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1. Introduction

In the last decade, there have been extensive works on studying of robustness measures, where
one of the most powerful ideas is the concept of the stability radii, introduced by Hinrichsen and
Pritchard [1]. The stability radius is defined as the smallest (in norm) complex or real perturbations
destabilizing the system. In [2], if r' : Ar is the nominal system they assume that the perturbed
system can be represented in the form

,':(AIBDC)r, (1)

where D is an unknown disturbance matrix and B, C are known scaling matrices defining the "struc-
ture" of the perturbation. The complex stability radius is given by

(2)

If the nominal system is the difference equatiorr rn+r - Ann in [3] they assume that the perfurbed
system can be represented in the form

nn*r:(A+BDC@".
Then, the complex stability radius is given by

[**,'",,, - /)-'Bll]

| -* ilc(ul- a)-tsltl ' .

fcu€C:lo.'l:r " " )

(3)

(4)

* Correspondin g authors. E-mai I : honglanle22g @gmail.com

163



r64 L.H- Lan, N.c. Liem / wu Journal of science, Mathematics - physics 26 (2010) 163_rz3

Earlierresults found, e.g., in [4, 5]. The most successful attemptfor finding a formula egant result given by Jacob [5]. using this result,
the notion and formul nded to linear time-invariant differential-algebraic

and difference_algebraic systems [g, 9].
sis on time scales, which has been received a lot of

s in 1988 (supervised by Bernd Aulbach)
By using the notation of the analysis ontime,scale, the equations (1) and (3) can be rewr the unified form

(5)
where A is the differentiabre operator J" #; i"lr"l3:the notions in the section 2).

Naturally, the question arises whether, by using the theory of analysis on time scale, we can
express the formulas (2) and (4) in a unified form. The purpose of this paper is to answer this question.

The difficulty we are faced when dealing with this problem is that although A, B,c are constant
matrices but the structure of a time scale is, perhaps, rather complicated and the system (5) in fact is

ability which
t function to
used in [12].
To establish

a unification formula for computing stabilityradii of the system (1) and (3) which is at the same time
an extention to 12] td define the so-called domain of the exponential stabilifuof a time scale. rtru oi- rr-^ ^-^Lr^-
deduces to one 

domain, the problem of stability radius for the equation (b)
case where we know how to solve it as in [13].This paper is organized as follows. In the secticr t 2, we summarize some preliminary results ontime scales' Section 3 gives a definition of the stability domain for a time scale and tind out some itsproperties. The last section deals with the formula of the stability radius for (b).

2. Preliminaries

A time scale is a nonempty closed subset of the real numbers IR., and we usually denote it bythe symbol lf' The most popular examples are 'lf : IR. and T : z. we assume througlrout that a timescale lf has the topology that inherits from the standard topology of the real numbers. we define the

[a, b], we mean the set {t e 1f : o ( , < b}.
unbounded above, i.e., sup lf : m. Let /d. ntiable (or simply: differentiabte) at t € Ts at for all e ) 0 there is a neighborhood V around

e - sl for all s €V. If / is differentiable for every
. : lR then delta derivative is /'(t) from continuouscalculus; if r : z then the delta derivative is the forward difference, A/, from discrete calculus. A
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Earlier results for time-varying systems can be found, e.g., in [4, 5]. The most successful attempt
for finding a formula of the stability radius was an elegant result given by Jacob [5]. using this result,
the notion and formula of the stability radius were extended to linear time-invariant differential-algebraic
systems [6, 7]; and to linear time-varying differential and difference-algebraic systems [g, 9].

on the other hand, the theory of the analysis on time scales, which has been received a lot of
attention, was introduced by Stefan Hilger in his Ph.D thesis in 1988 (supervised by Bernd Aulbach)
[10] in order to uniff the continuous and discrete analyses. By using the notation of the analysis on
time,scale, the equations (1) and (3) can be rewritten under the unified form

,o : (A_t BDC)I, (b)
where A is the differentiable operator on a time scale 'lf (see the notions in the section 2).

Naturally, the question arises whether, by using the theory of analysis on time scale, we can
express the formulas (2) and (a) in a unified form. The purpose of this paper is to answer this question.

