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Abstract. In this paper, we introduce a method of extending the domain of a random mapping
admutting the series expansion. This method is based on the convergence of certain random
scries. Some conditions under which a random mapping can be extended to apply to all X -
valued random vanables will be presented.
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1. Scries representation of random mappings

et XY be separable metric spaces. By a random mapping from X into Y we mean a rule
¢ thet assigns to cach element & € X a unique Y - valued random variable ¢x. Equivalently, it is a
mapring € : 2 x X' — Y such that for each fixed » € X, the map ©(.,x): @ — Y is measurable.

In this point of vicw, two mappings ¢ - Q@ x X' Y, by 0 O x X -» YV define the same
randam mapping if for cach z € .Y

Py(r,w) = Py(r,w) as.

Notirg that the exceptional set can depend on . In this case, we say that the random mapping ¢ is
a molification of the random mapping &;y.

Defirition 1.1 A random mapping ¢ from X into Y is said to admit the series expansion if there
existe a sequence (f,,) of deterministic measurable mappings from X into Y (rep. from X into R)
and ¢ sequence (o, ) of rcal-valued random variables (rep. Y-valued r.v.’s) such that

oo
br = > ai [y
Ti 1

wher: the series converges in L) .
In the casc the sequence (v, ) are independent we say that ¢ admits an independent series
expaision.
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Proposition 1.2 et © be a random operator from X into Y and suppose that X is a Banach space
with the Shauder basis ¢ = (¢y,)," | and the conjugate basis = (¢},),> . Then © admits the series
exXpansion.

Recall that, a random mapping O is called a random operator it it 1s Lincar and stochastically
continuous, 1.¢.

D(Ar; /\'31‘2) NPry + Aolas, as. Vepoao € XN\ € R,

and

p-lim, ., ®xr -~ duwy.

Note that the exceptional set may depend on Ny, As..ry. xr ).
Proof. For each 2 € X, we have

oac
I - Z(.’r, €, )Cn-

=1

Since @ is lincar and stochastically continuous, we get
- Y
>
dr =Y (r.c))be,
n=1

where the serics converges in L} .
Put a,, — Pe,,, fulx) = (r,€;,). (a,) is a sequence of Y-valued and (f,) of deterministic
measurable mappings from X into Y. We have

oC

Pr = 2 o 8 %

n==1
.
A random mapping € from X into Y is called a svmmetric Gaussian random mapping if for
cach & € N and for each finite sequence (.r.._u,'Jf pof X = Y'* the 14 - valued random variable
{(Px;, _u')}f" , is symmetric and Gaussian.
Theorem 1.3 Let 0 be a symmetric stochastically continuous Gaussian random mapping. Then ¢
admits an independent series expansion
DC
$r Y afad,
-
where (ay) is a sequence of real-valued Gaussian iid random variables and f,, © X — Y is
continuous (so is measurable).
Proof. Let [P] denote the closed subspace of L, (€2} spanned by random variables {(Px,y*). 1 €
X,y* € Y*}. Then [D] is a scparable Hilbert space and cvery clement of [«b] is a symmetric Gaussian
random variable. lect (a,) is an orthonormal basis of [{]. Since the sequence () is orthogonal,
symmetric and Gaussian, it is a sequence of real-valued Gaussian i.i.d random variables. Now for each
n, we define a mapping f, : X' — Y by

for = [ anlw)br(w)dP(w). (1)
0
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Here the Bochner (1) exists because by Cauchy inequality
/ |l cen (W) D(W)dP(w) < {E| D] ?} /2, (2)
JQ

Fix r € X. For cach y* € Y*, (Pur, y*) € [P] is expanded in the basis (a,,) in the form

Y

ool
(b, y") >__ ( /{tl'.rp iy o dP(w) ) ,,
NS0

/S
n={ ’

i’

>__' ([ andrdP(w). ]/') o,
o

Z;{“nfu-r' U.)

n—=1
where the series converges in L2(§2) so it is convergent in probability. Since the sequence (an fnx) is
a sequence of symmetric independent Y - valued rv.’s, by the Ito - Nisio theorem, we conclude that

o0

(I);z:_—2 p fur as.

n=1

Finally, fixing n, we show that f, is continuous. Let (xy) C X such that limy 2, = . From (2} we
have

2 T
| foak = fuzl|” < E
By the assumption p— limn ¢y == o and the fact that in (] all the convergence in L,(R2), (p > 0)
are cquivalent, we have L Fjjduay ‘]’.L‘||2 0. Therefore, limy faop = fr. ]
IS
Next, we shaltl be interested in possible extensions of Theorem 1.3 to the case of symmetric
stable random mappings.

