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Abstract. In this paper, the,oscillation, convergence and boundedness for neutral difference

equations 
r

J A(r,-+ 6nrn-,)+t ai(n)F(t,-^n) :0, n:0,1,"'
,i:l

are investigated.
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1. Introduction 
I

Recently there has been a considerable interest in the oscillation of the solutions of differerfice

equations ofthe form
A(r' + 6nn-,) * a(n)rn-o :0,

whererz€N,theoperatorAisdefinedasAz,n:frn*r-tn'thefunctiono(n')isdefinedonN'6is
a constant, r is a positive integer and o is a nonnegative integer, (see for example the work in [l-7]
and the references cited therein).

In [2], the author obtained some suffrcient criterions for the oscillation and convergence of

solutions of the difference equation 
r

A(", + 6rn-,)+ t ai(n)F(r*--,) : 0,

forneN,z)aforsomea€N,theoperatorAisdefinedasArrr:frnlL-tn,6isaconstant,
T,r,Tn1,frL2,....mr are fixed positive integers, and the functions aa(n) are defined on N and the

function F is defined on IR..

Motivated by the work above, in this paper, we aim to study the oscillation and asymptotic

behavior for neutral difference equation

A(", + 6nrn-,)+ t a;(n)F(r^-*o) : 0,

i=L

where d,r, n € N is not zero for infinitely many vulues of n and F : IR. -----+ IR is continuous.
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Put A: max{r, rtu1,"' ,mr}.Then, by a solution of (l) we mean a function which is defined
for n) -Aand sastisfies the equation (l) for n € N. Clearly, if

rn: ant n: -Ar-A+ 1,..,, _1,0

are given, then (l) has a unique solution, and it can be constructed recursively.
A nontrivial solution {r^}. ,o of (l) is called oscillatory if for any nt ) no there exists

nz 2 nt such that rnzrnztr ( 0. The difference equation (l) is called oscillatory if all its solutions are
oscillatory. If the solution {r,'}n ,,0 is not oscillatory then it is said to be nonoscillatory, Equivalently,
the solution {rr}, ,ro is nonoscillatory if it is eventually positive or negative, i.e. there exists an
integtr nt 2 no such that rnrnrr > 0 for all n )_ nt.

2. Main results

To begin with, we assume that

rF(r))0forr+A. e)
By an argument analogous to that used for the proof of Lemma 3, Theorem 6 and TheorcmT inf2l,
we get the following results.

Lemma 1. Let {r.} be a nonoscillatory solution of (l). put zr: rn * 6,frn_,.
(i) If {n"} is eventually positive (negatiu,e), then {2,} is eventually nonincreasing (nondecreas-inil. '
(ii) If {r"} is eventually positive (negative) and there exists a constant t such that

-1 (?(d",, Vn€N
then eventually zn ) 0 (r, < O).

Theorem 1. suppose there exist positive consrants ai(i : r,2, . . . , r) and M such rhat

ai(n) ) a;, Vn e N,

lr(")l ) Mlrl, vr,

6n)0, Vn€N.
Then, every nonoscillalory solution of (l) tend to 0 as ?? ___+ oo.

Theorem 2. Assume that

$-^,,,
?--kaa*):6'

and lhere exists a constant r7 such that

-7<n<6,o<0, Vn€N.
Suppose further that, ,f l"l > c then lr@)l ) c1 where c and e are positive constants. Then,
nonoscillatory solution of (l) tends to 0 as rz __+ oo.

(3)

(4)

every
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Theorem 3. Assume that the given hypothese in Theorem 2 are satisfied. If F is a nondecreasing

function such thal

1," h 1a and l:"h> -oo for atta ) o, (5)

then the equation (1) is oscillatory.

Proof. Supposd that (l) has a nonoscillatoty solution {r"}. If rn } 0 for n }- ns, then by Lemma I
thereexistsant)-n6suchthatrn-r)O,trn-,nr>0 (1 <i<r),zn)0andAz,"(0forn2nt.
Put zn: rnl6nrn-, and m*: 

r-nu*,. 
m;.'We note that (4) implies that zn ( r,, and from (l), we

have 
r

L'n+\a1(n)F(zn-'n) {o

and so

=1L"n+),on(n1tr(r") < 0 for n)nz:nr]_r-r7*
2:L

or r

D..,n,,)* -+3 for n2 n2:nr*r'r*.
-;:t 

r \zn)
Now for zn+r { t { zn we have .F'(r) < F("n), and so

r

Don@) * f"" A ror n2 nz.
i:l Jzn11 ^ \"/

Summing both sides of the above inequality from n2 to n and taking the limit as n ---+ oo, we get

i i at(t) { [^' *. f"' -d'
t:nz i:r l"-*,{t1 t 

Jo F(') < oo'

which contradicts (3). The proof for the case {rr,} eventually negative is similar.

