VNU Journal of Science, Mathematics - Physics 26 (2010) 155-162

On the Oscillation, the Convergence, and the Boundedness of
Solutions for a Neutral Difference Equation

Dinh Cong Huong*

Dept. of Math, Quy Nhon University)l70 An Duong Vuong, Quynhon, Binhdinh, Vietnam

Received 14 April 2009

Abstract. In this paper, the oscillation, convergence and boundedness for neutral difference

equations

| A(@p + 6n@nr) + Y () F(@pm;) =0, n=0,1,---

4
d=1
are investigated.
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1. Introduction
]

Recently there has been a considerable interest in the oscillation of the solutions of differefice
equations of the form
A(xy + 0Tn—r) + a(n)Tn—e =0,
where n € N, the operator A is defined as Az, = Tnt1 — Zn, the function a(n) is defined on N, ¢ is
a constant, 7 is a positive integer and ¢ is a nonnegative integer, (see for example the work in [1-7]

and the references cited therein).
In [2], the author obtained some sufficient criterions for the oscillation and convergence of

solutions of the difference equation

A(@n + 6Zn—r) + Y i(n) F(Tn—m;) =0,

i=1
for n € N,n > a for some a € N, the operator A is defined as Az, = Tpy1 — Tn, 0 is a constant,
7,7, M1, My, - -+ ,m, are fixed positive integers, and the functions a;(n) are defined on N and the

function F is deﬁned on R.
Motivated by the work above, in this paper, we aim to study the oscillation and asymptotic
behavior for neutral difference equation

r
A(@n + nZn—r) + Y _ 0i(n) F(Zp-m;) = 0, “ (1)
i=1
where &,, n € N is not zero for infinitely mary values of n and F: R — R is continuous.
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Put A = max{7,my,---,m,}. Then, by a solution of (1) we mean a function which is defined
for n > —A and sastisfies the equation (1) for n € N. Clearly, if
Tp=0p, n=-A,-A+1,---,-1,0

are given, then (1) has a unique solution, and it can be constructed recursively.

A nontrivial solution {z,}, no Of (1) is called oscillatory if for any n; > ng there exists
ng 2 ng such that z,,x,,+1 < 0. The difference equation (1) is called oscillatory if all its solutions are
oscillatory. If the solution {x,}, no 18 not oscillatory then it is said to be nonoscillatory. Equivalently,
the solution {z,}, n, is nonoscillatory if it is eventually positive or negative, i.e. there exists an
integer n; > ng such that TnTpy1 > 0 for all n > ng.

2. Main results

To begin with, we assume that
zF(z) > 0 for z # 0. (2)

By an argument analogous to that used for the proof of Lemma 3, Theorem 6 and Theorem 7 in [2],
we get the following results.

Lemma 1. Let {x,} be a nonoscillatory solution of (1). Put z, = z,, + T
(i) If {xn} is eventually positive (negative), then {2,} is eventually nonincreasing (nondecreas-

ing).

(i) If {x,} is eventually positive (negative) and there exists a constant -y such that
-1<y<é,, ¥vneN

then eventually z, > 0 (z, < 0).

Theorem 1. Suppose there exist positive constants ;(i=1,2,---,7) and M such that
a;(n) 2 a;, VYneN,
|F(z)| > Mlz|, Va,
0p 20, VYneN.

Then, every nonoscillatory solution of (1) tend to 0 as n — .

Theorem 2. Assume that

o0 r
DY au(t) = oo, (3)
£=1 i=1
and there exists a constant ) such that
-1<n<6,<0, YneN. (4)

Suppose further that, if [z| > c then |F(z)| > ¢; where ¢ and c1 are positive constants. Then, every
nonoscillatory solution of (1) tends to 0 as n — co.
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Theorem 3. Assume that the given hypothese in Theorem 2 are satisfied. If F is a nondecreasing
function such that
> dt 0 dt
/Om<ooand/_am>—oo SJorall a > 0, (5)
then the equation (1) is oscillatory.

Proof. Suppose' that (1) has a nonoscillatoty solution {z,,}. If z, > 0 for n > ng, then by Lemma 1

there exists a n; > ng such that z,_r > 0,2, >0 (1 <3< 7),2, > 0and Az, <0 for n > n.
Put 2, = z, + 6, Tn_r and M. = 1maux m;.” We note that (4) implies that 2z, < z,, and from (1), we
1 T T

have s
Az + Y ai(n)F(2n-m,) < 0
i=1
and so )
Az, + Zai(n)F(zn) <0 forn 2> ny=n;+m,
i=1
or
r A -
;az(n) < _F(;) for n > ny = ny + m.
Now for 2,11 < t < 2z, we have F(t) < F(z,), and so
dt
a;(n) < —— forn > no. -
Z »Zn+1 F(t)
Summing both sides of the above mequallty from ny to n and taking the limit as n — oo, we get
i XT: ) </zn2 dt </z"2 dt S0
Qy B T = )
f=ns i=1 Zn41 F(t) 0 F(t)

which contradicts (3). The proof for the case {x,} eventually negative is similar.