[{Dr) — Dxf|”.

I et &b he arandom mapping from Y into Y7 @ is said to be a symmetric p stable random mapping
(SpS random mapping in short) if the real process { (P, y*)} defined on X x Y* is symmetric p -
stable. In this case, for cach 2 € X, bz is a Y-valucd SpS random variable.

Let [P] denote the closed subspace of Lp(€2) spanned by random variables {(dz,y*),z €
Ny e Y} H & e [P] then € is SpS so the ch.f. of € is of the form exp{—c|t|’}, where ¢ = ¢(£) is
a non-negative number depending on €. The length of € denoted by [[€]]. is defined by

€l = {e(©}".

It is known that (see [1]).
Lemma
i) The correspondence € v— | &, is an F-nornt on [0 and in fuct is a norm in the case p > 1.
i) [P] is a linear subspace of each L.(§2),0 < r < p and all topologies L, (1), 0 < r < p
coincide with the topology induced by ||€||. - norm on [P|.
i) The I - space [P] can be isometrically embedded into some Ly(S, A, ).

Theorem 1.4 Let & be SpS stochastically continuous randon mapping and suppose that (9} is isometric
1o lp. Then © admits an independent series expansion

o0
br = S anfnz,

n=|
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where (o) is a scquence of real-valued SpS Lid random variables and f, - X —+ Y s continnony
(so 1t iy measurable).
Proof. Let I be an isometry from (@] onto 1, and ./ [ ' Put

Yy, Jes ).

i

[((ba,y™)) = Bleoy™) el
At first, we shall show that («,,) 15 a sequence of real-valued SpS 1.0.d random variables. Indeed, the
!
Jomt chof. f(éy 4o .. ) of the random vanable (. ao. oo, ) is equal to

n

fltyto. ... t,) = Eexp ’Z’“”} I7exp IZ!A./((L.)
k=1

k1
4 .r_e \ 1 f j: n ].ﬂ
- P;(\‘\'I) ([JJ(> -“"I')j l'_‘-;[li —‘r;’ > Loy
l \k=1 Lol :
i Tl
opd = 15~ vl b = exp d = S™ 1epe
lk | f k
as desired.
For each (z,y") € X x Y, we have
y, — J(0y,).
I((Px,y")) = B(a,y") €1,
hence
X
(br,y) \, b (. ). (3

where by, (. y*) is the n-th coordinate of B3(x,y*) « [, and the series (3) converges in the norm ||,

so converges in probability.
Fix n. We show that there exists a mapping f, - .\ — Y such that tor cach r € X, y" €}

itz ") = { fud, ™)

Fix r € X. Since the mapping y* + (dua, ") is hnear so the mapping y* + B(r, y*) is linear which
implies the mapping b, : y* +— by(x,y*) from Y into R is linear. In addition, the ch.f. of ®ur is
7(Y*, Y)- continuous on Y ", where 7(Y*, }) is the topology of uniform convergence on compact sets
of Y, and it i1s equal to

He(y") = exp{=[(Px,y") [T} - exp{-| Bz, y")|I"}

Consequently, b, : Y* — R is lincar and 7(}™*, }')- continuous on ¥Y*. Since the dual space of Y7*
under the topology 7(Y*, Y} is ¥ we conclude that there exists a unique element denoted by f,,.r such
that

be(y®) = (fuz,y®) = byl y”) = (fur,y").
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Now . the cquality (35 becomes

(b, y") - Ln”b”(..r. y)
I

=9
z Loty sy ).
n=l

Fhe rest of proof is carried out sumilarly as in the proof of Theorem 1.3

Finally, fixing n, we show that f,, is continuous. Let () be a sequence of X such that
limay o By the assumption p-lim Py = P, we have
: :

™o

Dy — Pr }: ( .'[f_x-“- - fJ.I').

