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Abstract. Analytical expressions for the ratio of the root mean square fluctuation in atomic

positions on the equilibrium lattice positions and the nearest neighbor distance and the mean

melting cgryes of bcc binary alloys haye been derived. This melting curve provides information on

Lindemann's melting temperatures of binary alloys with respect to any proportion of constituent

elements and on their euctectic points. Numerical results for some bcc binary alloys are found to

be in agreement with experiment.
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1. Introduction i

The melting of materials has great scientific and technological interest. The problem is to
understand how to determine the temperature at which a solid melts, i.e., its melting temperature. The

atomic vibrational theory has been successfully applied by Lindemann and others [1-5]. The

Lindemann's criterion [1] is based on the concept that the melting occurs when the ratio of the root

mean square fluctuation (RMSF) in atomic positions on the equilibrium lattice positions and the

nearest neighbor distance reaches a critical value. Hence, the lattice thermodynamic theory is one of
the most important fundamentals for interpreting thermodynamic properties and melting of materials

U-6, 8-151. The binary alloys have phase diagrams containing the liquidus or melting curve going

from the point corresponding the melting temperature of the host element to the one of the doping

element. The minimum of this melting curve is called the eutectic point. The melting is studied by

experiment [7] and by different theoretical methods. X-ray Absorption Fine Structure (XAFS)

procedure in studying melting [8] is focused mainly on the Fourier transform magnitudes and

cumulants of XAFS. The melting curve of materials with theory versus experiments [9] is focused

mainly on the dependence of melting temperaflre of single elements on pressure. The

phenomenological theory @T) of the phase diagranrs of the binary eutectic systems has been

developed [10] to show the temperature-concentration diagrams of eutectic mixtures, but a complete

"ab initio" theory for the melting transition is not available [11,16]. Hence, the calculation of melting

temperature curve versus proportion of constituent elements of binary alloy and its eutectic point still

remains an interesting problem.
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The purpose of this work is to develop a thermodynamic lattice theory for analytical calculation of
the mean melting curves and eutectic points of bcc binary alloys. This melting curve provides
information on Lindemann's melting temperafures of binary alloys with respect to any proportion of
constifuent elements and on the eutectic points. Numerical results for some bcc binary alloys are found
to be in agreement with experiment [7].

2. Formalism

The binary alloy lattice is always in an atomic thermal vibration so that in the lattice cell n
atomic fluctuation function, denoted by number I for the I't element and by number 2 for the
element composing the binary alloy, is given by

the

2"d

rJ ,, : I4t",,"r'*, + uio"-,'.*, ), U,, = 
;1(uro",r.^n 

+ u)oe-itx,), (l)

'r, 
='r"t'o', lt2o :llreiact,

where atristhe lattice vibration frequency and q is the wave number.

The atomic oscillating amplitude is characteri zed, by the mean
Debye-Waller factor (DWF) 13,l2-l5l which has the form

w =!lk.u-l' .., Hl ltl
-q

uo=

where K is the scattering vector equaling a reciprocal lattice vector, and u, is the mean atomic
vibration amplitude.

It is apparent that 1/8 atom on the vertex and one atom in the center of the bcc are localized in an
elementary cell' Hence, the total number of atoms in an elementary cell is 2. Then if on average s is
atomicnumberof[pe land(2-s)isatomicnumberoftype2,thequantiwio isgivenby

rurq + Q-thro
2

The potential energy of an oscillator is equal to its kinetic energ"y so that the mean energy of atom
kvlbratingwith wave vector q has the form

Eo = M ol"rf (5)
Hence, using Eqs. (2,5) the mean energy of the crystal consisting of N lattice cells is given by

s = I Eo =Zulu,ot]l",ol' * 1z - s)M ,ollrr,l'), (6)q' ; 
\

where, Mr, Mz are the masses of atoms of types I and,2,respectively.
Using the relation between uroand uro fl3f,i.e.,

Itro=mttrq, m=Mr/Mz, e)
and Eqs. (5, 6) we obtain the mean energy for the atomic vibration with wave vector 4r

(2)

square displacement (MSD) or

(3i

(4)
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E o = Not]lr,rl'br, + M r() - t)*'1. (8)

The mean energy for this qthlattice mode calculated using the phonon energy with noas the mean

number of oscillators is given by

eo = z(n, *L)nr, .

\ 2,/

Hence, comparing Eq. (8) to Eq. (9) we obtain

. l)
o+;l
+ (2 - lml'

Using Eq. (a) and Eq. (7) the mean atomic vibration amplitude has the form

t-P 1r la \ r2t 12

lrnl :4[t*\z-s)m] vtql .

l*",11 
: L K'lu,l' = |r'[' * (z - r)*\'lu,ol' .

