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Abstract. In this paper we study periodic solutions of the equation

7/A \
; (; + aa 

)u@,t) 
: uG(u - f), (1)

with conditions

ut-o:'tlt-bt [ @@),r) d,n:o (2)
Jx

over a Riemannian manifold X. where

Gu(r,t) :, I s@,y)u(y)dyJx__q
is an integral operator, u(n , t) is a differential form on X , A : i(d+ 5) is a natural differential

operator in X. We consider the case when X is a tore fI2. It is shown that the set of parameters

(u,b) for which the above problem admits a unique solution is a measurable set of complete

measureinCx]R+.
KEworlrs and phrases: Natural differential operators, small denominators, spectrum of compact

oDerators.

1. Introduction

Beside authors, as from A.A. Dezin (see, [1]), considered the linear differential equations on
manifolds in which includes the external differential operators.

At research of such equations appear so named the small denominators, so such equations is
incorrect in the classical space.

There is extensive literature on the diffcrent types of the equations, in which appear small
denominators. We shall note, in particular, work of B.I. Ptashnika. (see, [2])

This work further develops part of the authors' result in [3], on the problem on the periodic
solution, to the equation in the space of the smooth functions on the multidimensional'tore fI'. We shall
consider one private event, when the considered manifold is 2-dimension tore fI2 and the considered
space is space of the smooth differential forms on fI2.
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We shall note that X-n-dimension Riemannian manifold of the class C- is always expected

oriented and close. Let

6:O o€p:$:olye(T"X)eC
is the complexified cotangent bundle of manifolds X, C-(() is the space of smooth differential forms

and Hk(€) is the Sobolev space of differential forms over X (see, [4]). By -4 we denote operator i(d+6),
so-called natura{ differential operator on manifold X, where d is the exterior differential operator and

6: d*- his formally relative to the scalar product on C-(0, that inducing by Riemannian structure

on X. It is well known (see, [4], [5]) that d+d is an elliptical differential first-order operator on X.
' From the main result of the elliptical operator theories on close manifolds (see, [4]) there will

be a following theorem.

Theorem l. In the Hilbert space H0 (Q) there is an orthonorm basis of eigenvector {f ,.} , m e Z, of the

operator A: i(d+5) that correspond to the eigenvalues ).*. Else \rn : 'ip*, 1,l- € R, \-^: -\r,
and ,, , '-. 0 when rn ---+ 6.

lArnl
Proof. This theorem was in [5].
The change of variable t : br reduces our problem to a problem with a fixed period, but with

a new equation in which the coeffrcient of the r-derivative is equal to 7lb:

.a(# -r a(d -r 6))u(r,br) : vglu(r,br) - f (r,br))

2. Thus, in fI2 : R2 lQV,)2 problem (l)(2) turns into the problem on periodic solution of the equation

(3)

ult:o : ult:t, (r(r),7)dr:0. (4)

Here

/ "o("u(r,t):(1 O"')l::l:
\ "("

- complex form with coeffr , t e [0,1]; a ers,

(u(r),u(r)) r)u1(r) + u2(

Lu = 13_ * a(d, * 6))u(n,t) : uG(u(r, t) - f (r,t))'1,oot

with the followine conditions:

Gu(r,t) : I s@,y)u(y,t)d'y
Jft2

is an integral operator on the space L2: Lz(Ho(Q, [0, 1]) with a smooth kernel

g(r,v): (s4@,v11, i, j :0,3

defined on II2 x fI2 such that

f,
Jn"( soo(",d gor(r,a) goz(n,a) sos(',v) ) d": 0 vs € fI2'
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We assume that operator lth+ aA) : i&+ a@* d) given in the-differential form space

u(r,t) € C-(C-(€), [0, 1]), with these conditions

zlt:o : ult:tt [ @@),7)d,r: o.
J tl2

Let L -denote the closure of operation jr* - a@, + 6) in L2(H0(€), [0, 1]). So, an element

u e L2(Ho(€), [0, 1]) belongs to the domain D(L) ofoperator t : t;f#]- 
aA), if and only if there

is a sequence {ui} c C-(C*(6), [0, 1)) uilr:o: uilt:rt !nr@i1r1,1) dr:0 such thatlimui : u,

limLui: Lu tn fz(Ho(€), [0' 1]).

