(x,t)=\sum_{k,m\,\in\,\,,k>0}v_{km}e_{km}.
$$

For positive numbers σ and C, let $A_{\sigma}(C)$ denote the set of all positive b such that

$$
|\lambda_{km}| \ge \frac{C}{k^{1+\sigma}}.\tag{9}
$$

for all $m, k \in \mathbb{Z}, k > 0$.

This definition shows that the set $A_{\sigma}(C)$ extends as C reduces and as σ grows. Therefore, in what follows, to prove that such a set or its part is nonempty, we require that $C > 0$ be sufficiently

small and σ sufficiently large. Let A_{σ} denote the union of the sets $A_{\sigma}(C)$ over all $C > 0$. If inequality (9) is fulfilled for some b and all m, k, then it is fulfilled for $m = 0$; this provides a condition necessary for the nonemptiness of $A_{\sigma}(C)$:

$$
C \le k^{1+\sigma} |ak(k+n-1)| \ \forall \ k > 0. \tag{10}
$$

We put $d = min_{k \in Z, k > 0} k^{1+\sigma} |ak(k + n - 1)| > 0$.

Theorem 1. The sets $A_{\sigma}(C)$, A_{σ} are Borel. The set A_{σ} has full measure, i.e., its complement to the half-line \mathbb{R}^+ is of zero measure.

Proof. Obviously, the sets $A_{\sigma}(C)$ are closed in \mathbb{R}^+ . The set $A_{\sigma} = \bigcup_{n=1}^{\infty} A_{\sigma}(1/r)$ - is Borel, being a

countable union of closed sets. We show that A_{σ} has full measure in \mathbb{R}^+ . Suppose $b, l > 0, C \leq \frac{d}{2}$. we consider the complement $(0, l) \setminus A_{\sigma}(C)$. This set consists of all positive numbers b, for which there exist m, k , such that

$$
|\lambda_{km}| < \frac{C}{k^{1+\sigma}}.\tag{11}
$$

Solving this inequality for b, we see that, for m, k fixed, the number b form an interval $I_{k,m}$ $(m\alpha_k, m\beta_k)$, where $m = 1, 2, 3, ...,$

$$
\alpha_k = \frac{2\pi}{|ak(k+n-1)| + \frac{C}{k^{1+\sigma}}}, \ \beta_k = \frac{2\pi}{|ak(k+n-1)| - \frac{C}{k^{1+\sigma}}}.
$$

The length of $I_{k,m}$ is $m\delta_k$, with

$$
\delta_k = \frac{4\pi C k^{-1-\sigma}}{|ak(k+n-1)|^2 - C^2 k^{-2-2\sigma}}.
$$

Since $C \leq \frac{d}{2}$ by assumption, we have

$$
\delta_k \le \frac{16\pi C}{3k^{1+\sigma}|ak(k+n-1)|^2}.\tag{12}
$$

For k fixed and m varying, there are only finitely many of intervals I_{km} that intersect the given segment $(0, l)$. Such intervals arise for the values of $m = 1, 2, \ldots$, satisfying $m\alpha_k < l$, i.e.,

$$
0 < m < \frac{l}{2\pi} \left(|ak(k+n-1)| + Ck^{-1-\sigma} \right).
$$

Since $Ck^{-1-\sigma} \leq \frac{1}{2}|ak(k+n-1)|$, we can write simpler restrictions on m:

$$
0 < m < \frac{l}{2\pi} \frac{3}{2} |ak(k+n-1)| < \frac{l}{\pi} |ak(k+n-1)|. \tag{13}
$$

The measure of the intervals indicated (for k fixed) is dominated by $\delta_k \overline{S}_k$, where $\overline{S}_k = \overline{S}_k(l)$ is the sum of all integers m satisfying (13). Summing an arithmetic progression, we obtain

$$
\tilde{S}_k \le \frac{l}{2\pi^2} |ak(k+n-1)| \{ l | ak(k+n-1) | + \pi \}.
$$
\n(14)

Passing to the union of the intervals in question over k and m , and using (12), we see that

$$
\mu((0,l)\backslash A_{\sigma}(C))\leq \sum_{k=0}^{\infty}\delta_{k}\tilde{S}_{k}\leq CS(l),
$$

where

$$
S = S(l) = \sum_{k=0}^{\infty} \frac{8l\{l|ak(k+n-1)|+\pi\}}{3\pi k^{1+\sigma}|ak(k+n-1)|}.
$$

Observe that the quantity

$$
\frac{l|ak(k+n-1)|+\pi}{\pi|ak(k+n-1)|}
$$

is dominated by a constant D ; therefore,

$$
S(l) \le \frac{8}{3}lD\sum_{k=1}^{\infty}\frac{1}{k^{1+\sigma}} < \infty.
$$

We have

$$
\mu((0,l)\setminus A_{\sigma})\leq \mu((0,l)\setminus A_{\sigma}(C))\leq CS(l)\quad\forall C>0.
$$

It follows that $\mu((0, l) \setminus A_{\sigma}) = 0 \quad \forall l > 0$. Thus, $\mu((0, \infty) \setminus A_{\sigma}) = 0$ and A_{σ} - has full measure. The theorem is proved.