Example 1. Consider the difference equation

. / 7-n, r -1 1 IL(r^ * -;l*n-z )+ ) '. -i-rl-, : o, n 2 7.\ zrl / 
-n+z

It is clear that this equation is a particular case of (l), where 6n: *, a;(n): fi,Vn € N,i:
!,i : 2 and F(r) : *tr .

It is easy to verif that all conditions of Theorem 3 hold. Hence, the equation (6) is oscillatory.

Theorem 4. Assume that the first and the third condition in Theorem 2 are satisfied and there exists
constanls o,11, such that

(6)

(7)l,l(d"(o<-1.
Suppose further thal, T ) trl*: 

,-nu*,. 
mi and F is a nondecreasing function such that

f* dt f-e dt

J, f'(r) ' o and /-- r14 ' * for all e ) o,

then the equation (1) is oscillatory.

(8)
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Proof' Suppose that (l) has a nonoscillatoty solution {r,"}, rn ) 0 for n 2 no.From Lemma I there
existsa nr2no suchthat rn-rlo,rn-^; > 0 (1 ( z ( r), z,-l0and a,z,'( 0for nln1. Then
from (7) we have

lJrn_r{6ntn_, IznK0
and hence 

; 0̂<iE<0, forn)nr.p
Thus, it follows that

F(fo+-){ F(un-,n.) for n) nz 2 nr Irn*, 1 ( i ( r.\ /, / '-
Since n * r - rnt ) n+ 1, 1 ( i ( r the above inequality gives

F("t!\{ tr(1"+"-'n'\ ' -'\ p / \T)(F(2"'--n)' 1(i(r'
Hence, from (l) we find

a"n +f.ar@)p(@)< oH \/,,/
or

T

I ar(r) ( -=i7- ror n 2 nz. (e)i:L ,1"ts) - ,

Now for ? < t < ft! we have ,(tf)> Fe), and so

r a,zn ^'n+7

iffi"L| # rotn)n2' (10)

\tl )
using (10) in (9) and summing both sides from n2 to n and taking the limit as n ---+ oo, we get

i i ot(t) ( f'=F dt

r:nz i:7 = 
-p J+ m fot n ) nz'

But this in view of (8) contradicts (7). The proof for the case {2",} eventually negative is similar.

Example 2. Consider the difference equation

^/ I+2n . 2 :
o("" - #*"-r)+>,=+"i. :0, n2 7. (11)/ 

-_1n+x
It is clear that this equation is a particurar case of (l), where 6n : -rYn, on(r) : fr,Vn € N, e :I,i:2 and F(n): se.

It can be verified that all conditions of Theorem 4 hold. Hence, the equation (ll) is oscillatory.

Theorem 5' Suppose that 6n ) 0, n € N. Then, all unbounded solutions of the equation (I) are
oscillatory.
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Proof. Suppose the contrary. Without loss of generality, let {r,} be an unbounded and eventually

positive solution of (l). By Lemma 1, we have zn ) 0 and Lzn ( 0 eventually. Hence, there exists

lim zn. Put lim zn: 0. We have

B e [0, oo). (12)

Now, in view of 5n) 0, n € N we have zn2 rn and (12) show that {r"} is bounded, which is a

contradiction.
From now we alwavs assume that

nF(r)(0forr+0. (13)

Theorem 6. Assume that 6n ) 0, n, € N, i i ot(l) < a and F is nonincreasing. Suppose
l:l i:l

further that

I.* h: -@ and [:+r: * for attc > o' (14)

Then, all nonoscillatory solutions of the equation (1) are bounded.

Proof. Let {r^} be a nonoscillatory solution of (1), and let ns € N be such that lr"l I 0 for all

n> no. Assume thatr"' > 0 for alln2 no. Put rn*: r-rT andny: no+Tlm*. We

havern-r-rni)0 for all n2 nt and 1( ? 
( 

". Put zn:tn*6nfrn-r.We have zn)0and
Azn:-f a;@)F(rn-^r))0for alln2n1. Hence, {z^}isnondecreasingandsatisfies zn2in
for all n2 nt.Therefore, we find

r
Lzn:-Iou(")F(rn-*r)

159

i:L
r

i:1

Lzn
-FA; < I an(n)' Yn) nt'

i':l

Since t e l"n, zn+Lf, ,F'(t) < F(".).By (15) we obtain

- l:" tb* -f i at(n)' vn)n'l'

Summing the inequality (16) from n1 to n - 1 and taking the limit as n ---+ oo, we have

- f9. Fi o'.,)
J"^, F1t1 - H,l:,

( 15)

(16)

(17)

From (17) and the hypothese of Theorem 6 we find that {2"} is bounded from above. Since 0 ( o,, (
zn, {r,.} is also bounded from above. The proof is similar when {r,"} is eventually negative.
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Example 3. Consider the difference equation

(18)

It is clear that this equation is a particular case of (l), where 5n : 2n, a;(n) : #V,Vn e N, z. :
I,i,:2andF(r) :-rt. (2+l

It can be verified that all conditions of Theorem 6 hold. Hence, all nonoscillatory solutions of
the equation (18) are bounded.