Let'll-denote a subspace of space 12(I/0(€), [0,1])

11: {u(r,t) e L2(Ho(€), [0, 1]) | [ @@,t),7) d,n:0]
J tt2

We note that

{+i"@+ 4: +ttrlkl;k: (kr,k2) ez2}

is the set of eigenvalue of operator A: l(d + 6) on fI2 and eigenvectors, coresponding to

are given by the formula:

fn'(r) : "ig(kPr 
* kzr2)'r'' 

''
here up, e O?:o no(Cr), \ : (Tr,rlz) e {-I,*1}2 is some basic in 4- dimensional space of the

complex differential forms with coefficients being constant. These coeffrcients depend on ,k e Z2 and

elements of this basic are numbered by parameters 4. We are not show a,,1r, on concrete form. (see, [6]).

Lemma l. The forms €krnn : "i2"*tfxn(r),k: (h,kz) f 0, are eigenform operator L that

corresponds to the eigenvalues

\knt: " (T + alnlrtr) :ry * ),*n (5)

in the space H. These forms form an orlhonorm basis in given space. The domain of operator L is
given by formula

D(L) :{ " 
: D uk,nn€krnn I llXr,,r"k^rl' <-, I lur^rl' < oo }.

k+o k+o k+0

The spectrum o(L) operator L is the closure of the set A: {tr*-ry}'
We note that the number of dimensions of the eigensubspace is finite and we shall not indicate

exactly how many there are of them.

Lemma 2. Let g(r,A) e L2(fI2 xfI2) and

M, : ( [ t M@,v)ll'o,oo\''''
\JT2 JT2 /

Then G - linear operator is bounded in HoG) and his norm llcll3 Mg
Here llg(r,y)ll - matric norm g

g(r,a): (9;i@,Y11, i, j -- 0,3

rfi + rc/,
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llgll :sup{llezll lue JR2xlR2, llzll <1}.
Proof. If u(r) € Ho(6)

llcu(r)ll' : | | lr,s@, ilu(a)dalf = (lr"k@, ilu(v)lldry)' <

/ r 12 r ^ r ^( I lls@,ill:. ll"(illlaa ) < / llg(",v)ll2aa' I ll"(v)ll'da,'\Jn, "'-"'"/ -Jn2 - 
Jn2

llculP: I llcu(r)ll'd* <
Jt2

t ( t ttg@,a)tt'.a I tl,(v)t t2da\ h,
rrl; \r;1, tn,, /

llc"ll'< | | lls@,y)ll2drdy I ll"@)ll'da:M&ll"ll',
JTI2 JfI2 J t2

llcll a Mo.

The lemma is proved.

Let E: (-A,)o*l,a ) 0. Then E is M-operator in I10(O and Efp, : pkft",t, herc
pr : (trlkl)'*'o ut" eigenvalues. Operator (-A,)o+1 is self-conjugate. We suppose that kernel

S@,a) of operator G having the following behaviour (-L,)'+'gni(r,A) e L2(fI2 x II2) @tiGA)
belongs to space Sobolev W]+z* for almost every a € II2). Then product operator E " G is integral
operator (-A,)t+' o G* with kemel

(-L")'+'g(r,a): ((la")t*'g oi)@,a)), i,,i :d3. ,

Let M: max{ll(-A,)t+'o cll, llcll}.
Lemma 3. Let u : Gu : Danrnnek nrll then

lu*'"nl'= ,, ,1Y:'l9ll: -., (6)- ((zrlkl)z+za 11)z'
Ifk+0then

lr*^rl', - lo*'n l'- 61r1;'*2a 1r)z'
here

dtemn : ((-Ar)t+' o Gu, eprn ) 7r.
Proof. We have

ekrnn : ((-A,)t+' oGu,e*,n j)"r: [ ((-A,)t+' oGu;en,nn)at: [' pr.r, (-A,)1+ oep,n )dt:Jo Jo
pr pl