The diffrculty we are faced when dealing with this problem is that although A, B, C are constant
matrices but the structure of a time scale is, perhaps, rather complicated u.rd the system (5) in fact is
an time-varying system. Moreover, so far there exist some concepts of the exponential stability which
have not got a unification of point of view. In [11], author used the classical exponent function to
deftne the asymptotical stability meanwhile the exponent function on time scale has been used in [12].The first obtained result of this paper is to show that two these definitions are equivalent. To establish
a unification formula for computing stabilityradii of the system (1) and (r) wrrlrr is at the same time
an extention to (5), we follow the way in [12] to define the so-called domain of the exponential stability
of a time scale. By the definition of this domain, the problem of stability radius for the equation (5)
deduces to one similar to the autonomous case where we know how to solve it as in [t3].

This paper is organized as follows. In the secticr r 2, we summarize some preliminary results on
time scales' Section 3 gives a definition of the stability domain for a time scale and tind out some its
properties' The last section deals with the formula of the stability radius for (5).

2. Preliminaries

A time scale is a nonempty closed subset of the real numbers lR., and we usually denote it by
the symbol T' The most popular examples are 'lf : R and T : Z. We assume throug[rout that a time
scale lf has the topology that inherits from the standard topology of the real numbers. we define the
forward jump operator andthe backward, jump operator o, p it _- T by o(t): inf{s € 1f : s > l}

€ 1I : s < t) (supplemented by sup@ : inf 1f).
o(t) -t. A point , € lf is said to be right_d,ense if

(t) : t, left-scattered it p(t) < t, and isolated,if t
1f, by [a, b], we mean the set {l e 1f : a ._( , < b}.

For our purpose, we will assume that the time scale 1l is unbounded above, i.e., sup lf : oo. Let /be a function defined on 'lf. We say that f is d,elta d,ifferenti,able (or simpl y: d,ifferentiable) at t e Tprovided there exists l numler, namely f&(t), such that for all e ),0 there is a neighborhood v aroundtwithlf("(t))-/(")-f^(t)("(r)-")l (elo(t) -sl foralls€v.rf/isdifferentiableforevery

' 
€ 1[ , then / is said tobe differentiable on lf. If lt : ]R. then delta derivative is f'(t) fromcontinuous

calculus; if lf : Zthenthe delta derivative is the forward difference, A/, from discrete calculus. A
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function / : lf -- R is called regulatedprovided its right-sided limits (finite) at all righfdense points

in 1l and its left-sided limits exist (finite) at all left-dense points in lf. A function / defined on lf is

rd-continuozs if it is continuous at every right-dense point and if the left-sided limit exists at every

left-dense point. The set of all rd-continuous function from 1f to lR is denoted by Qa(11, R). A function

/ from 1l to lR. is regressiue (resp. positiuely regressiue)if 1,+ p(t)f (t) +0 (resp. 1+p(t)/(t) > O)

for every t € T'. We denote R (resp. R+1 the set of regressive functions (resp. positively regressive)

from T' to lR. The space of rd-continuous, regressive functions from 'lf to IR. is denoted by Q67?,(1f , R)

and,C.6R+(T,R) ,:{f €C.a7t(1f,lR) :1+p,(t)f(t)>O forall ,€11}. Thecircleaddition
O is defined by (p O il(t) : p(t) + s(r) + p(t)e(t)q(t). For p e R, the inverse element is given

^llUv (ep)(t) : -+i$JpA and if we define circle subtraction o by (p e q)(t) : (p e (eq))(t) then

-/r\--l+\
@e q)$): {fffi.

Let s € lf and let (A(t))D" be a d x d rd-continuous function. The initial value problem

r^:A(t)r,r(s):rs

has a unique solution r(t, s) defined on t 2 s. For any s € 1f, the unique matrix-valued solution,

namely O4(t, s), of the initial value problem XL : A(t)X,X(s) : 1, is called the Cauchy operator

of (6). It is seen that Oa(t,s) : Oe(t, r)Qn(r,s) for all t) r ) s.