Coroitary. Suppose that the assumptions of Theorem 6 hold. Further, suppose that {6n} tends tog
as n ---+ x. Then, every nonoscillatory sorution of (t) tends to 0 as ?z ---+ oo.

Proof' Let {r"} be an eventuallypositive solution of (l). By Theorem 6, {",} is eventuallypositive,
nondecreasing and bounded above. Thus, there exists a constant c > 0 such that

for suffrciently large n. Hence,

Snrn-r1zn1C

a
rn-r 1i -r 0 as r, -) co.

0n

ooT

o(", *2"u-2). f #tF G,i-o) : o, n ) r.

Theorem 7. Assume that

(.:l i:l
and there exists a constant 6 > 0 such that

tDai({):so,

d",(d, VneN.

( 1e)

(20)
supposefurther that, ,f l"l> c then lr(")l ) c1 where c and c1 are positive constants. Then, forevery bounded nonoscillatory solution {r^} of (l) we have

[q'*f l*"1:0.

Proof' Assume that, {r,-} is a bounded nonoscillatory solution of (l). Then, there exists constantsc,C t 0 such that c ( rn { C for all n}- ng € N. It implies that

z" < (1 + 6)C. el)
Put rn*: 

r-nu*, 
andnl: no*rJ-m*. we have trn-r-rrli) cfor alln > n1 andl < i < r. Bythe

hypotheseof Theorem 7, there exists a constant c1 ) 0 such that lF(nn_,.-nl) q for alln2 n1 and1<?<r.Thus.

Azn: -D"n@)F(rn-^) > t ai(n)c1, vn ) nt. (22)
i:l i:I

Summing the inequality (22) from n1 to n _ 1, we obtain

Zn : znr*o i f*n(l)--+ oo {rs n --+ @,
(.:nt i:l :'
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which contradicts (22). The proof is complete.

Example 4. Consider the difference equation
t

A(r, +2n - 7 ,n-,)+ I +e"i-r) : o, n) r, (2g)\ ?? / 
-._ln+x

where a is an odd int"grr. It is clear that this equation is a particular case of (1), where 5,-:T,
oo(n) : #,Vn € N, i : 7,i:2 and F(n) : -ad.

. It can be verified that all conditions of Theorem 7 hold.

Theorem 8. Assume that the conditions (3), (7) hold and F is a nonincreasingfunclion such that

f +lxand f *>-oo foraua>0.Jo !'lt) J _. r'\t)
Further, suppose that mi ) r, V1 < ? { r. Then, every nonoscillatory solution {r"} of (1) satisfies

lr"l ---, @ as n ---+ oo.

Proof. Let {r.} be a nonoscillatory solution of (1). Assume that {r"} is eventually positive. Then,

thereexistsn6 €Nsuchthat trn-r-rni )0for alln2nsand 1<i < r. Put zn:rn*6nrn-r.
Then, since Lzn: -la;(n)F(rn-,,) )- 0 for alln;. rao, {"n} is nondecreasing for n) no.

Therefore, zn---+ L > -oo as ?? ---+ oo. If tr <.0 then zn ( 0 for alln) 0 and hence

0) zn: frn* 6nrn-, ) Wn-r, n> no.

It implies zn*r ) Tlrnt n2 no or rn> 4fL, n> no.Now since m;2 r, V1 < i ( r and F
is nonincreasing, we have

rr
Lzn)- -Ion(',) ,(-;-), -E ",fOr(}),i:l ' i:r

or
A- r

- 1,on, >to,;h\.,lT) 7:,

Now for ,f < t < 7 we have -;6 > -1'f, , and so

hh' I;i^D,'"ro:--j+ ' rotn)-ns'

or 
r-;' 4'\;)-n- t-'t)F\?)

f?dtA-r,J+ft, dla;(n) 
rotn2no' Q4)

Summing both sides of the inequality 

2-: "o 
t: and taking the limit as rz ---+ oo, we get

tn #=r- t)]or(t),
' J+ r \t) 7--^,8
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which contradicts (3). Thus, L> 0. Now let n1)7 ns be suchthat 0 ( zn{ rn*onn-, for n) nt.
Then, zr, 2 -orn-, and by induction, we have :Dn+jr 2 (-o)ia^-" for each positive integer j. This

implies that nn + oo Ers n ---+ oo. The proof is similar when {r,} is eventually negative.

Example 5. Consider the difference equation

r A/ 2+3n ' 2 1 I' A(", - --#*^-r).p 
ht-"T-,) :0, n2 r. (25)

It is clear that this equation is a particular case of (l), where 6n : -T, on(r) : #i,Vn € N, i :
7,i:2 and F(r) : -ri.

It can be verified that all conditions of Theorem 8 hold.
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