Series representation of random mappings and their extension

Dang Hung Thang*, Tran Manh Cuong

Faculty of Mathematics, Hanoi University of Science, VNU, 334 NguyenTrai Str., Hanoi, Vietnam

Received 28 February 2009

Abstract. In this paper, we introduce a method of extending the domain of a random mapping admitting the series expansion. This method is based on the convergence of certain random series. Some conditions under which a random mapping can be extended to apply to all X valued random variables will be presented.

AMS Subject classification 2000: Primary 60H05; Secondary: 60B11, 60G57, 60K37, 37L55.

Keywords and phrases: random operator, bounded random operator, domain of extension, action on random inputs.

1. Series representation of random mappings

Let X, Y be separable metric spaces. By a random mapping from X into Y we mean a rule Φ that assigns to each element $x \in X$ a unique Y - valued random variable Φx . Equivalently, it is a mapping $\Phi: \Omega \times X \to Y$ such that for each fixed $x \in X$, the map $\Phi(.,x): \Omega \to Y$ is measurable.

In this point of view, two mappings $\Phi_1: \Omega \times X \to Y$, $\Phi_2: \Omega \times X \to Y$ define the same randem mapping if for each $x \in X$

$$\Phi_1(x,\omega) = \Phi_2(x,\omega)$$
 a.s.

Noting that the exceptional set can depend on x. In this case, we say that the random mapping Φ_2 is a molification of the random mapping Φ_1 .

Definition 1.1 A random mapping Φ from X into Y is said to admit the series expansion if there exists a sequence (f_n) of deterministic measurable mappings from X into Y (rep. from X into R) and ϵ sequence (α_n) of real-valued random variables (rep. Y-valued r.v.'s) such that

$$\Phi x = \sum_{n=1}^{\infty} \alpha_n f_n x,$$

where the series converges in L_0^Y .

In the case the sequence (α_n) are independent we say that Φ admits an independent series expassion.

E-nail: hungthang.dang@gmail.com

^{*} Coresponding authors. Tel. +844.38581135:

Proposition 1.2 Let Φ be a random operator from X into Y and suppose that X is a Banach space with the Shauder basis $e = (e_n)_{n=1}^{\infty}$ and the conjugate basis $e^* = (e_n^*)_{n=1}^{\infty}$. Then Φ admits the series expansion.

Recall that, a random mapping Φ is called a random operator if it is linear and stochastically continuous, i.e.

$$\Phi(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 \Phi x_1 + \lambda_2 \Phi x_2, \ a.s. \ \forall x_1, x_2 \in X, \lambda_1, \lambda_2 \in \mathbb{R},$$

and

$$\operatorname{p-lim}_{x \to x_0} \Phi x = \Phi x_0.$$

Note that the exceptional set may depend on $\lambda_1, \lambda_2, x_1, x_2$.

Proof. For each $x \in X$, we have

$$x = \sum_{n=1}^{\infty} (x, e_n^{\bullet}) e_n.$$

Since Φ is linear and stochastically continuous, we get

$$\Phi x = \sum_{n=1}^{\infty} (x, e_n^*) \Phi e_n$$

where the series converges in L_0^Y .

Put $\alpha_n = \Phi e_n$, $f_n(x) = (x, e_n^*)$. (α_n) is a sequence of Y-valued and (f_n) of deterministic measurable mappings from X into Y. We have

$$\Phi x = \sum_{n=1}^{\infty} \alpha_n f_n x.$$

A random mapping Φ from X into Y is called a symmetric Gaussian random mapping if for each $k \in \mathbb{N}$ and for each finite sequence $(x_i, y_i^*)_{i=1}^k$ of $X \times Y^*$ the \mathbb{R}^k - valued random variable $\{(\Phi x_i, y^*)\}_{i=1}^k$ is symmetric and Gaussian.

Theorem 1.3 Let Φ be a symmetric stochastically continuous Gaussian random mapping. Then Φ admits an independent series expansion

$$\Phi x = \sum_{n=1}^{\infty} \alpha_n f_n x,$$

where (α_n) is a sequence of real-valued Gaussian i.i.d random variables and $f_n: X \to Y$ is continuous (so is measurable).

