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Abstraci. The problem about periodic solutions for the family of linear differential equation

\
Lu= (i —al ] u(z,t) = vG(u— f)
10t /
1s considered on the multidimensional sphere € S™ under the periodicity condition w|;—¢ =
uly=s and [, u(x, t)dr = 0.
Here « 1s given real, 1/ is a fixed complex number, Gu(x,t) is a linear integral operator,
and 2\ is the Laplace operator on S™. It is shown that the set of parameters {v, b) for which

the above problem admits a unique solution is a measurable set of full measure in C x R™.

This work further develops part of the authors’ result in [1, 2], on the problem on the periodic
solution to the equation (L — A)u = v((u — f). Here L is Schrodinger operator on sphere S™ and A
belongs to the spectrum of L. Particularly, the authors consider the case that A is an eigenvalue of L
( the case which can be always converted to the case A = 0 ). It is shown that the main results are all
right (but) on the complement of eigenspace of A in the domain of L.

1. We cansuder the prohlem on perindic solutions for the nonlocal Schridinger type cquation

1 &
(;& uA) u(x, t) = vG(u- f), (1)
with these conditions : g
wlg—g = ulp=p; / u(x, Hdr = 0. (2)

Here ulr,t) - is a complex function on S™ x [0,b], S™ - is the multidimensional sphere, n > 2;
a £ 0, v - are given complex numbers, f(x,t) - is a given function. The change of variables t = br
reduces our problem to a problem with a fixed period, but with a new equation in which the coefficient

of the 7— derivative is equal to ok
)

a N\
(% biT aA) u(z, br) = vG(ulz,br) — f(z,b7)).

2, Thus, problem (1), (2) turns into the problem on periodic solution of the equation

1 3 N
Lu = (—i —alA ) u(z, t) = vG(u(z, t) — f(z,t)), (3)
\ [ b()t /
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with the following conditions:

r

uly=0 = ulp=1, j u(zx, t)dr — 0. (1)

r
Here Gu(zx,t) - j gz, y)uly, t)dy (dy is the Lebesgue-tHausdorft measure on the sphere 5) 1s an

integral operator on the space Ly(S™ x [0, 1]) with smooth kemel ¢(r, y) defined on S™ x S such
that

/ glx,y)dr =0 (5)
J S
for all y in S™.
1
The differential operation —— — aA is assumed to be defined for the functions ulx,t) €

C>=(S" x [0,1]) such that u|,—g ul,_l and with the condition [, u(x, t)dr = 0. Let L - denote

: .10 :
the closure of this operation Toa ad in H = Ly(S™ x [0,1]). So an clement u « H belongs to
i

) ‘
the domain D(L) of L = —— —aA , if and only if there is a sequence {u,} € C™(S™ x [0,1])
t;li=0 = U= and ] u;jdz = 0, such that limw; = u, lim Lu, = Lu in H. Let Hy is a subspace
of space Lo(S™ x (0, 1),

Ho = {ulx.1) € La(S™ x [0.1]) | [ (x.t)ydr — 0}

Jgn

It is well known that the cigenvalues of the Laplace operator A on the sphere S™ are of the form
—k(k+n—-1),k €Z, k>0 and that A admits the corresponding orthonormal basis of cigenfunctio
wi(z) € C°(S™)(see, e.g [3)).
Lemma 1. The functions e, (x. 1) = r-"")"””’u'k(.r). k,m € Z, k > 0 are eigenfunctions of the
operator L in the space Hg that correspond to the eigenvalues

Ak = iz tak(k+n—1) T
b b

These functions form an orthonormal basis in Ho. The domain of L is given by the formula

DIL)={u= > wmkm | Y[ Memttkm|* <00, [ugm|” < 0}

mke k>0

+ /\k (G.‘

The spectrum o (L) in the closure of the set { A}
Lemma 2.

IIGI|* < M{ —/ (z,y)|?dz dy.
n Jgn
Proof. We have

Guta P | [ glayutu Dl < [ latwyidy [ juty.oray
_ ..