!
Since p < 2 by Corrolary 7.3.6 n [2], we get

X

._fn-"l\‘ - fnll'i.’J - L i!f.i""ﬂ f)‘l' ‘P : ('{1‘::

=l

Dy — b}

where » < pand the constant €' > () depends only on r, p. From 2. of Lemma we obtain limyg { E|| @z~
) R A (. Hence, ling f,,.1 S as desired. ]

2. The extension of random mappings admitting series expansion

Let @ be a random mapping from X into Y admitting the series expansion

x
$r \ ) Qe (1)
n—1
where (f,,) is a sequence of deterministic measurable mappings from X into Y (rep. from X into 1?)
and (a, ) 1s a sequence ot real - valued random variable (rep. Y - valued rv)). The series converges
m L)
Denote by D) the set of all X - valued rv. w such that the scries

DC

Z o fou (5)

n=1
converges in probability. Here fuu(w) = f, (u(w)) 1s a random variable because f,, is measurable.
Clearly, X' € D(d) C L.
Definition 2.1 D(d) is ¢alled the domain of extension of ¢. If u € D(d) then the sum (5) is denoted

by ®« and it is understood as the action of ¢ on the random variable w.
Theorem 2.2 [f u is a countably - valued rv.

o
u = Z 1 g

=1
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where (E,, i — 1,2, ...) is a countable partition of Y and v, © X, then u © (DY and

™~
bu — > i, by
1= ]

Proof. Put Z,, =3 " ,a;fiuand Z = ooy g, . We have to show that

imP{||Z, = Z]| > t) = 0.
Since w € By = Z(w) = bay, Z,(w) = ¥ a;firy so
1=1
P(|Z, - 2| > 1) =Y _P(|Z, - Z|| > t. ;)
k=1

N n
< :5:: r (}l:g::":f}J'k i
k=1 1=1

For each k = 1,2,.., N we have

\ o
>t) + Z P(Ey)
/ k=N 41

limn P(|| Z o, fixg — Pay|| > t) = 0.
1=1
Let n — oo and then N — o0, we get lim, P(||Z,, — Z|| > t) = 0. O
For each random mapping ¢ admitting the representation (4), let F(a ) denote the o-algebra

gencrated by the family {a,,}. A random variable u € L3 is said to be independent of ¢ if F(u) and
F{a) are independent.

Theorem 2.3 Suppose that w is independent of ©, then u © D(D).
Proof. Let t > 0. By the independence of u and the sequence (a,,) we have

P( Zu,f,u >t) =] P( 51) du(r),
X

1=m
where 4t is the distribution of u. Because for each 7 € X

n \
JJim P (|| > aifix| > r}) 0.

t=nmn

n

Z a, f.x)

1=m

By the dominated convergence theorem, we infer that

n \
lim P (u SN afoul > t) — 0.
TRN—0OC =

T=nmnt
Therefore, the scries

oC

7 o, fiu

i=1
converges in L} ie. ¢ D(P). O

Theorem 2.4 Let ¢ e a random mapping from X into Y admitting the series expansion of the form
(4). Suppose th -~ Elag|P < C for all k, where p > 1 and q is the conjugate number of p (i.e.
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Lip v Vg 1 Forue Ly to belong 1o D(P), a sufficient condition is

> {E| fxu
-

114 < 0, (6)

Proof. Put

rilg) = {L‘ fk‘u,||q}l""’l.

Applying the Holder inequality, we get

| n ! n
E L o frulj < Z Elagl|| fin]]
k=m hk=m
n
o N + i l/p » 1 /¢
< ST {ElaY LB fiul| 7}
k=m
I
<C Z ri(q) = 0 as m,n — .
h=m
Hence, the series D> ay fru converges in L} SO converges in L& . O
k=1

Corrolary 2.5 Supposce that & is a symmetric stochastically continuous Gaussian random mapping
and if

S {E(fa]} e <
A.
for some g > 1 then w € D(P).

3. When a random mapping can be extended to the entire space L}

Lo b be a random operator rom X into Y and suppose that X 1y a separable Banach space
with the Shauder basis « (¢,),5, and the conjugate basis ¢* — (¢}),° . By Proposition 1.2, ¢

nel:
admits the series expansion,
o

dbr Y_(.r.r,'l]‘l’s-“.

n—1
Fheorem 3.1

1) If © is a bounded random operator then D(®) = LY and du does not depend on the basis
(( n ]

it) Conversely, if D(0) — LY then & must be a bounded random operator
Recall that (see|3)) a random operator © is said to be bounded if there exists a real-valued
random variable k(w) such that for each r € X
[Pz()]] < k(wizll  as.
Notmg that the exceptional set may depend on x.
Proof: 1) Since P is bounded, by Theorem 3.1 [3] there ¢xists a mapping
T:Q0—-L(X)Y)
suck that for cach r € X
br(w) = T(w)x as.
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As a consequence, thiere is a set 1 with P(D) — 1 such that for cach « © D and for all 1 we have
Qe (w) = T(w)e

Hence, for each « € D

0

Z(u(w) e, (w L(“(u}) e )T (w)e,

n=1

= T(w) T(H(.‘,').r:llr”) I'{w)(u(w)).