Proof. Let $[\Phi]$ denote the closed subspace of $L_2(\Omega)$ spanned by random variables $\{(\Phi x, y^*), x \in X, y^* \in Y^*\}$. Then $[\Phi]$ is a separable Hilbert space and every element of $[\Phi]$ is a symmetric Gaussian random variable. Let (α_n) is an orthonormal basis of $[\Phi]$. Since the sequence (α_n) is orthogonal, symmetric and Gaussian, it is a sequence of real-valued Gaussian i.i.d random variables. Now for each n, we define a mapping $f_n: X \to Y$ by

$$f_n x = \int_{\Omega} \alpha_n(\omega) \Phi x(\omega) dP(\omega). \tag{1}$$

Here the Bochner (1) exists because by Cauchy inequality

$$\int_{\Omega} \|\alpha_n(\omega)\Phi x(\omega)\|dP(\omega) \le \{E\|\Phi x\|^2\}^{1/2}.$$
 (2)

Fix $x \in X$. For each $y^* \in Y^*$, $(\Phi x, y^*) \in [\Phi]$ is expanded in the basis (α_n) in the form

$$(\Phi x, y^*) = \sum_{n=1}^{\infty} \left(\int_{\Omega} (\Phi x, y^*) \alpha_n dP(\omega) \right) \alpha_n$$
$$= \sum_{n=1}^{\infty} \left(\int_{\Omega} \alpha_n \Phi x dP(\omega), y^* \right) \alpha_n$$
$$= \sum_{n=1}^{\infty} (\alpha_n f_n x, y^*)$$

where the series converges in $L_2(\Omega)$ so it is convergent in probability. Since the sequence $(\alpha_n f_n x)$ is a sequence of symmetric independent Y - valued r.v.'s, by the Ito - Nisio theorem, we conclude that

$$\Phi x = \sum_{n=1}^{\infty} \alpha_n f_n x \quad \text{a.s.}$$

Finally, fixing n, we show that f_n is continuous. Let $(x_k) \subset X$ such that $\lim_k x_k = x$. From (2) we have

$$||f_n x_k - f_n x||^2 \le E ||\Phi x_k - \Phi x||^2.$$

By the assumption $p - \lim \Phi x_k = \Phi x$ and the fact that in $[\Phi]$ all the convergence in $L_p(\Omega)$, $(p \ge 0)$ are equivalent, we have $\lim_k E \|\Phi x_k - \Phi x\|^2 = 0$. Therefore, $\lim_k f_n x_k = f_n x$.

Next, we shall be interested in possible extensions of Theorem 1.3 to the case of symmetric stable random mappings.

Let Φ be a random mapping from X into Y. Φ is said to be a symmetric p stable random mapping (SpS random mapping in short) if the real process $\{(\Phi x, y^*)\}$ defined on $X \times Y^*$ is symmetric p -stable. In this case, for each $x \in X$, Φx is a Y-valued SpS random variable.

Let $[\Phi]$ denote the closed subspace of $L_0(\Omega)$ spanned by random variables $\{(\Phi x, y^*), x \in X, y^* \in Y^*\}$. If $\xi \in [\Phi]$ then ξ is SpS so the ch.f. of ξ is of the form $\exp\{-c|t|^p\}$, where $c = c(\xi)$ is a non-negative number depending on ξ . The length of ξ denoted by $\|\xi\|_*$ is defined by

$$\|\xi\|_{\bullet} = \{c(\xi)\}^{1/p}.$$

It is known that (see [1]).

Lemma

- i) The correspondence $\xi \mapsto \|\xi\|_*$ is an F-norm on $[\Phi]$ and in fact is a norm in the case $p \ge 1$.
- ii) $[\Phi]$ is a linear subspace of each $L_r(\Omega), 0 \le r < p$ and all topologies $L_r(\Omega), 0 \le r < p$ coincide with the topology induced by $\|\xi\|_*$ norm on $[\Phi]$.
- iii) The F space $[\Phi]$ can be isometrically embedded into some $L_p(S,\mathcal{A},\mu)$.