Example 1. Consider the difference equation

xng+§:n+lé,=, n>1. (6)

It is clear that this equatlon is a particular case of (1), where 4, = 2n > ai(n) = ~ _H,‘v’n € Nyi =

1,¢=2 and F(x) = 73,
It is easy to verify that all conditions of Theorem 3 hold. Hence, the equation (6) is oscillatory.

A(+

Theorem 4. Assume that the first and the third condition in Theorem 2 are satisfied and there exists
constants o, 1, such that

pL o <o < —1. (1)
Suppose further that, T > m, = max m; and F' is a nondecreasing function such that

© dt ¢ dt
/6 0] <ooand/ 0] < oo forall e >0, (8)

then the equation (1) is oscillatory.
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Proof. Suppose that (1) has a nonoscillatoty solution {z,}, z, > 0 for n > ng. From Lemma 1 there
exists a n; > ng such that z,,_. > 0, Tn-m; >0 (1<i<r),2,<0and Az, <0 forn > ny. Then
from (7) we have

PEnty & Ofnl bz <0
and hence

Zndr

0< <0, forn >n;.

Thus, it follows that

4 z _ ) |
F( n+; m1)< F(-’En—m,) f0rn>n2>nl+m*,1<z<r.
Since n+7 —m; > n+1,1 <4 < r the above inequality gives

F(zn+1)< F(M)S F(Zp-m;), 1<igm
M H

Hence, from (1) we find

A+ 3 aa(mF (2 < 0
Snn(s2)
or
Zai(n)<—A_2") for n > no. (9)
i=1 .

Zng1
F(ﬂ

Now for ZT} <t< zﬂy’i we have F<zﬁﬂi)> F(t), and so

Znt1
E—Az" g/ T for n > ng. (10)
”F(f';l—ﬂ) m  F(t)

Using (10) in (9) and summing both sides from n, to n and taking the limit as n — oo, we get

= < =2 gt
ZZai(e)s—u/%a 0] for n > n,.

f=ngy i=1

But this in view of (8) contradicts (7). The proof for the case {x,} eventually negative is similar.

Example 2. Consider the difference equation

1+2n 2
- _ § S = > 1. 11
A(-'L'n - T 2)+ o n+ izn—z 07 n ( )
It is clear that this equation is a particular case of (1), where §,, = — 1 B2 i (n) = fTi-ﬁ" YneN,i=

1,4=2 and F(z) = 8.
It can be verified that all conditions of Theorem 4 hold. Hence, the equation (11) is oscillatory.

Theorem S. Suppose that 6, > 0, n € N. Then, all unbounded solutions of the equation (1) are
oscillatory.
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Proof. Suppose the contrary. Without loss of generality, let {x,} be an unbounded and eventually
positive solution of (1). By Lemma 1, we have 2z, > 0 and Az, < 0 eventually. Hence, there exists

lim 2,. Put lim z, = 8. We have
n—oo n—o0o

B € [0, 00). (12)

Now, in view of 6, > 0, n € N we have 2, > x,, and (12) show that {z,} is bounded, which is a
contradiction.
From now we always assume that

zF(z) <0 for z # 0. (13)

oo T
Theorem 6. Assume that 6, >0, n €N, Y Y a;(f) < oo and F is nonincreasing. Suppose
e=1i=1

/°° d(i) —o0 and /—c %‘ =00 forallc>0. U

Then, all nonoscillatory solutions of the equatton (1) are bounded.

further that

Proof. Let {z,} be a nonoscillatory solution of (1), and let no € N be such that |x,| # 0 for all

n > ng. Assume that x, > 0 for all n > ng. Put m, = 1mga,x and ngy = ng+7+m,. We
T T

< r. Put z, =z, + 6pTpn—r. We have z, > 0 and

0

have z,_r_pm, > 0foralln > n; and 1 <4
T
2n = — 5 a;(n)F(Tn-m,;) = 0 for all n > n;. Hence, {z,} is nondecreasing and satisfies z, > Tn

=1
for all n > ny. Therefore, we find

N i) F(Enom) < — Y 0i(n)F(zn_m,)
i=1

1=1
o Zai(n)F(zn)a
=1

or

Az, i

Since t € [z, Znt1], F(t) < F(z,). By (15) we obtam

i1 gt
_/zn F(t)\ F(zn) Ea* (n), Vn> (16)

Summing the inequality (16) from n; to n — 1 and taking the limit as n — oo, we have

05 < 5 e an)

{=n, i=1

Zn

Zny

From (17) and the hypothese of Theorem 6 we find that {2,} is bounded from above. Since 0 < z,, <
Zn, {zn} is also bounded from above. The proof is similar when {x,} is eventually negative.
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Example 3. Consider the difference equation

Vv

2
n 1 Iy
Alzn+2 xn_2>+;(i+l)n(—xn_i)—0, n> 1. (18)

It is clear that this equation is a particular case of (1), where 6, = 2", o;(n) = W, Vn e N,i=

1,i=2and F(z) = —5.
It can be verified that all conditions of Theorem 6 hold. Hence, all nonoscillatory solutions of
the equation (18) are bounded.