J S

Gula, O] = Jﬁ | ] (Gule, )t <

[Ol ]" (/gn lg(x, y)|*dy /Sn ]u(y,t)|2dy) do dt
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|
||Gula, )| < / / ly(z, y)lzdrdy/ / lu(y, t)|*dydt = ME||u|)?
A("7‘1 gn agn 1]
|G| < Mo.

The lemma is proved.

We note that the Laplace operator is formally selfadjoint relative to the sealar product (u,v) =

/ w(x)e(x)da on the space ("(S™). The product A, o G = A,G coincides with the integral

Jsn
operator with the kernel A,qg(x,y). Let the function A,¢(x.v) be continuous on §™ x 5™. We put
M = max{[|A, G|, ]G]}

-

Lemma 3. Let o Gu — Y. 1o x50 Ckm€hm, then
el o WEUIN m
(k(k+n-=1))* " (k(k4+n-1))°

whore oy, A Gu, ), and Y laugn]® < M2||ul}?.
Proof. Since the Laplace operator is selfadjoint, for & > 0 we have

Qg = (AgGu, epn) = (Gu, Agegm(x, 1)) = (Gu, —k(k + n — 1)egm(x, t))
km = —k(k +n = 1) {(Gu, epmlz, t)) = —k(k + n — 1)vkm.

|"'L'm|2

It follows that

|f'k |'.,' . |aklu|2
" (k(k+n—1))%
By the Parseval identity, we have > |agn|? = [|A:Gul|? < M?||u|[?, whence
o M2 ||ul|?
Wi

T (k(k+n-1))%
he lemma is proved.

We assume that a 1s a real number. Then by Lemma 1, the spectrum (L) lies on the real
axis. Most typical and interesting is the case where the number ab/(27) is irrational. In this case,
0 # A Vh.om € Z,k > 0 and the H . Weyl theorem (see, e.g., [4]), says that, in this case, the set of

the numbers Ay, is everywhere dense on 2 and o(L) = R. Then in the subspace Hy the inverse

operator L ' is well defined , but unbounded. The expression for this inverse operator involves small
denominators.

L Yo(z,t) = Sﬂ Mekm, (8)
where vy, 1s the Fourier coefficient of the series
v(z, t) = Z Uk Ckm.
kme k>0
For positive numbers o and C, let A,(C) denote the set of all positive b such that

C
|/\km| > :{.‘] +a " (9)

forell m,ke Z, k > 0.
This definition shows that the set A,(C") extends as C reduces and as o grows. Therefore, in
what follows, to prove that such a set or its part is nonempty, we require that C > 0 be sufficiently
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small and o sufficiently large. et A, denote the union of the sets A, () over all (" > 0. If inequality
(9) is fulfilled for some b and all . &, then 1t 1s fulfilled for m = 0); this provides a condition necessary
for the nonemptiness of A,(C'):

C<k"ak(k+n—1) V>0 (10

We put d = minge zp-oh' 77 lak(k + n — 1) > 0.
Theorem 1. The sets A, (C), A, are Borel The set A, has full measure. ie.. its complement to the

half-line &7 is of zero measure.
o

Proof. Obviously, the sets A, (C') are closed in B". The set A, = U Ag(1/r) - is Borel. being a
r=1

countable union of closed sets. We show that 4, has full measure in &°. Suppose b, [ >0, C < ':

we consider the complement (0, 1)\ A,(C). This set consists of all positive numbers b, for which there

exist m, k, such that

f\k”il < r. 1 1 /

A.] +o
Solving this incquality for b, we see that, for m, k fixed, the number b form an interval Iy,
(mayg,m3y), wherem = 1,2.3, ...,
2r 2w
() - i .JJA P T

lak(k+n— 1)+ lak(k +n — 1)] - 1.1..+cr

,{I-l +a
The tength of Iy ,, is md;, with

4rCk=1-¢
lak(k +n —1)|2 = C2k—2-20"

8

: d
Since ' < = by assumption, we have

-

i 167nC
O < - .
Ik o fak(k + 1 — 1)]?