Theorem 1.4 Let Φ be SpS stochastically continuous random mapping and suppose that $[\Phi]$ is isometric to l_p . Then Φ admits an independent series expansion

$$\Phi x = \sum_{n=1}^{\infty} \alpha_n f_n x,$$

where (α_n) is a sequence of real-valued SpS i.i.d random variables and $f_n: X \to Y$ is continuous (so it is measurable).

Proof. Let I be an isometry from $[\Phi]$ onto I_p and $J = I^{-1}$. Put

$$\alpha_n = J(e_n),$$

$$I((\Phi x, y^*)) = B(x, y^*) \in l_p.$$

At first, we shall show that (α_n) is a sequence of real-valued SpS i.i.d random variables. Indeed, the joint ch.f. $f(t_1, t_2, ..., t_n)$ of the random variable $(\alpha_1, \alpha_2, ..., \alpha_n)$ is equal to

$$f(t_1, t_2, ..., t_n) = E \exp\left\{i \sum_{k=1}^n t_k \alpha_k\right\} = E \exp\left\{i \sum_{k=1}^n t_k J(e_k)\right\}$$

$$= E \exp\left\{i J\left(\sum_{k=1}^n t_k e_k\right)\right\} = \exp\left\{-\left\|J\left(\sum_{k=1}^n t_k e_k\right)\right\|_{\bullet}^p\right\}$$

$$= \exp\left\{-\left\|\sum_{k=1}^n t_k e_k\right\|^p\right\} = \exp\left\{-\sum_{k=1}^n |t_k|^p\right\}$$

as desired.

For each $(x, y^*) \in X \times Y^*$, we have

$$\alpha_n = J(e_n),$$

$$I((\Phi x, y^*)) = B(x, y^*) \in l_p,$$

hence

$$(\Phi x, y^*) = \sum_{n=1}^{\infty} \alpha_n b_n(x, y^*), \tag{3}$$

where $b_n(x, y^*)$ is the *n*-th coordinate of $B(x, y^*) \in l_p$ and the series (3) converges in the norm $\|.\|_*$ so converges in probability.

Fix n. We show that there exists a mapping $f_n: X \longrightarrow Y$ such that for each $x \in X, y^* \in Y^*$

$$b_n(x, y^{\bullet}) = (f_n x, y^{\bullet}).$$

Fix $x \in X$. Since the mapping $y^* \mapsto (\Phi x, y^*)$ is linear so the mapping $y^* \mapsto B(x, y^*)$ is linear which implies the mapping $b_x : y^* \mapsto b_n(x, y^*)$ from Y^* into R is linear. In addition, the ch.f. of Φx is $\tau(Y^*, Y)$ - continuous on Y^* , where $\tau(Y^*, Y)$ is the topology of uniform convergence on compact sets of Y, and it is equal to

$$H_x(y^*) = \exp\{-\|(\Phi x, y^*)\|_{_{\bullet}}^p\} = \exp\{-\|B(x, y^*)\|_{_{\bullet}}^p\}$$

Consequently, $b_x: Y^* \to R$ is linear and $\tau(Y^*, Y)$ - continuous on Y^* . Since the dual space of Y^* under the topology $\tau(Y^*, Y)$ is Y we conclude that there exists a unique element denoted by $f_n x$ such that

$$b_x(y^*) = (f_n x, y^*) \to b_n(x, y^*) = (f_n x, y^*).$$

Now, the equality (3) becomes

$$(\Phi x, y^*) = \sum_{n=1}^{\infty} \alpha_n b_n(x, y^*)$$
$$= \sum_{n=1}^{\infty} (\alpha_n f_n x, y^*).$$

The rest of proof is carried out similarly as in the proof of Theorem 1.3.