!

n=1| /

Therefore, the series Y, (u, ¢;,)Pe, converges as. so converges in probability.  Consequently,

u € D(®) and Pu(w) = T{w)(u(w)) does not depend on the basis ¢ {¢,,).
1) Put

n
D, u 2 (u, e, )dPe,,.

1=1

Then @, is a lincar continuous mapping from L into ). By the assumption lim,, ¢, u = Pu for
all u € L(;‘. Hence, by the Banach-Steinhaus theorem ¢ is again a linear continuous mapping from
L(')‘ into L(’, . In addition, we have

n

Olu) =Y 1pdur

1=1

for u = E lp,r, where (1 = 1,...,n) is a partition of  and », € X. By Theorem 5.3 [3] we
t=]
conclude that ¢ is bounded. (]

Theorem 3.2 Let @ be a random operator admitting the series expansion of the form (4), where {«,,)
is a sequence of real-valued random variables and ( f,) is « scquence of continuous linear mappings
from X into Y . Then

i) If & is bounded then D(d) — L.

i) Conversely, if D(¥) = Ly then @ must be bounded.

Proof:i) Since @ is bounded, by Theorem 3.1 [3] there exists a mapping

T:Q— L(X,Y)

such that foreach r € X

dbr(w) =T(w)x a.s.

For this reason, there is a set D with P(D) = 1 such that for cach w € [ and for all k& we have

Peyw) = Z on(w)fuer = T{w)ex.
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As @ consequence, for each w € D

Zu,,[;]f,,u(.;) = Zn“(w)f,,(z < u(w), er > ex)
k

n n

Z o, (w) L < u(w), cp > fuck
k

>-‘ < H(u.').fl. > Z“n{v\;}fﬂfl

n

*
- Z < u(w),ep > T(w)ey
k.

=T (w) < ulw), €f > ex

1) Put

n
¢ u= 2 H,f,u.

=1

Then &, is a linear continuous mapping from Ly into L. By the assumption lim, @, u = $u for
all v € L) Hence, by the Banach - Steinhaus theorem & is again a lincar continuous mapping from
Ly mto L) Inaddition, for w = 37" 1px, where (E,.i = 1,....n) is a partition of 2 and x, € .X,
we have

e

D) g fru
k=1
s " 1 2] ~
nkz ],t.,'lf_g,}', Lll-),L'U\-fk-f'r

k=1 1—=1 1=1 k=1
T

> g, dur,.

|

By Theorem 3.3 [3] we conclude that ¢ is bounded. U

Theorem 3.3 Lot X be a compact metric space and ¢ be a random mapping from X into Y admiting
the series expansion of the form (4), where (ay,) 1s a sequence of real-valued symmetric independent
random variables and (f,)) is a sequence of continuous mappings from X into Y.

1) 1f O has a continuous modification then every u € LJ\ belongs to D(P) ie D(P) = LO\

i) The converse Is not true ie. there exists a rardom mapping © from X into Y admiting
the series expansion of the form (4), where () is a sequence of real-valued symmetric independent
random variables and { f,,) is a sequence of continuous mappings from X into Y such that D(®) = L
but & has not a continuous modification.

Proof Let V= (X, Y) be the set of all continuous mappings from X into Y. It is known
that 17 1s a separable Banach space under the supremum norm

£l = sup 1)1
I€X
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For cach pair (@, y™) € X < V" the mapping z 2 y* : V' —+ R given by
(r@y")(f) = (fla), ")

is clearly an elementof VV*. Let I' = {{(zr®@y*),(x,y") € X x Y} Itis casy to check that I' is a
separating subset of 17*. Let W(x, w) be a continuous modification of <. Define a mapping 17: Q2 — V
by

T(w) =ar— V¥ (rw).

We show that T is measurable t.c T is a V-valued random variable. Indecd, for cach (r 0 y*) € I

the mapping w +— (T(w),z 2 y") = (T(w)r,y") = (V(r,w), y*) = (Pr(w). y") as. is measurable.
Since V7 is separable and T' is a separating subset of V7°, the claims follows from the theorem 1.1 1n
([4).