For k fixed and m varying, there are only finitely many of intervals [, that intersect the given segment
(0,1). Such intervals arise for the values of mn = 1, 2., satisfying may < [, 1.e.,

1 .
0<m< ~(lak(k+n—1)]+Ck™177).
aT

Since Ck 17 < _|ak(k + n — 1)|, we can write simpler restrictions on m :

i

| o—

[3 l ,
0<m< ——lak(k+n—-1)] < =|ak(k +n - 1)|. (13)
2m 2 T

The measure of the intervals indicated ( for & fixed ) is dominated by 6k5k, where Sy = k()
is the sum of all integers m satisfying (13). Summing an arithmetic progression, we obtain

| -

Si < —=|ak(k+n— D[{llak(k+n - 1)| + 7}. (14)

)

(3]
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Passing to the union of the intervals in question over A and m, and using (12), we see that

u((0,0\A44(C)) < Y &Sk < CS(1),
k=0
where

S = S(l) - ZSZ{llak(k+ n—1)|+n}

b 3rkl+elak(k + n—1)]

Obscrve that the quantity
lak(k+n—=1)+7
mlak(k + n - 1)
1s dominated bt 1 constant DJ; therefore,

o 8 e ]
S() < 3D ) s < 0.
k=1
We have
p((0,0) N Ag) < u((0,0)\ Ax(C)) < CS5(l) vC > 0.

[t follows that u((0,) "\ Ay;) =0 ¥l > 0. Thus,u((0,00) \ A5} = 0 and A,- has full measure. The
theorem 1s proved.
Theorem 2. Suppose g(x,y) is a function defined on S™ x S™ such that the function Arg(x,y) is
continuous on 8™ < S and [, g(x,y)de =0y € 8™ Let 0 <o < 1, and let b € A,(C). Then in
the space Hy the inverse operator L~ is well defined, and the operator L' o G is compact.
Proof. Since b ¢ A (), we have Mg,y # 0 Y k,m € Z, k > 0 so that L' is well defined and

j-2+20
looks like the expression in (8). Observe that limm COTEENE = (0 as k — 00. Therefore, given
Jo2+20 (EC}E

= > (}. we can find an integer &g > 0, such that

< for all & > ky. We write
Rkt 1)) = arr > Ko ”

L te(x,t) = Qroy v + Qrgpvy, v = G,

where

~ Ukm S Vem
(b)’"ui v S , Chrn Qk()?v = ) €km .-
km A'I:1rn
O<k<ky k>kq

, - |vkeml?
Qi vl*= > ..
| 1 | l/\k-rnl‘j

0<k<kg

For the operator (Jy,, we have

Observe that if 0 < k < kg, then

lim |2m7r =0

)

as |m| — oo. Therefore, the quantity 5 is dominated by a constant C(kg).
mm 9
|—‘b— +ak(k +n—1)|
Then
1Qro12lI* < ) [vanf*Cka) < C(ko)|[v][?,

which means that (Ji,, is a bounded operator.
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Consider the operator (Q,, © G. By Lemma 3 and (9), we have

L Ilkrr:
‘Akm|

)

II(JJ;,._.'“H:’ H(‘V)AOQ 0

k>kp
Z (lfm (_)2].2420/{_] }:lf_—(']iz l..,” J-'!f _3-{ 2
S (k(k+n—1))? =g’ ‘M el =5
:>ko k>kgy

Consequently, ||Qx,, 0 G|| < e.
Since G is compact and (), is bounded, (Jx,, ¢ G is compact. Next, we have

“L—l OG - Qko] OG“ — ||Q"\02 OG” < 3

Thus, we see that the operator L™ ! o G is the limit of sequence of compact operators. Therefore, it is
compact itself. The theorem is proved.