Finally, fixing n, we show that f_n is continuous. Let (x_k) be a sequence of X such that $\lim_k x_k = x$. By the assumption p- $\lim_k \Phi x_k = \Phi x$, we have

$$\Phi x_k - \Phi x = \sum_{j=1}^{\infty} \alpha_j (f_j x_k - f_j x).$$

Since p < 2 by Corrolary 7.3.6 in [2], we get

$$||f_n x_k - f_n x||^p \le \sum_{j=1}^{\infty} ||f_j x_k - f_j x||^p \le C \{E ||\Phi x_k - \Phi x||^r\}^{p/r},$$

where r < p and the constant C > 0 depends only on r, p. From 2. of Lemma we obtain $\lim_{k} \{E \| \Phi x_k - \Phi x \|^r\}^{1/r} = 0$. Hence, $\lim_{k} f_n x_k = f_n x$ as desired.

2. The extension of random mappings admitting series expansion

Let Φ be a random mapping from X into Y admitting the series expansion

$$\Phi x = \sum_{n=1}^{\infty} \alpha_n f_n x,\tag{4}$$

where (f_n) is a sequence of deterministic measurable mappings from X into Y (rep. from X into R) and (α_n) is a sequence of real - valued random variable (rep. Y - valued r.v.). The series converges in L_0^n .

Denote by $\mathcal{D}(\Phi)$ the set of all X - valued r.v. u such that the series

$$\sum_{n=1}^{\infty} \alpha_n f_n u \tag{5}$$

converges in probability. Here $f_n u(\omega) = f_n (u(\omega))$ is a random variable because f_n is measurable. Clearly, $X \subset \mathcal{D}(\Phi) \subset L_0^X$.

Definition 2.1 $\mathcal{D}(\Phi)$ is called the domain of extension of Φ . If $u \in \mathcal{D}(\Phi)$ then the sum (5) is denoted by Φu and it is understood as the action of Φ on the random variable u.

Theorem 2.2 If u is a countably - valued r.v.

$$u = \sum_{i=1}^{\infty} 1_{E_i} x_i,$$

where $(E_i, i = 1, 2, ...)$ is a countable partition of Ω and $x_i \in X$, then $u \in \mathcal{D}(\Phi)$ and

$$\Phi u = \sum_{i=1}^{\infty} 1_{E_i} \Phi x_i.$$

Proof. Put $Z_n = \sum_{i=1}^n \alpha_i f_i u$ and $Z = \sum_{i=1}^\infty 1_{E_i} \Phi x_i$. We have to show that

$$\lim_{n} P(\|Z_{n} - Z\| > t) = 0.$$

Since $\omega \in E_k \Rightarrow Z(\omega) = \Phi x_k, Z_n(\omega) = \sum_{i=1}^n \alpha_i f_i x_k$ so

$$P(\|Z_n - Z\| > t) = \sum_{k=1}^{\infty} P(\|Z_n - Z\| > t, E_k)$$

$$\leq \sum_{k=1}^{N} P\left(\left\|\sum_{i=1}^{n} \alpha_i f_i x_k - \Phi x_k\right\| > t\right) + \sum_{k=N+1}^{\infty} P(E_k)$$

For each k = 1, 2, ..., N we have

$$\lim_{n} P(\|\sum_{i=1}^{n} \alpha_{i} f_{i} x_{k} - \Phi x_{k}\| > t) = 0.$$

Let $n \to \infty$ and then $N \to \infty$, we get $\lim_n P(\|Z_n - Z\| > t) = 0$.

For each random mapping Φ admitting the representation (4), let $\mathcal{F}(\alpha)$ denote the σ -algebra generated by the family $\{\alpha_n\}$. A random variable $u \in L_0^X$ is said to be independent of Φ if $\mathcal{F}(u)$ and $\mathcal{F}(\alpha)$ are independent.

Theorem 2.3 Suppose that u is independent of Φ , then $u \in \mathcal{D}(\Phi)$.