Theorem 2. Suppose $g(x, y)$ is a function defined on $S^n \times S^n$ such that the function $\Delta_x g(x, y)$ is continuous on $S^n \times S^n$ and $\int_{S^n} g(x, y) dx = 0$ $\forall y \in S^n$. Let $0 < \sigma < 1$, and let $b \in A_{\sigma}(C)$. Then in the space \mathcal{H}_0 the inverse operator L^{-1} is well defined, and the operator $L^{-1} \circ G$ is compact.

Proof. Since $b \in A_{\sigma}(C)$, we have $\lambda_{km} \neq 0 \quad \forall k, m \in \mathbb{Z}, k > 0$ so that L^{-1} is well defined and $k^{2+2\sigma}$ looks like the expression in (8). Observe that $\lim_{k \to \infty} \frac{k^{2+2\sigma}}{(k(k+n-1))^2} = 0$ as $k \to \infty$. Therefore, given $\frac{k^{2+2\sigma}}{k^{2+2\sigma}} \leq \frac{(\varepsilon C)^2}{M^2}$ for all $k > k_0$. We write

$$
L^{-1}v(x,t) = Q_{k_{01}}v + Q_{k_{02}}v, \quad v = Gu,
$$

where

$$
Q_{k_{01}}v = \sum_{0 < k \leq k_0} \frac{v_{km}}{\lambda_{km}} e_{km}, \quad Q_{k_02}v = \sum_{k > k_0} \frac{v_{km}}{\lambda_{km}} e_{km}
$$

For the operator $Q_{k_{01}}$ we have

$$
||Q_{k_{01}}v||^{2} = \sum_{0 < k \leq k_{0}} \frac{|v_{km}|^{2}}{|\lambda_{km}|^{2}}
$$

Observe that if $0 < k \leq k_0$, then

$$
\lim \frac{1}{\left|\frac{2m\pi}{b} + ak(k+n-1)\right|^2} = 0
$$

as $|m| \to \infty$. Therefore, the quantity $\frac{1}{\left|\frac{2m\pi}{h} + ak(k+n-1)\right|^2}$ is dominated by a constant $C(k_0)$.

Then

$$
||Q_{k_01}v||^2 \le \sum |v_{km}|^2 C(k_0) \le C(k_0)||v||^2,
$$

which means that $Q_{k_{01}}$ is a bounded operator.

Consider the operator $Q_{k_{02}} \circ G$. By Lemma 3 and (9), we have

$$
||Q_{k_{02}}v||^2 = ||Q_{k_{02}} \circ Gu||^2 = \sum_{k>k_0} \frac{|v_{km}|^2}{|\lambda_{km}|^2} \le
$$

$$
\sum_{k>k_0} \frac{\alpha_{km}^2}{(k(k+n-1))^2} (\frac{1}{C})^2 k^{2+2\sigma} \leq (\frac{1}{C})^2 (\frac{\varepsilon C}{M})^2 \sum_{k>k_0} |\alpha_{km}|^2 \leq \varepsilon^2 ||u||^2.
$$

Consequently, $||Q_{k_{02}} \circ G|| \leq \varepsilon$.

Since G is compact and $Q_{k_{01}}$ is bounded, $Q_{k_{01}} \circ G$ is compact. Next, we have

 $||L^{-1} \circ G - Q_{k_{01}} \circ G|| = ||Q_{k_{02}} \circ G|| < \varepsilon.$

Thus, we see that the operator $L^{-1} \circ G$ is the limit of sequence of compact operators. Therefore, it is compact itself. The theorem is proved.

We denote $K = K_b = L^{-1} \circ G$.