Cor(;llary. Suppose that the assumptions of Theorem 6 hold. Further, suppose that {Jn}‘tends to 0
as m — oo. Then, every nonoscillatory solution of (1) tends to 0 as n — oo,

Proof. Let {z,,} be an eventually positive solution of (1). By Theorem 6, {z,} is eventually positive,
nondecreasing and bounded above. Thus, there exists a constant C > 0 such that

P & Gy 15
for sufficiently large n. Hence,

C
Tpn-r < — — 0asn— co.
On

Theorem 7. Assume that
oC T

> >0 ai(e) = oo, (193

¢=1 i=1
and there exists a constant § > 0 such that

6n <6, VYneN. (20)

Suppose further that, if |x| > ¢ then |F(2)| > c1 where ¢ and ¢| are positive constants. Then, for
every bounded nonoscillatory solution {zn} of (1) we have

liminf|z,| = 0.
n—oo

Proof. Assume that, {z,} is a bounded nonoscillatory solution of (1). Then, there exists constants
¢,C > 0 such that ¢ < z,, < C for all n 2z ng € N. It implies that

2w < (L+6)C. (21)

Put m, = 1mg;tx and n; = ng + 7 + m,. We have Tn—r—m; 2 cforalln >n; and 1 <3 < r. By the
T T

hypothese of Theorem 7, there exists a constant ¢; > 0 such that | F(Zp—m;| > c; for all n > ny and
1< i< r. Thus,

Azp = — Eai(n)F(acn_mi) > Zai(n)cl, Vn = n;. (22)
i=1 i=1

Summing the inequality (22) from n; to n — 1, we obtain

n—-1 r

Zn;zn1 +¢lzzai(£)_>ooasn_>oo’

Z:nl =1
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which contradicts (22). The proof is complete.

Example 4. Consider the difference equation
2

2n—1 1 -
A(xn + n mn—l)"‘ ;_1 —— 'L( xn—z) Oa nz 17 (23)

2n—1
n 2

where a is an odd integer. It is clear that this equation is a particular case of (1), where ¢, =
ai(n)zn_’_l,VneN i=1,i=2and F(z) = —z*.
. It can be verified that all conditions of Theorem 7 hold.

Theorem 8. Assume that the conditions (3), (7) hold and F' is a nonincreasing function such that

> gt 0 dt

—<ooand/ —— > —o0 forall a> 0.
/0 F(t) —o F(t)

Further, suppose that m; > 7, Y1 < i < r. Then, every nonoscillatory solution {x,} of (1) satisfies

|Zn| — o0 as n — oo.

Proof. Let {z,} be a nonoscillatory solution of (1). Assume that {mn} is eventually positive. Then,

there exists ng € N such that z,_r_m,, > 0 foralln > ng and 1 < ¢ < 7. Put z, = 2, + 0nTp—r.
7=

Then, since Az, = — 3 ;(n)F(Tp—m,) = 0 for all n > ng, {z,} is nondecreasing for n > ny.

Therefore, 2z, — L > —co asn — co. If L <0 then z, <0 foralln >0 and hence

0> 2p = Tn + 0nTnr > NTp—7, 7 2 Ng.

It implies 2+ > nap, n = mng or T, > z"%, n>ng. Nowsincem; 27, Vi<i<rand I
is nonincreasing, we have

w3 - S ()5 =S aor(2)

or
A r
— 22> Y i)
F(z) =
Nowforil'—<t<z"wehave—F1 >——2L1  andso
n t (, )
Fl #&=
7
Zn Zn. T
dt 1 A
[ e [ e B - e
= F(%) = (-mF(3)
or

TI/Z: Ffi(t) ( ) Zaz(n for n 2 9. (24)

Summing both sides of the inequality (24) from ng to n and taking the limit as n — oo, we get

Ing 0 r

7 dt
7)/% Z0] > ; ;ai(f),
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which contradicts (3). Thus, L > 0. Now let nj > ng be such that 0 < 2z, < zp +0xn—r forn > n;.
Then, z,, > —0Z,—r and by induction, we have zp4jr > (—0) T, for each positive integer j. This
implies that ,, — 0o as n — co. The proof is similar when {z,} is eventually negative.

Example 5. Consider the difference equation

2
24 3n 1 1
= xn_1)+ }iﬂ: ——(-z%)=0, n>1 (25)

A(xn —

It is clear that this equation is a particular case of (1), where 6, = —2£32, a;(n) = -5, Vn € N,i =
l,i=2and F(z) = —z3.
It can be verified that all conditions of Theorem 8 hold.
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