DWF Eq. (3) with all three polarizations is given by

11, =;\*'1"[ =i\
-(tq

, : 
1 
*'[, * (z - e*]h' 

[ {;"-. :}#,

, =1*,[, + (z - n^]#p;'] {*. I}^"

(e)

To study the MSD Eq. (3) we use the Debye model, where all three vibrations have the same

velocity [3]. Hence, for each polarization With taking Eq. (11) into account we get the mean value

(10)

(1 1)

I

(1 3)

(r2)

When taking all three polarizations the factor 1/3 is omitted, so that using Eq. (10) the MSD or

Transforming the sum over q into the corresponding integral [3], Eq. (13) is changed into the

following form

(14)

Denoting z =ho I kBT , k r0o =hato with oo , 0o as Debye frequency and temperature,

respectively, we obtain

(15)

Since we consider the melting, it is sufficient to take the hight temperatures (T >> d, ) so that

-== 1, and 1- O, then the DWF Eq. (15) with using Eq. (7) is given by
e"-l 2

n"!r,+(2-slMrlt2K2T
w - 2.Ltnt flf)" 4 MlM 2kuezD ' ;

which is linearly proportional to the temperature T as it was shown already [3, 14].

From Eq. (12) with using Eq. (3) for W we obtain
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K'[r* Q-gmf''
The mean crystal lattice energy has been calculated

a :ZM ol, ^l' 
=ZZu rrllu,,l' .

k,n k,, q

Using this expression and Eqs. (6, 7) we obtain the atomic MSF in the form

!>'l',,1'= *'Zlu,,l' 
'Na o

whiih by using Eq. (17) is given by

|>lu,.f =

Using W from Eq. (16) this relation is resulted as

I sr,, 12 l8m2lt2T

lyLluz,l=M

Ll",ol' =
q

24tI/

24mzW

K'b * Q- gmf'z '

(r7)

(18)

(1e)

(20)

(2r)

(22)

when this value R
T, for a bcc binary

(23)

Hence, at T>>0o the MSF in atomic positions about the equilibrium lattice positions is
determined by Eq. (21) which is linearly proportional to the temperature T.

Therefore, at a given temperature T the quantity R defined by the ratio of the RMSF in
atomic positions about the equilibrium lattice positions and the nearest neighbor distance d is
given by .

R_

Based on the Lindemann's criterion the binary alloy will be melted
reaches a threshold value Rr, then the Lindemann's melting temperature
alloy is defined as

lsM, + (2 - iM,] . ^. _ R'^kre'od'T^=E lgm ,t,,)(=-ff,
If we denote x as proportion of the mass of the element I in

-lR'^=#Zlu,,f'
the binary alloy, then we have

sM,

sM,+(z-t)u,'
From this equation we obtain the mean number of atoms in the element 1

lattice cell

s'= 2x

m(l- x)+ x
We consider one element to be the host and another dopant. If the tendency to

for both constifuent elements, we can take averaging the parameter m withrespect
proportion of the constituent elements in alloy as follows

(24)

for each binary alloy

(2s)

be,the host is equal
to the atomic mass

lSm2hzT

M,b * e - gmlk,o'r6z '



n =!l,L+(z-,)l1,-'l (26)"' 2l'u' "'tut')

This equation can be solved using the successive approximation. Substituting the zero-order with s

from Eq. (25) in this equation we obtain the one of the 1" order
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(27)

which provides the following solution

(t - *W'. 
[" 

- G fh]* - *az : o,

m=
-["- ft-,\Y'f*Jr
L 'Mr)

z(t- x)
, A : 

["-O 
- fh]+ +x(t-.)h, (28)

replacing m inEq. (23) for the calculation of Lindemann's melting temperatures.

The threshold value R, of the ratio of RMSF in atomic positions on the equilibrium lattice

positions and the nearest neighbor distance at the melting is contained in 7 which will be obtained by

an averaging procedure. The average ofy can not be directly based ony, and Trbecause it has the

form of Eq. (23) containing R), i.e., the second order of R,, while the other averages

realized based on the first order of the displacement as Eq. (22). That is why we have

average for 7t'' andthenobtain

[ 
-,, 

,-h
z :F^lr, + (2 - s)l r,) /4,

dT^ :0.
dx

containing7 for the l't element andTrfor the 2nd element, for which we use the following limiting

values

tz=97^(z)/M2,s=0; It:97,(r'tlMvs=2 (30)

with [,11y and T,p1as melting temperatures of the first or doping and the second or host element,

respectively, composing the binary alloy.