Theorem 3. Suppose $b \in A_{\sigma}(C)$. Then problem (1),(2) admits a unique periodic solution with period b for all $\nu \in \mathbb{C}$, except, possibly, an at most countable discrete set of values of ν . *Proof.* Equation (1) reduces to

$$
(L^{-1} \circ G - \frac{1}{\nu})u = L^{-1} \circ G(f).
$$

We write $L^{-1} \circ G - \frac{1}{\nu} = K - \frac{1}{\nu}$.
Since $K = L^{-1} \circ G$ is a compact operator, its spectrum $\sigma(K)$ is at most countable, and the limit point of $\sigma(K)$ (if any) can only be zero. Therefore, the set $S = {\nu \neq 0 \mid \frac{1}{\nu} \in \sigma(K)}$ is at most countable and discrete, and for all $\nu \neq 0$, $\nu \notin S$ the operator $(K - \frac{1}{\mu})$ is invertible, i.e., equation (1) is uniquely solvable. The theorem is proved.

We pass to the question about the solvability of problem (1), (2) for fixed ν . We need to study the structure of the set $E \subset \mathbb{C} \times \mathbb{R}^+$, that consists of all pairs (ν, b) , such that $\nu \neq 0$ and $\frac{1}{\nu} \notin \sigma(K_b)$. where $K_b = L^{-1} \circ G$.

Theorem 4. E is a measurable set of full measure in $\mathbb{C} \times \mathbb{R}^+$.

For the proof, we need several auxiliary statements.

Lemma 4. For any $\varepsilon > 0$ there exists an integer k_0 such that $||K_b - \widetilde{K_b}|| < \varepsilon$ for all $b \in A_\sigma(\frac{1}{\sigma}), 0 <$ σ < 1, where $r = 1, 2, ...,$

$$
K_b u = L_b^{-1} v = \sum \frac{v_{km}}{\lambda_{km}(b)} e_{km}, \quad \widetilde{K_b} u = \sum_{0 < k \le k_0} \frac{v_{km}}{\lambda_{km}(b)} e_{km}
$$

Proof. Observe that for any $\varepsilon > 0$ there is an integer k_0 such that $\frac{k^{2+2\sigma}}{(k(k+n-1))^2} \leq (\frac{\varepsilon}{rM})^2$ for all $k > k_0$, $0 < \sigma < 1$. We have

$$
(K_b - \widetilde{K_b})u = K_{k_0b}u = \sum_{k > k_0} \frac{v_{km}}{\lambda_{km}(b)} e_{km}
$$

$$
||(K_b - \widetilde{K}_b)u||^2 = ||K_{k_0b}u||^2 = \sum_{k > k_0} |\frac{v_{km}}{\lambda_{km}(b)}|^2 \le \sum_{k > k_0} \frac{r^2 \alpha_{km}^2 k^{2+2\sigma}}{(k(k+n-1))^2} \le
$$

$$
r^2 (\frac{\varepsilon}{rM})^2 \sum_{k > k_0} |\alpha_{km}|^2 \le r^2 (\frac{\varepsilon}{rM})^2 M^2 ||u||^2 = \varepsilon^2 ||u||^2.
$$

Thus $||K_b - \widetilde{K_b}|| = ||K_{k_0b}|| < \varepsilon$ as required.

Lemma 5. The operator-valued function $b \to K_b$ is continuous for $b \in A_\sigma(\frac{1}{r})$.

Proof. Suppose $b, b + \Delta b \in A_{\sigma}(\frac{1}{r})$ and $\varepsilon > 0$. By Lemma 4 there exists an integer k_0 (independent of $b, b + \Delta b$) such that $||K_b - \widetilde{K_b}|| = ||K_{k_0b}|| < \varepsilon$ and $||K_{b+\Delta b} - \widetilde{K_{b+\Delta b}}|| = ||K_{k_0(b+\Delta b)}|| < \varepsilon$. Next,

$$
K_{b+\Delta b}-K_b=(\widetilde{K_{b+\Delta b}}+K_{k_0(b+\Delta b)})-(\widetilde{K}_b+K_{k_0b}),
$$

whence we obtain

$$
||K_{b+\Delta b}-K_b|| \leq ||\widetilde{\Lambda_{b+\Delta b}}-\widetilde{K_b}||+||K_{k_0(b+\Delta b)}||+||K_{k_0b}||.
$$

Consider the operators $\widetilde{K_{b+\Delta b}}, \widetilde{K_b}$. We have

$$
(\widetilde{K_{b+\Delta b}} - \widetilde{K_b})u = \sum_{0 < k \le k_0} \left(\frac{1}{\lambda_{km}(b+\Delta b)} - \frac{1}{\lambda_{km}(b)}\right)v_{km}e_{km}
$$
\n
$$
||\widetilde{K_b}u - \widetilde{K_{b+\Delta b}}u||^2 = \frac{|\Delta b|^2}{|b(b+\Delta b)|^2} \sum_{1 \le k \le k_0} \frac{|v_{km}|^2}{|\lambda_{km}(b+\Delta b)|^2} \frac{4m^2\pi^2}{|\lambda_{km}(b)|^2}.
$$
\n
$$
(15)
$$