I (C", p'6ep,n )dt : T,, | (Gu, ep, ,,1)dt : px(Gu, en^n) b : prkak,n r.JO Jo
Then, if px * 0 ( so that lp*l > 1) we have

lut"' t2 " 
4lon'"12

nqt - (lP*l +7)2'
Thus, by Parseval dentity

\,lo*,,r1': ll(-A,)'+2" o Gull2 < u'll"ll'.
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So that

lup--12 t !M2ll"ll2^aqt - (|prl +1)2'

In the case F* : O by Parseval dentity Dlrr,.rl' : llGull' we have

l, *,n l' < || c |l' |l, |l' s +llc ll' llull2 < + rw" Wll? 
=(lt"nl + t)''

The lemma is proved.

' We assum e that a is real number. Then by Lemma I , the spectrum o (L) lies on the real axis.

The most typical and interesting is the case where the number abl2 and, (abl2)2 are irrational. In
this case, 0 * \n^n e V,.,k € V],k I 0 and, the H.Weyl theorem (see, e,g., [7]) says that, the set

of the numbers )6-n is everywhere dense on IR and o(L): IR. Then in the subspace'Jl the inverse

operator .L-1 is well defined , but unbounded. The expression for this inverse operator involves small

denominators [B].

L-ru(t,') : t ??"*,,r,,,KnrI

where the uprn, are the Fourier coefftcient of the series

(7)

u(r,t):
me

ukrnn€kmn.
2 k+0

\-
/2
tce

For positive numbers C,o let A"(C) denote th! set of all positive b such that

\ I\ C
,\x,ntl > lkF* 

(8)

for all rn e Z,k € 22,rl : (\r,Tz),Tr2 - 11, k + 0.

From the definition it follows that the set A"(C) extends as C reduces and as o grows. There-

fore, in what follows, to prove that such a set or its part is nonempty, we require that C > 0 be

sufficiently small and o sufficiently large. Let Ao denote the union of the sets ,4., (C) over all C > 0.

If inequality (8) is fulfilled for some b and all m,le , then it is fulfilled for m : 0; this provides a

condition necessary for the nonemptiness of A,(C):

C <lkl'+"lanlkllV k+0.

We put 6: laltr and C < d,12.

Theorem 2. The sets Ao(C), Ao are Borel. The set Ao has complete measure, i.e., its complement

to the half-llne IR+ is of zero measure. 
oo

Proof. Obviously, the sets A"(C) are closed in lR+. The set Ao : l) 1,"1t1r1- is Borel, being
r:l

a countable union of closed sets. We show that Ao has complete measure in IR*, Suppose b, I )
d.0, C < |t we consider the complement (0, l)\A"(C). This set consists of all positive numbers b,

for which lhere exist m,k,k f 0, such that

(e)

l\*rrrtltffi (10)



Solving this inequality for b, we see that, for m,k,k f 0 fixed, the number b forms an interval

Ik,rr: (*on,m/n), where 'trl: I,2,3,'.',
21 2r

ak : ----------e-, 0n : :--..:----T-
lanlkll+ ;i; lanlkllItcl-'- lk|+"
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The length of l6,rn is rnd1", with

4rClk1-t-"6k:

d

i bV assumption, we have

(1 1)

the given

(12)

The measure of the intervals indicated ( for k I 0 fixed ) is dominated by d1,^9t, where

3n : Sn(t) is the sum of all integers rn satisfying (12). Summing an arithmetic progression, we obtain

Sr < ffVrlkll{Ilanlkl | +'}. (13)

k and m, and using (11), we see that
!