Therefore, the melting temperature of bcc binary alloys has been obtained actually from our

calculated ratio of RMSF in atomic positions on the equilibrium lattice positions and nearest

neighbour distance Eq. (22), which contains contribution of different binary alloys consisted of
different pairs of elementS with the masses M1 and Mz of the same bcc structure.

The eutectic point is calculated using the condition for minimum of the melting curve, i.e.,

have been

to perform

QN

(3 1)

3. Numerical results and comparison to experiment

Now we apply the derived theory to numerical calculations for bcc binary alloys.'According to the

phenomenological theory GT) [10] Figure I shows the typical possible phase diagrams of a binary

alloy formed by the components A and B, i.e., the dependence of temperature T on the proportion x of
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element B doped in the host element A. Below isotropic liquid mixture L, the liquidus or melting
curve beginning from the melting temperature Ta of the host element A passes through a temperature
minimum TB known as the eutectic point E and ends at the melting temperature Ts of the doping
element B. The phase diagrams contain two solid crystalline phases o and p. The eutectic point is
varied along the eutectic isotherm T : Ts. The eutectic temperafure Ts can be a value lower Ta and Tn
(Figure la) or i.r the limiting cases equaling Tn (Figure 1b) or Ts (Figure 1c). The mass proportion.x
characteizes actually the proportion of doping element mixed in the host element to form binary alloy.

(a) (b) (c)

Fig. 1. Possible typical phase diagrams of a binary alloy formed by components A and B.
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Fig. 2. Calculated melting curyes and eutectic points of binary alloys Cs1-*Rb", Cry-,Mo"compared to
experimental phase diagrams [7].

Our numerical calculations using the derived theory are focused mainly on the mean melting
curyes providing information on the Lindemann's melting temperatures and eutectic points of bcc
binary alloys. All input data have been taken from Ref. 6. Figure 2 illustrates the calculated melting
curves of bcc binary alloys Csr-*Rb, and Cr1-lVlo, compared to experiment [7]. They correspond to the
case of Figure la of the PT. For Cs1-*Rb, the calculated eutectic temperature Ts : 288 K and the

eutectic proportion xs:0.3212 are in a reasonable agreement with the experimental values Tp : 285.8
K and.xe = 0.35 [7], respectively. For Cr1-*l\4o, the calculated eutectic temperature TE:2125 K agrees
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well with the experimental value TB:2127 K [7] and the caiculated eutectic proportion lB : 0'15 is in

a reasonable agreement with the experimental value xB:0.20 [7]. Figure 3 shows that our calculated

melting curve for Fer-*V* corresponds to the phase diagram of Figure lb and for Cr1-*Cs* to those of
Figure 1c of the PT. Table I shows the good agreement of the Lindemann's melting temperatures

taken from the calculated melting curve with respect to different proportions of constituent elements of
binary alloy Css-*Rb, with experimental values [7].
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El lvldtirE temperature of Cs, Re[ 6
o Eutectic point, present

153

YI
- 21001

Y
-
E 1500

(E

o
E 1000
o
F

0 02 0.4 0.6 08 1

Mass proportion x of V
o o.2 0.4 0.6 0.8 1

Prooortion x of Cs

Fig. 3. Calculated melting curve and eutectic point of binary alloys Fe1-*V* and Cr1-*Cs*.

Table l. Comparison of calculated Lindemann's *inrn, temperatures T,(K) of Csr-*Rb' to experiment t7] witfi
respect to different proportions x ofRb doped in Cs to formbinary alloy

Proportion x of Rb
T,(K), Present
T-K). Exp. [7]

0.10
292.6
291.4

0.30
287.5
286.0

0,50
290.0
287.4

0.70
295.0
293.5

0.90
305.0
304.0

4. Conclusions

In this work a lattice thermodynamic theory on the melting curves, eutectic points and eutectic

isotherms of bcc binary alloys has been derived. Our development is derivation of analytical

expressions for the melting curves providing information on Lindemann'smelting temperatures with

respect to different proportions of constituent elements and eutectic points of the binary alloys.

The significance of the derived theory is that the calculated melting curves of binary alloys

correspond to the experimental phase diagrams and to those qualitatively shown by the

phenomenological theory. The Lindemann's melting temperatures of a considered binary alloy change

from the melting temperature of the host element when the whole elementary cell is occupied by the

atoms of the host element to those of binary alloy with respect to different increasing proportions of
the doping element and end at the one of the pure doping element when the whole elementary cell is

occupied by the atoms of the doping element.
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