If $b + \Delta b \in A_{\sigma}(\frac{1}{r}), \quad 1 \leq k \leq k_0, \quad 0 < \sigma < 1$, then

$$
\frac{|v_{km}|^2}{|\lambda_{km}(b+\Delta b)|^2} \le |v_{km}|^2 r^2 k^{2+2\sigma} \le |v_{\cdot 0}|^4 |v_{km}|^2.
$$

The relation $\lim_{m\to\infty} \frac{4m^2\pi^2}{|\lambda_{km}(b)|^2} = b^2$ and the condition $1 \le k \le k_0$ imply that the quantity $\frac{4m^2\pi^2}{|\lambda_{km}(b)|^2} =$ $\frac{4m^2\pi^2}{\left|\frac{2m\pi}{b}+ak(k+n-1)\right|^2}$ is dominated by a constant $C(k_0)$ depending on k_0 . Therefore

$$
\frac{|\Delta b|^2}{|b(b+\Delta b)|^2} \sum_{1 < k \le k_0} \frac{|v_{km}|^2}{|\lambda_{km}(b+\Delta b)|^2} \frac{4m^2\pi^2}{|\lambda_{km}(b)|^2} \le
$$
\n
$$
\frac{|\Delta b|^2}{|b(b+\Delta b)|^2} \sum_{1 \le k \le k_0} r^2 k_0^{-4} C(k_0) |v_{km}|^2 \le
$$
\n
$$
\frac{|\Delta b|^2}{|b(b+\Delta b)|^2} r^2 k_0^{-4} C(k_0) \sum_{1 \le k \le k_0} |v_{km}|^2.
$$

$$
\sum_{1 \le k \le k_0} |v_{km}|^2 \le ||v||^2 \le M^2 ||u||^2
$$

Since

we arrive at the estimate

$$
||\widetilde{K_{b+\Delta b}} - \widetilde{K_b}||^2 \le \frac{|\Delta b|^2}{|b(b+\Delta b)|^2} M^2 r^2 k_0^{-4} C(k_0).
$$

We choose Δb so as to satisfy the condition

$$
\frac{|\Delta b|^2}{|b(b+\Delta b)|^2}M^2r^2k_0^{-4}C(k_0)<\varepsilon.
$$

Then $||K_{b+\Delta b} - K_b|| < 3\varepsilon$. This shows that the operator-valued function $b \to K_b$ is continuous or $A_{\sigma}(\frac{1}{r})$. The Lemma is proved.

Lemma 6. The spectrum $\sigma(K)$ of the compact operator K depends continuously on K in the space *Comp*(H_0) of compact operators on H_0 , in the sense that for any ε there exists $\delta > 0$ such that for *all compact (and even bounded) operators B with* $\|B - K\| < \delta$ we have

$$
\sigma(B) \subset \sigma(K) + V_{\varepsilon}(0), \quad \sigma(K) \subset \sigma(B) + V_{\varepsilon}(0).
$$
 (16)

Here $V_{\varepsilon}(0) = {\lambda \in \mathbb{C} \mid |\lambda| < \varepsilon}$ *is the* ε *-neighborhood of the point* 0 *in* \mathbb{C} .

Proof. Let K be a compact operator; we fix $\epsilon > 0$. The structure of the spectrum of a compact operator shows that there exists $\varepsilon_1 < \varepsilon/2$ such that $\varepsilon_1 \neq |\lambda|$ for all $\lambda \in \sigma(K)$. Let $S = {\lambda_1, \ldots, \lambda_k}$ be the set of all spectrum points λ with $|\lambda| > \varepsilon_1$ and let $V = \bigcup_{\varepsilon \in \Lambda} V_{\varepsilon_1}(\lambda)$. Then *V* is neighborhood of $\lambda \in S \cup \{0\}$

 $\sigma(K)$ and $V \subset \sigma(K) + V_{\epsilon}(0)$. By the well-known property of spectra (see, e.g., [5], Theorem 10.20) there exists $\delta > 0$ such that $\sigma(B) \subset V$ for any bounded operator *B* with $\|B - K\| < \delta$. Moreover (see, e.g., [5], p.293, Exercise 20), the number $\delta > 0$ can be chosen so that $\sigma(B) \cap V_{\epsilon_1}(\lambda) \neq \emptyset$ $\forall \lambda \in S \cup \{0\}$. Then for all bounded operators *B* with $||B - K|| < \delta$ the required inclusions $\sigma(K) \subset \sigma(B) + V_{2\epsilon_1}(0) \subset \sigma(B) + V_{\epsilon}(0)$ and $\sigma(B) \subset V \subset \sigma(K) + V_{\epsilon}(0)$ are fulfilled. The lemma is proved.