SnSx < CS(I),
2

lanlkllz - Qzlftl z'zo

Since C (

dr: 76nc
> 5lk[+'E;lElP'

For k fixed and m varying, there is only a finite amount of intervals lp,n that intersect

segment (0, l). Such intervals arise for the values of m : 7,2..., satisffing rma.p I I, i.e.'

o < m < l(-nltll + clt;-l-";.2r''
1

Since Clkl-|-o < ,lanlkll, we can write simpler restrictions on ?n :

o < n'L < ffi|"*tnt1. 
!-Pnlnll.

Considering the union of the intervals in question over

p((0,1)\A'(c)) < t
k+0,ke

^9: S(l) :

Observe that the quantity

is dominated by a constant D, therefore, (since o > 0)

s1r; < lrr

8l{tlatrlkll+ "}
,3rlklr+ola"lkll 

'

1

, lklr+' 
< oo'

t
+o,k<

t
k+0,k€

We have

p((0,,) \ A,) < p((0,,)\ A"(C)) s CS(I) VC > 0.

Itfollows thatp((0,1)\A") : g Vl > 0. Thus, p((0,oo)\.4") :0 and -4o- has completemeasure.

The theorem is proved.
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Theorem 3. Suppose S@,a) € L2(fI2 x II2) such that (-A,)t+'g(r,g) is continuous onfl2 xfI2
and

f
| ( soo(r,il go{r,v) goz(r,a) sos(r,0 ) d'r :0 Ys efr2 '

JT2

Let0 < o 1!, and letb e A"(C). Then inthe spaceH theinverse operator L-L iswell defined,

and the operator L-L o G is compact.
proof. Since b'e A"(c),we have \n*n # 0 Y m e z,k e 22, k I 0 so rl:frlt,rn" space Tt,

-t-1 is well defined and looks like the expression in (7). observe that lim 
G#E;Try: 

0 as

l,kl -+oobecause0<o17,a)0.Therefore,givene)0,wecanfindanintegerko)0,suchthatlbl2+2o (.(1\2

G#$Try'ffi for all lkl 2 ko'we write

L-7u(r,t): Qhru *Quozu, u: Gu,,

where

Qkorr: t Y"r^r, Q*oru: t Y"r,,r'
o<1*-1at o 

Ak*n 
| 
714, o*^'

For the operator Q*0, we have

llQro"ll':
0

Observe that if 0 < lkl ( ke, then

lrx^rl'
l\x^ql2'

Iim ^' 
t :0.

lrnl*oo l# * anlklq2l2

Therefore, the quantity ,*: - " 
is dominated by a constant C(k6). Then

I A * attlcl\21-

lle no,rll' < t luk,.rl2c (ks) < c(ks) | lol 12,

which means that Q po, is a bounded operator.

Consider the operator Q*oro G. By Lemma 3 and (8), we have

llQn*rll2 : llQuo, o Gull2 : > M =lffik"l^r"nnl

\- ,=l3f?:l' ,.^ (L\2w12+2" s*fr*), t lor^rl2 <r2llull2.
,rfrr{{"lttl)z+za 

* t;zt cl t'"t -'c' '*' 
,r,uro

Consequently,llQuo, o Gll S e.

Since G is compact and Q;,o, is bounded, Q*o, o G is compact. Next, we have

lll-t o G - Qno, oGll: llQro," Gll < e.

Thus, we see that the operator L-7 o G is the limit of sequence of compact operators. Therefore, it is
compact itself. The theorem is proved. We denote K : Ka : L-r o G.

Theorem 4. Suppose b e A"(C). Then problem (1)(2) has the unique periodic solution with period
bfor all u €C, except, possibly, an at most countable discrete set of values of u.



24 D.K. Hoi / WU Journal of Science, Mathematics - Physics 26 (2010) 17-27

Proof. Equation (3) reduces to

(L-roC-L)u:L-r"G(f).
u'

Wewrite L-roC-!:N-!.
UU

Since 1( - L-'o G is a compact operator, its spectrum o(1{) is at most countable, and the

limitpoint of o(K)(if any) can only bezero. fherefore,the set S: {, +01! eo@)}is atmost'v
countable and discrete, and for all u I 0, , f ,9 the operator (K - ;) ir invertible, i.e., equation (3)

is uniquely solvable. The theorem is proved.