Note that for cach w the mapping = +— a,,(w) f,,r 1s an clement of 17, lence «,, f,, is a V-valued
r.v. Now for cach (x @ y*) € I" we have

(T(w),x®y") = (T(w)z,y") = (Px(w),y")

= Z(On(w)fn:t,y') = Z(un( Vfu,r = y’) as.
n=1 n=1

Since (a,, f,) is a sequence of VV-valued symmetric independent r.v.’s in vicw of [to - Nisio theorem
o0
we conclude that the series ) «, (w) f,, converges a.s. to T in the norm of V. This implies that there

n=1

exists a set D of probability one such that for each w € D,z & X, we have

T(w)x = Z o, (w)fuz.

n=|\

Consequently, for u € Ly we have

T(w Z(tn ) fn(u(w) = Za,l Yfau(w) VYwe D

n=1_ n=|1

i.e. the series ) | ap(w) fuu(w) converges as.
ii)The following example shows that the converse is not truc.
Example. Let X = [0;1],Y = R. Consider the sequence (€,,) of real-valued independent r.v.’s given

by
1 1
P(§ = —n) = P =n) = ma P, =0)=1- n'
Then (£,,) are real-valued symmetric independent r.v.’s and

. 1
HL(EH) =0, ]Elfnl = 7_1’ ]E|£n|2 =

Let (a,) be sequence of positive numbers defined by

1
a, = —=——
vnlog,n
and put an = a,&n. Then (ay,) are real-valued symmetric independent r.v.’s and
1y,

E(a,) = 0,E|an| = — 1E|an|2 = a2,
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Let {f.) bethe sequence of functions f, @ [0;1] — R defined by
fult) = cos2mnt.
Cleaarly, f,, are continuous. Consider the random function @ : [0; 1] — R given by

O(t)(w Ln,, (t). (7)

_—

We T have

Lmu”fn )i < L]E]a,,{ = Z ¢

n=1 n=1
X ok ¢ e ,
sincee 7'1 <, Y adid=% ﬁw'— < oc. This implies the series (7) converges a.s. Moreover, for
N =1 n-=1
cach erI - valued random \drmblt. w we have

a
ZM(!,IL, u)| < sﬁp|(1,l| = 7: < ¢

n=1 n=|1

Thiss implies the series
xC

>___: (iltfl'l{“)

n=l
convverges as. Hence D(d) — Ly(R).
Next, we shall show that ®(#) is an unbounded function. To this end, we use the following
resuslt from ([5]) (Theorem 7 and Excersise 3 p. 231).
Consider the random scries

(I’ i) ->— anén W)fu te [“ 1'

wherre (&,,) are independent and s.\mmctric r.v.’s with lE|4£,,|2 =1, («,) are positive real numbers such
that d° ) < oc and f,(1) = cos2mnt. Put

/ \‘1/2

S e
S, _ag

<ng2rtl

w
Fhetnaf )0 s, o then @(4)(w) is not a bounded function on {0; 1] a.s.
=0
Now we come back to our example. We have

9

\ 1/2

[ .
S k Z ”?1) > (2’a3.f.])”2 = —= _1

/9
<t / Vel 1)

C
whicch implies that Y~ s, — oc. Therefore, for almost sure w, P(1)(w) is not bounded a.s. so is not
-0

conttinuous on [U; 1] a.s.

Ackinowledgment. This work was supported in part by the Vietnam National Foundation for Science
and Technology Development.



248 DM Thang, TM. Cuong / VNU Journal of Science, Mathematics - Physics 25 (2009) 237-248

References

[ 1] Bretagnolie. J.. Dacunha - Castelle, D. and Knvine, J. 1. (1966). Los stable ot espace Ly, tnn Iust 1 Powncaré, B
231 - 259,

[2] W.Linde. Infinitely divisible and stuble measures on Banach spaces, L.eipzig 1983,

{3] DL Thang and N.Thinh, Random bounded operators and their extension, Avusine Jo Math. Vol S8(2004). 257276

[4] NN vakhania, VI Taricladze and S.A. Chobanian, Probability Distribution on Banach spaces. [132.Reidel Publishing
Company, Dordrecht 1987

[5] J. P. Kahane. Some random series of functions, Cambridge Univ. Press 1985