Proof. Let t > 0. By the independence of u and the sequence (α_n) we have

$$P\left(\left\|\sum_{i=m}^{n} \alpha_{i} f_{i} u\right\| > t\right) = \int_{X} P\left(\left\|\sum_{i=m}^{n} \alpha_{i} f_{i} x\right\| > t\right) d\mu(x),$$

where μ is the distribution of u. Because for each $x \in X$

$$\lim_{m,n\to\infty}P\left(\|\sum_{i=m}^n\alpha_if_ix\|>t\right)=0.$$

By the dominated convergence theorem, we infer that

$$\lim_{m,n\to\infty} P\left(\|\sum_{i=m}^n \alpha_i f_i u\| > t\right) = 0.$$

Therefore, the series

$$\sum_{i=1}^{\infty} \alpha_i f_i u$$

converges in L_0^Y i.e. $\in \mathcal{D}(\Phi)$.

Theorem 2.4 Let Φ be a random mapping from X into Y admitting the series expansion of the form (4). Suppose the $|E|\alpha_k|^p < C$ for all k, where p > 1 and q is the conjugate number of p (i.e.

1/p+1/q=1). For $u\in L_0^X$ to belong to $\mathcal{D}(\Phi)$, a sufficient condition is

$$\sum_{k} \{ E \| f_k u \|^q \}^{1/q} < \infty. \tag{6}$$

Proof. Put

$$r_k(q) = \{E \| f_k u \|^q \}^{1/q}.$$

Applying the Hölder inequality, we get

$$E \left\| \sum_{k=m}^{n} \alpha_{k} f_{k} u \right\| \leq \sum_{k=m}^{n} E|\alpha_{k}| \|f_{k} u\|$$

$$\leq \sum_{k=m}^{n} \{E|\alpha_{k}|^{p}\}^{1/p} \{E\|f_{k} u\|^{q}\}^{1/q}$$

$$\leq C \sum_{k=m}^{n} r_{k}(q) \to 0 \quad \text{as } m, n \to \infty.$$

Hence, the series $\sum_{k=1}^{\infty} \alpha_k f_k u$ converges in L_1^Y so converges in L_0^Y .

Corrolary 2.5 Suppose that Φ is a symmetric stochastically continuous Gaussian random mapping and if

$$\sum_{k} \{ E \| (f_k u) \|^q \}^{1/q} < \infty$$

for some q > 1 then $u \in \mathcal{D}(\Phi)$.

3. When a random mapping can be extended to the entire space L_0^X

Let Φ be a random operator from X into Y and suppose that X is a separable Banach space with the Shauder basis $e = (e_n)_{n=1}^{\infty}$ and the conjugate basis $e^* = (e_n^*)_{n=1}^{\infty}$. By Proposition 1.2, Φ admits the series expansion.

$$\Phi x = \sum_{n=1}^{\infty} (x, e_n^{\bullet}) \Phi e_n.$$

Theorem 3.1

i) If Φ is a bounded random operator then $\mathcal{D}(\Phi)=L_0^X$ and Φu does not depend on the basis (e_n) .

ii) Conversely, if $\mathcal{D}(\Phi) = L_0^X$ then Φ must be a bounded random operator.

Recall that (see [3]) a random operator Φ is said to be bounded if there exists a real-valued random variable $k(\omega)$ such that for each $x \in X$

$$\|\Phi x(\omega)\| \leqslant k(\omega)\|x\|$$
 a.s.

Noting that the exceptional set may depend on x.

Proof: i) Since Φ is bounded, by Theorem 3.1 [3] there exists a mapping

$$T:\Omega \to L(X,Y)$$

such that for each $x \in X$

$$\Phi x(\omega) = T(\omega)x$$
 a.s.

244

As a consequence, there is a set D with $\mathbb{P}(D) = 1$ such that for each $\omega \in D$ and for all n we have

$$\Phi e_n(\omega) = T(\omega)e_n$$
.