We denote K = K, — L 1 o G.
Theorem 3. Suppose b € A, (C'). Then problem (1),(2) admits a unique periodic solution with period
b for all v € C, except, possibly, an at most countable discrete sel of values of v.
Proof. Equation (1) reduces to
=1 - 1 \ -1 ¥
(Lo —=)u=L"7"oG(f).

v

. 1 ; 1
Wewrite L™ 'oG— — = K — —.
. V . t/ . - . =
Since K = L~ ! o G is a compact operator, its spectrum ¢ (/) is at most countable, and th

1
limit point of o( A") (if any ) can only be zero. Therefore, the set S = {v # 0| — € o(/ )} is at most
1’

countable and discrete, and for all v # 0, 1 ¢ § the operator (K — —) is invertible, i.e.. equation (1)
y
is uniquely solvable. The theorem is proved.
We pass to the question about the solvability of problem (1), (2) for fixed . We neced to study
: . . . , 1 i
the structure of the set £ C C x R*, that consists of all pairs (v, b), such that v # 0 and — ¢ a(IK).
v
where k), = L ' o (.
Theorem 4. F is a measurable set of full measure in C x R
For the proot, we nced several auxiliary statements.
. = ]
Lemma 4. For any € > 0 there exists an integer ko such that ||Kp — Kpl| < ¢ forallbe A,(-).0 <
.

o<1, wherer =1.2....,

N - -— Ui Ukm
1 ™m
KNyw =Ly v = E Clm ]\bu — E T35 Chkm-
f\km(h] /\I\nl b)

O<k<kg
L2+20 £ n
Proof. Observe that for any € > 0 there is an integer by such that ik +n = 1)) < (rf\[ )< for all
k> kg, 0<o <1 Wehave
- o " N\ Uk
Ky — K = Ky pu = o7
(Ko = ol = Ko = 2, 5,y o

k>ko
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2 2 2420
- o ) ” 9 x— Ukm 9 J r (IA,'“)‘I'
[[( K, — Ky &-‘- | F : !"— "S E = <
1'% LY A\ |. \A”} ”l ) \‘”n(h) oy -, [A_(k tn— l))}

g §:humFSrW—— M2 a2 = €2)u||.
>ko

U
Fhus ||y — K| = [| Wies|| < € as required.
Lemma S. The operator-valued function b — Ky is continuous for b € Aa(%).
Proof. Suppose b, b+ Ab € 40(}) and £ > 0. By Lemma 4 there exists an integer kg ( independent

of b.b+ Ab) such that ||y — K[| = Kpiasl| = | Kiywsan)| < €. Next,

Kyiao — Ky = (Koras + Kigprasy) — (Ko + Rige),
whence we obtain

[ Rbrap = Wl < [[Apras — Kol| + [[Kggran) [T+ [ K roll-

—

Consider the operators Iy, Ap, 14). We have

(Kpoab— Kp)u= Y ~ ) Ukm€km
OeFekq /\km(b + Ab) )\km(b)
~ —— 5 |Ab|? [Ukm|? dmn?m?
[ y - 4+ ) N o T R T T 15
1861 = Koy apul] [b(b+ Ab)|2 2 e (B + A2 [N (D)2 (15)

1<k<kgp

l ,
Ifb+ Abe A,(—), 1 <hk<kyg, 0<o<l,then
,.

|~"l\m|:—I . 1"* |._1’.IJ}.-'J,-'I)” - )'||"l!';\,, |)
|/\‘km(b + AI})‘J B = B '

. dmitn? , _ T

I'he relaton lim —IL = b7 and the condition 1 < k < ko tmply that the quantity i .
m 2\ I\Km r‘} I [f\l'm(h)]-

1
5= M———— is dominated by a constant C'(kg) depending on kg. Therefore
-i)h Fak(k +n—1)?

- din?n?

|
D <
blb+ AB)2 | 2= Do (b -+ AB)[2 Ao ()2

| AbJ? Z 2, 4 2
—_— F'—A‘[) ('(kll)li'krn"- S
b ADE | 2=

=k ' Clke) Y Tkl
|b(b+Ab)|3’ o C(ko) L |fk |

1<k<kq
Since

> el < Helf? < MP|julf?,

1<k <k
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we arrive at the estimate
| Ab|*

T Mtk C k).
b+ Apy2 TRt

||!\.fr- Ab — "\lh”ﬁ, ‘/_

We choose Ab so as to satisfy the condition
Ab?
ib(b -+ Ab)[?