We pass to the question about the solvability of problem (l)(2) for ftxed u. We ne,ed to study

the structure of the set -E C C x lR+, that consists of all pairs (2, b), such that u l0 and : 4 o(Nu),

where Ku: L-r oG.
Theorem 5. E is a measurable set of complete measure in C x IR+.

For the proof we need several auxiliary statements.

Lemma 4. Forany e > 0thereexists anintegerkssuchthatllK6-kAt <eforallbe,4,(1),0 <
o 17,, where r :7,2,..:, r

Ukrnn

-p,

\ /1\ vKnln'
 krnn\o )

K6u: La-ru: t ffi"r*r, k6u:

lbl2+2o
Proof. Observe that for any 6 > 0 there is an integer ks such ffrar r'"1' ((zr'lf ;;z+2a 11)2
for all lkl > ko, 0 < o ( 1,a ) 0. We have

< (ft)' .' t

(Ko - k6)u: K*ouu: t ffi"r,.,
lk1>ko "Kmrt

| | (r(b - friul|2 : 11Kooou112 : f | .'*-7,, l' < r,i?,1!3']!,1'l'i,u 
=l*t'l>ro' 

\x,",t(b)' -,?,rro ((trlkl)z+2" i 7 1' -

,,(h), \ lor,-rl, <,r(h)rurllull, : url)ullr.
lkl>ko

Thus llXa- frull : llI(/.rrll < 6 as required.

Lemma 5. The operator-valued function b ---+ K6 is continuous for t e 41!1.
I

Proof. Suppose b,b + Lb e A,(:) and e > 0. By Lemma 4 there exists an integer ks (independent

-,of b,b + Ab) such that ll-8 - Kbll : llK*oull < e and llKo+aa - Ku+mll = llKro(ataa) ll < e. Next,

Ku+ta - Kb: (fra+n + o(a+aa)) - (kur Kxoa),

whence we obtain

lll(a+aa - Kbll S llfra+ra - kal* llKro(a+ab)ll + llKroall.
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Considering the ope ators .k6-'a6, -fr6, we have

(frr*oo-fr6)u: t ( \ 
-tl^ll)terrut€ternrl

o<l&l<ko 
\*'n't(b + Ab) AP'nn\D)'

llkou - fru+mu1, - *+!f,-,, t 
4m2r2 -. (14)--va^v'" lb(b+Zb)l'O<urro*o l\n"r(b)lt

If b+ Ab e A"(;), t .'::.. r:, o < o < 1, then

6ffiW I la1",n l2r2lklz+2" s r2ko2+2"lr*,n l''

- 4m2r t ,., ^ -ttt -t :----r-..L^++L^^,,^-+: 4m2n2
The relation hm t'J-- : b" andthe condition 0 < l,kl < k6 imply that the guantit'r 

- 

:
m'-'x 1a1"rn1\0)l' 

uullulllurru \ lrul \ tuu'rrPrJ t'*t r'v 
Ar'-n@)12

4m212
rs dominated by a constant c(kd depending on ks. Therefore

| + anlklTt2l2

lAbl2 =-- lux,,rl' 4m2r2 .,
[00+ Lb)l' o.?r<xol\*,.r16 + Ab)l2l\x*n(b)l' -

lAbl2 t r2koz+zo"rko)lu*,_nl2 S
lb(b + Abtizr-\- '- /t oai-*<*3 |

labl2
tatJiioltz '2koz+z""T 

o' t l'**'l''
0<l&l<,{o

Since

t lrx,n l'< llrll' < u'llull",
0<l,rl<,co

we arrive at the estimate

llfrr*a, - kSf'= frffi M2r2ko2+2"c@o).

We choose Ab so as to satisff the condition

-lAqi- x42r2po2+2oc&s) < e.
lb(b + Ab)1-

fhen llKa+m- Kull < 3r.This shows that the operator-valued unction b ---+ K6 is continuous on

A"(;).The Lemma is proved.