Hence, for each $\omega \in D$

$$\sum_{n=1}^{\infty} (u(\omega), e_n^*) \Phi e_n(\omega) = \sum_{n=1}^{\infty} (u(\omega), e_n^*) T(\omega) e_n$$
$$= T(\omega) \left(\sum_{n=1}^{\infty} (u(\omega), e_n^*) e_n \right) = T(\omega) (u(\omega)).$$

Therefore, the series $\sum_{n=1}^{\infty} (u, e_n^*) \Phi e_n$ converges a.s. so converges in probability. Consequently, $u \in \mathcal{D}(\Phi)$ and $\Phi u(\omega) = T(\omega)(u(\omega))$ does not depend on the basis $e = (e_n)$.

ii) Put

$$\Phi_n u = \sum_{i=1}^n (u, e_n^*) \Phi e_n.$$

Then Φ_n is a linear continuous mapping from L_0^X into L_0^Y . By the assumption $\lim_n \Phi_n u = \Phi u$ for all $u \in L_0^X$. Hence, by the Banach-Steinhaus theorem Φ is again a linear continuous mapping from L_0^X into L_0^Y . In addition, we have

$$\Phi(u) = \sum_{i=1}^{n} 1_{E_i} \Phi x_i$$

for $u = \sum_{i=1}^{n} 1_{E_i} x_i$ where $(E_i, i = 1, ..., n)$ is a partition of Ω and $x_i \in X$. By Theorem 5.3 [3] we conclude that Φ is bounded.

Theorem 3.2 Let Φ be a random operator admitting the series expansion of the form (4), where (α_n) is a sequence of real-valued random variables and (f_n) is a sequence of continuous linear mappings from X into Y. Then

- i) If Φ is bounded then $\mathcal{D}(\Phi) = L_0^X$.
- ii) Conversely, if $\mathcal{D}(\Phi) = L_0^X$ then Φ must be bounded.

Proof:i) Since Φ is bounded, by Theorem 3.1 [3] there exists a mapping

$$T: \Omega \to L(X,Y)$$

such that for each $x \in X$

$$\Phi x(\omega) = T(\omega)x$$
 a.s.

For this reason, there is a set D with $\mathbb{P}(D)=1$ such that for each $\omega\in D$ and for all k we have

$$\Phi e_k(\omega) = \sum_n \alpha_n(\omega) f_n e_k = T(\omega) e_k.$$

As a consequence, for each $\omega \in D$

$$\sum_{n} \alpha_{n}(\omega) f_{n} u(\omega) = \sum_{n} \alpha_{n}(\omega) f_{n}(\sum_{k} \langle u(\omega), e_{k}^{*} \rangle e_{k})$$

$$= \sum_{n} \alpha_{n}(\omega) \sum_{k} \langle u(\omega), e_{k}^{*} \rangle f_{n} e_{k}$$

$$= \sum_{k} \langle u(\omega), e_{k}^{*} \rangle \sum_{n} \alpha_{n}(\omega) f_{n} e_{k}$$

$$= \sum_{k} \langle u(\omega), e_{k}^{*} \rangle T(\omega) e_{k}$$

$$= T(\omega) \left(\sum_{k} \langle u(\omega), e_{k}^{*} \rangle e_{k} \right)$$

$$= T(\omega) (u(\omega)).$$

ii) Put

$$\Phi_n u = \sum_{i=1}^n \alpha_i f_i u.$$

Then Φ_n is a linear continuous mapping from L_0^X into L_0^Y . By the assumption $\lim_n \Phi_n u = \Phi u$ for all $u \in L_0^X$. Hence, by the Banach - Steinhaus theorem Φ is again a linear continuous mapping from L_0^X into L_0^Y . In addition, for $u = \sum_{i=1}^n 1_{E_i} x_i$ where $(E_i, i = 1, ..., n)$ is a partition of Ω and $x_i \in X$, we have

$$\begin{split} \Phi(u) &= \sum_{k=1}^{\infty} \alpha_k f_k u \\ &= \sum_{k=1}^{\infty} \alpha_k \sum_{i=1}^n 1_{E_i} f_k x_i = \sum_{i=1}^n 1_{E_i} \sum_{k=1}^{\infty} \alpha_k f_k x_i \\ &= \sum_{i=1}^n 1_{E_i} \Phi x_i. \end{split}$$

By Theorem 5.3 [3] we conclude that Φ is bounded.