Then || Kprap — Ayl < 32. This shows that the operator-valued function & — K is continuous on

APt Ch) < =,

Ay (—). The Lemma is proved.

Lemma 6. The spectrum o () of the compact operator K depends continuously on K in the space
Comp(Hg) of compact operators on Hy, in the sense that for any < there exists & > 0 such that for
all compact ( and even bounded ) operators B with || B — K| < § we have

g(B) C oK)+ V.(0), oK) Ca(3)+ V(0). (16)

Here V.(0) = {A € C | |\ < =} is the e-neighborhood of the point 0 in C.
Proof. Let I be a compact operator; we fix € > (. The structure of the spectrum of a compact operator

shows that there exists 1 < £/2 such that £, # |A] forall A € o(K). Let S = {X,.... Ax} be the
set of all spectrum points A with [A| > £, and let V" — U Ve, (A). Then V is neighborhood of
A€Su{0}

o{N)and V C o(K) + V.(0). By the well-known property of spectra ( see, e.g.,[5], Theorem 10.20)
there existc 4 > 0 such that o(3) C V for any bounded operator I3 with ||[3 — K| < 4. Morcover
(see, e.g., 5], p.293, Exercise 20), the number § > 0 can be chosen so that o(B) N V. (A\) # O
YA € SuU{0}. Then for all bounded operators B with |B — K| < 4 the required inclusions
a(l) Co(B)+ Ve (0)Co(B)+ Vi(0)and a(B) C V C a(K) + Vc(0) are fulfilled. The lemma
is proved.

It is casy to deduce the following statement from L.emma 6.
Proposition 1. The function p(A, K') = dist(A, o (K)) is continuous on C x Comp(Hy).
Proof. Suppose A € C, K € Comp('Hy) and € > 0. By Lemma 6, there exists § > () such that for any
operator f{ lying in the d-neighborhood of K| ||H — K'|| < 4, the inclusions (16) are fulfilled; these
inclusions directly imply the estimate |p(A, K') — p(A, H)| < . Then for all ;1 € C with [p — A < ¢
and all I7 with ||H — || < & we have

(e, K) = o0 H)|< (ol ) = (0 K|+ o0 K) = p(A, H)| < = Al + € < 2,
Since € > 0 is arbitrary, the function p(A, K') is continuous. The proposition is proved.
Combining Proposition | and LLemma 5 we obtain the following fact.
Corollary 1. The function p(A\,b) = dist(A, o (Ny)) is continuous on (X, b}y € C x Aa(%).

Now we are ready to prove Theorem 4.
Proof of. Theorem 4. By Corollary 1, the function p(1/v, b) is continuous with respect to the variable

(v.b) € (C\ {0}) x AU(l) Consequently, the set

r

B, = {(v,b) | p(1/v,b)#0, bEAa(%)}
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ts measutable, and so is the set 3 = U B,.. Clearly, B ¢ £ and ¥ = B U I, where By = E'\ B.
Obviously, 3y lies in the set C x (E' \ A;) of zero measure ( recall that, by Theorem 1, A, has
full measure in B* ). Since the Lebesgue measure is complete, By is measurable. Thus, the set [
1s measurable, being the union of two measurable sets. Next, by Theorem 3, for b € A, the section
b ~

{r e C | (vb) e £} has full measure, because its complement {1/v | v € o(K})} is at most
countable. Therefore. the set £ is of full plane Lebesgue measure. The Theorem is proved.

The following important statement is a consequence of Theorem 4.
Corollary 2. For ae v € C, problem (1), (2) has a unique periodic solution with almost every
period b e BT
Proof. Since the set E 1s measurable and has full measure, for ae. v € C the section E, = {b €
bhye EY o {be R 1/ v ¢ oK)} has full measure, and for such b’s problem (1), (2) has
unmique periodic solution with period b. The Corollary is proved.
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