It is easy to deduce the following statement from Lemma 6.

Proposition 1. *The function* $\rho(\lambda, K) = dist(\lambda, \sigma(K))$ *is continuous on* $\mathbb{C} \times Comp(\mathcal{H}_0)$.

Proof. Suppose $\lambda \in \mathbb{C}$, $K \in Comp(\mathcal{H}_0)$ and $\varepsilon > 0$. By Lemma 6, there exists $\delta > 0$ such that for any operator *H* lying in the δ -neighborhood of *K*, $||H - K|| < \delta$, the inclusions (16) are fulfilled; these inclusions directly imply the estimate $|\rho(\lambda, K) - \rho(\lambda, H)| < \varepsilon$. Then for all $\mu \in \mathbb{C}$ with $|\mu - \lambda| < \varepsilon$ and all H with $||H - K|| < \delta$ we have

$$
|\rho(\mu, K) - \rho(\lambda, H)| \le |\rho(\mu, K) - \rho(\lambda, K)| + |\rho(\lambda, K) - \rho(\lambda, H)| < |\mu - \lambda| + \varepsilon < 2\varepsilon,
$$

Since $\epsilon > 0$ is arbitrary, the function $\rho(\lambda, K)$ is continuous. The proposition is proved.

Combining Proposition 1 and Lemma 5 we obtain the following fact.

Corollary 1. *The function* $\rho(\lambda, b) = dist(\lambda, \sigma(K_b))$ is continuous on $(\lambda, b) \in \mathbb{C} \times A_{\sigma} (\frac{1}{n}).$

Now we arc readv to prove Theorem 4.

Proof of Theorem 4. By Corollary 1, the function $\rho(1/\nu, b)$ is continuous with respect to the variable $(\nu, b) \in (\mathbb{C} \setminus \{0\}) \times A_{\sigma}(\frac{1}{r}).$ Consequently, the set

$$
B_r=\{(\nu,b)\quad|\quad\rho(1/\nu,b)\neq 0,\quad b\in A_\sigma(\frac{1}{r})\}
$$

is measurable, and so is the set $B = \bigcup_r B_r$. Clearly, $B \subset E$ and $E = B \cup B_0$, where $B_0 = E \setminus B$. Obviously, B_0 lies in the set $\mathbb{C} \times (\mathbb{R}^+ \setminus A_\sigma)$ of zero measure (recall that, by Theorem 1, A_σ has full measure in \mathbb{R}^+). Since the Lebesgue measure is complete, B_0 is measurable. Thus, the set E is measurable, being the union of two measurable sets. Next, by Theorem 3, for $b \in A_{\sigma}$ the section $E^b = \{ \nu \in \mathbb{C} \mid (\nu, b) \in E \}$ has full measure, because its complement $\{1/\nu \mid \nu \in \sigma(K_b)\}$ is at most countable. Therefore, the set E is of full plane Lebesgue measure. The Theorem is proved.

The following important statement is a consequence of Theorem 4.

Corollary 2. For a.e. $\nu \in \mathbb{C}$, problem (1), (2) has a unique periodic solution with almost every period $b \in \mathbb{R}^+$.

Proof. Since the set E is measurable and has full measure, for a.e. $\nu \in \mathbb{C}$ the section $E_{\nu} = \{b \in$ \mathbb{R}^+ $(\psi, b) \in E$ = $\{b \in \mathbb{R}^+$ $|1/\nu \notin \sigma(K_b)\}\$ has full measure, and for such b's problem (1), (2) has unique periodic solution with period b . The Corollary is proved.

References

- [1] A.B.Antonevich, Dang Khanh Hoi, On the set of periods for periodic solutions of model quasilinear differential equations, Differ. Uravn. T.42, No 8 (2006) 1041.
- [2] Dang Khanh Hoi, On the structure of the set of periods for periodic solutions of some linear integro-differential equtioans on the multidimentional sphere, Algebra and Analysis, Tom 18, No 4 (2006) 83. (Russian)
- [3] M.A. Subin, Pseudodifferential operators and spectral theory, "Nauka," Moscow, 1978.
- [4] I.P. Korneld, Ya.G. Sinai, S.V. Fomin, Ergodic theory, "Nauka," Moscow, 1980.
- [5] W. Rudin, *Functional analysis*, 2nd ed., McGraw-Hill, Inc., New York, 1991.