Lemma 6. The spectrum o(K) of the compdct operator K depends continuously on K in the space

Comp(1ld of compacr operators onHo, in the sense thatfor any e there exists 6> 0 such thatfor

all compact ( and even bounded ) operators B with llB - Kll < 6 we have

o(B) c o(K) + %(0), o(K) c o(B) + %(0). (15)

Here V,(0): {^ € A I l^l < 6} ts the e-neighborhood of the point 0 in C'



26 D.K. Hoi / WU Journal of Science, Mathematics - Physics 26 (2010) 17-27

Proof. Let K be a compact operator; we fix 6 > 0. The structure of the spectrum of a compact operator
shows thatthere exists e1 < €12 such that q # l^l for all 

^ 
e o(K). Let ^9: {4r,..., );} be the set

of all spectrum points ) with l)l > er and let 7 : U %, ()). Then V is neighborhood of o(,K)
)€su{o}

and V c o(K) + %(0). By the well-known property of spectra ( see, e.g.,[9], Theorem 10.20) there
exists d ) 0 such thato(B) CV for anyboundedoperatorB with llB-Kll < d. Moreover(see, e.g.,

[9],p.293, Exefcise 20),the number d'> 0 can be chosen so that o(B)n%r()) +AV^ € ^9U{0}.
Then for all bounded operators B with llB - Kll < d the required inclusion o(K) c o(B)-1V2,,(0) C
o(8,) * %(0) and o(B) cV c o(K) + %(0) are tulfilled. The lemma is proved.

From Lemma 6 we have the following statement.

Proposition l. The function p(),, K): di,stQ,,"(K)) is continuous on C x Comp('Hs).
Proof.Suppose.\eC,KeCornp(T{s)ande>0.ByLemma6thereexists6)0suchthatforany
operator fI lying in the d-neighborhood of K,llH - 1{ll < d, the inclusions (15) are fulfilled; these
inclusions directly implythe estimate lp(^,1() - p(A,f/)l< e. Then for all p €C with lp - )l < e

and all fI with llH - Kll < d we have

lp}r,K)- p(^,H)l< lp}",K)- p(^,rc)l+lp(^,K)- p(^,rr)l< lp- rl *e <2e,

Sincee)0is arbitrary,thefunction p(x,K) iscontinuous. Thepropositionisproved.

Combining Proposition I and Lemma 5. we obtain the followingfact.

Corollary l. Thefunction p(),,b): d,ist(\,o(Ku)) is continuous on (),,b) e C , A"(:). 
I

Now we are ready to prove Theorem 5.

Proof of Theorem 5. By Corollary 1, the function p(\f v,b) is continuous with respect to the variable

(v,b) e (A \ {0}) , A"(:). Consequently, the set

B,:{(u,b) | p(\lr,b)+0, Ue,n"1!1y

is measurable, and is so the setB: l)rB* Clearly, B C E and E: BU86, where Bo: E\B.
Obviously, Be lies in the set C x (R+ \ A") of zero measure ( recall that, by Theorem 3, Ao has
complete measure in IR+ ). Since the Lebesgue measure is complete, .86 is measurable. Thus, the set
E is measurable, being the union of two measurable sets. Next, by Theorem 4, for b e. Ao the section
Eb:{r€Cl(rz,b)eE}hascompletemeasure,becauseitscomplement{Tlulueo(K6)}isat
most countable. Therefore, the set ,E is of full plane Lebesgue measure. The Theorem is proved.

The following important statement is a consequence of Theorem 5.
Corollary l. For a.e. u e C, problem (1)(2) has a unique periodic solution with almost every period
beR+.
Proof. Since the set E is measurable and has complete measure, for a.e. u e C the section E, : {b e
IR+ | (r, b) e n\: {b € IR.+ | t/z 4 "@u)} 

has complete measure, and for such b's problem (l)(2)
has an unique periodic solution with period b. The Corollary is proved.
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