Theorem 3.3 Let X be a compact metric space and Φ be a random mapping from X into Y admitting the series expansion of the form (4), where (α_n) is a sequence of real-valued symmetric independent random variables and (f_n) is a sequence of continuous mappings from X into Y.

- i) If Φ has a continuous modification then every $u \in L_0^X$ belongs to $\mathcal{D}(\Phi)$ i.e. $\mathcal{D}(\Phi) = L_0^X$.
- ii) The converse is not true i.e. there exists a random mapping Φ from X into Y admitting the scries expansion of the form (4), where (α_n) is a sequence of real-valued symmetric independent random variables and (f_n) is a sequence of continuous mappings from X into Y such that $\mathcal{D}(\Phi) = L_0^X$ but Φ has not a continuous modification.

Proof. Let V = C(X, Y) be the set of all continuous mappings from X into Y. It is known that V is a separable Banach space under the supremum norm

$$||f||_V = \sup_{x \in X} ||f(x)||.$$

For each pair $(x, y^*) \in X \times Y^*$ the mapping $x \otimes y^* : V \to \mathbb{R}$ given by

$$(x \otimes y^*)(f) = (f(x), y^*)$$

is clearly an element of V^* . Let $\Gamma = \{(x \otimes y^*), (x, y^*) \in X \times Y^*\}$. It is easy to check that Γ is a separating subset of V^* . Let $\Psi(x, \omega)$ be a continuous modification of Φ . Define a mapping $T: \Omega \to V$ by

$$T(\omega) = x \mapsto \Psi(x, \omega).$$

We show that T is measurable i.e T is a V-valued random variable. Indeed, for each $(x \otimes y^*) \in \Gamma$ the mapping $\omega \mapsto (T(\omega), x \otimes y^*) = (T(\omega)x, y^*) = (\Psi(x, \omega), y^*) = (\Phi x(\omega), y^*)$ a.s. is measurable. Since V is separable and Γ is a separating subset of V^* , the claims follows from the theorem 1.1 in ([4]).

Note that for each ω the mapping $x \mapsto \alpha_n(\omega) f_n x$ is an element of V. Hence $\alpha_n f_n$ is a V-valued r.v. Now for each $(x \otimes y^*) \in \Gamma$ we have

$$(T(\omega), x \otimes y^*) = (T(\omega)x, y^*) = (\Phi x(\omega), y^*)$$
$$= \sum_{n=1}^{\infty} (\alpha_n(\omega)f_n x, y^*) = \sum_{n=1}^{\infty} (\alpha_n(\omega)f_n, x \otimes y^*) \quad \text{a.s.}$$

Since $(\alpha_n f_n)$ is a sequence of V-valued symmetric independent r.v.'s in view of Ito - Nisio theorem we conclude that the series $\sum_{n=1}^{\infty} \alpha_n(\omega) f_n$ converges a.s. to T in the norm of V. This implies that there exists a set D of probability one such that for each $\omega \in D$, $x \in X$, we have

$$T(\omega)x = \sum_{n=1}^{\infty} lpha_n(\omega) f_n x.$$

Consequently, for $u \in L_0^X$ we have

$$T(\omega)(u(\omega)) = \sum_{n=1}^{\infty} \alpha_n(\omega) f_n(u(\omega)) = \sum_{n=1}^{\infty} \alpha_n(\omega) f_n(\omega) \quad \forall \omega \in D$$

i.e. the series $\sum_{n=1}^{\infty} \alpha_n(\omega) f_n u(\omega)$ converges a.s.

ii)The following example shows that the converse is not true.

Example. Let $X = [0; 1], Y = \mathbb{R}$. Consider the sequence (ξ_n) of real-valued independent r.v.'s given by

$$P(\xi_n = -n) = P(\xi_n = n) = \frac{1}{2n^2}, P(\xi_n = 0) = 1 - \frac{1}{n^2}.$$

Then (ξ_n) are real-valued symmetric independent r.v.'s and

$$\mathbb{E}(\xi_n) = 0, \mathbb{E}|\xi_n| = \frac{1}{n}, \mathbb{E}|\xi_n|^2 = 1.$$

Let (a_n) be sequence of positive numbers defined by

$$a_n = \frac{1}{\sqrt{n}\log_2 n}$$

and put $\alpha_n = a_n \xi_n$. Then (α_n) are real-valued symmetric independent r.v.'s and

$$\mathbb{E}(\alpha_n) = 0, \mathbb{E}|\alpha_n| = \frac{a_n}{n}, \mathbb{E}|\alpha_n|^2 = a_n^2.$$

Let $f(f_n)$ be the sequence of functions $f_n:[0;1]\to\mathbb{R}$ defined by

$$f_n(t) = \cos 2\pi nt.$$

Cleaarly, f_n are continuous. Consider the random function $\Phi:[0;1]\to\mathbb{R}$ given by

$$\Phi(t)(\omega) = \sum_{n=1}^{\infty} \alpha_n(\omega) f_n(t). \tag{7}$$

We | have

$$\sum_{n=1}^{\infty} \mathbb{E} |\alpha_n f_n(t)| \leq \sum_{n=1}^{\infty} \mathbb{E} |\alpha_n| = \sum_{n=1}^{\infty} \frac{a_n}{n} < \infty$$

since $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$, $\sum_{n=1}^{\infty} a_n^2 = \sum_{n=1}^{\infty} \frac{\ln 4}{n \ln^2 n} < \infty$. This implies the series (7) converges a.s. Moreover, for each real - valued random variable u we have

$$\sum_{n=1}^{\infty} \mathbb{E}|\alpha_n f_n(u)| \le \sum_{n=1}^{\infty} \mathbb{E}|\alpha_n| = \sum_{n=1}^{\infty} \frac{a_n}{n} < \infty.$$

Thiss implies the series

$$\sum_{n=1}^{\infty} \alpha_n f_n(u)$$

converges a.s. Hence $\mathcal{D}(\Phi) = L_0(\mathbb{R})$.

Next, we shall show that $\Phi(t)$ is an unbounded function. To this end, we use the following result from ([5]) (Theorem 7 and Exersise 3 p. 231).

Consider the random series

$$\Phi(t)(\omega) = \sum_{n=1}^{\infty} a_n \xi_n(\omega) f_n(t), t \in [0;1]$$

where (ξ_n) are independent and symmetric r.v.'s with $\mathbb{E}|\xi_n|^2 = 1$, (a_n) are positive real numbers such that $\sum_n a_n^2 < \infty$ and $f_n(t) = \cos 2\pi nt$. Put

$$s_i = \left(\sum_{2^i \le n < 2^{i+1}} a_n^2\right)^{1/2}.$$

There if $\sum_{i=0}^{\infty} s_i = \infty$ then $\Phi(t)(\omega)$ is not a bounded function on [0; 1] a.s.

Now we come back to our example. We have

$$s_i = \left(\sum_{2^i \le n < 2^{i+1}} a_n^2\right)^{1/2} \ge \left(2^i a_{2^{i+1}}^2\right)^{1/2} = \frac{1}{\sqrt{2}(i+1)}$$

which implies that $\sum_{i=0}^{\infty} s_i = \infty$. Therefore, for almost sure ω , $\Phi(t)(\omega)$ is not bounded a.s. so is not conttinuous on [0;1] a.s.

Ackinowledgment. This work was supported in part by the Vietnam National Foundation for Science and Technology Development.

References

- [1] Bretagnolle, J., Dacunha Castelle, D. and Krivine, J. L. (1966). Lois stable et espace L_p, Ann. Inst. II. Poincaré, B2, 231 259.
- [2] W.Linde, Infinitely divisible and stuble measures on Banach spaces, Leipzig 1983.
- [3] D.H.Thang and N.Thinh, Random bounded operators and their extension, Kyushu J. Math. Vol.58(2004), 257-276.
- [4] N.N. Vakhania, V.I. Tarieladze and S.A. Chobanian, Probability Distribution on Banach spaces, D.Reidel Publishing Company, Dordrecht, 1987.
- [5] J. P. Kahane, Some random series of functions, Cambridge Univ. Press 1985.