When d":T,foranyrd-continuousfunctionq('),thesolutionof thedynamicequationd:
q(t)r, with the initial condition r(s) : 1 defined a so-called exponential function (defined on the time

scale'l[ if q(.) is regressive; defined only t > 3 if q(.) is non-regressive). We denote this exponential

function by eo(t, s). We list some necessary properties that we will use later.

Theorem 2.1. Assume p,q iT ---+ IR are rd-continuous, then the followings hold

i) es(t, s) : 1 and er(t,t) : 7,

ii) eo@(t), s) : (r + p,(t)e(t))eo(t,s),
iii) er(t, s)eo(s, r) : eo(t,r),
iv) er(t, s)en(t, s) : er6n(t, s),

, e.(t.s),) !""(:fti : epeq(t, s) ,f q is regressive,

vi) If p e R+ then er(t, s) > 0 for all t, s € T,

vil fi p@)eo@,o(s))As : ep(c, a) - eo@,b) for all a,b, c €. T,

viii) If pe R+ and p(t) < q(t)forallt2 s then er(t,s) ( eo(t,s) for all t) s.

Proof. See [14], [1r] and [t6].
The following relation is called the constant variation formula.

Theorem 2.2. [See [17], Definition 5.2 and Theorem 6.41 If the right-hand side of two equations

rL : A(t)n and rL : A(t)x + f (t,n) is rd-continuous, then the solution of the initial value problem

r^ : A(t)r + f (t,r),r(ts): r0 r,s given by

tlts.

(6)

t
I

r(t) : Qa(t,ts)rs * | 6{t,o(s))/(s, z(s))As,
J
to
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Lemma 2.3. fGronwall's Inequalityl. Let u..a,b € C,a(lf, R), b(4 ) o for all t e T. The inequality

t"

u (r) < a(t) + | U1'1"1"1As for atr t ) ts

/,
implies

Corotl:rry Z.l.

7.rf u € c.6(1f,R),b(t) =L) 0andu(D < a(t)+t jr1"1Asfor arrt|toimplies
to

u (r) < a(t) + r j 
"16,a(s))o(s) 

As for aI t 2 to.
ts

2. If u,be C.6(1f,R),b(r))0forallre lf andu(r)< r,r+jb(s)u(s)Asfor a\t)rothen
u(t) < use6(t,ts) for all t ) ts. 

to

To prove the Gronwall's inequality and corollaries, we can find in [14]. For more infonnation
on the analysis on tirhe scales, we can refer to [12, 1g, 19, 20] .

I

3. Exponential stability of Dynamic Equations on Time scales

Denote 'lf+ : [to, m) n 1f. We consider the dynamic equation on the time scale ]f

na:f(t,r), (7)

where / : 1f x lRd --- IR.d to be a continuous function and, f (t,0) : O.

Fortheexistence,uniquenessandextendibilityofsolutionofinitialvalueproblem(7)wecan
refer to [15].. on exponential stability of dynamic equations on time scales, we often use one of two
following definitions.

t,.et r(t) : r(t,r,rs) be a solution of (z) with the initial condition r(r) : nolr ) ts, where*- r lud&uq[\.
Definition 3.1. [See S. Hilger [10, 17], J. J. DaCunha [11], ...1 The solution r:0 of the dynamic
equation (7) is said to be exponentially stable if there exists a positive constant a with -a e R+
such that for every r € T+ there exists a N : N(") ) 1, the solution of (7) with the initial conditionn(r): 16 satisfies llr(t;r,"0)ll ( Nllz6lle_"(t,r),for altt2 r,teT*.
Definition 3.2. [See C. Potzsche, S. Siegmund, F. wirth [12],...1 The solution r :0 of (7) is
called exponentially stable if there exists a constant o ) 0 such that for every r e,ll+ there exists8.1[: N(") ) 1, the solution of (Z) with the initial condition r(r): ro ,uiirfi", llr(t;r,"0)ll (Nllrelle-"(t-r), for all t ) r, t € T+.

If the constant lf can be chosen independent from r e 1l'+ then the solution r : 0 of (Z) is
called uniformly exponentially stable.

I
u(t) < a(t) + | a(s)b(s)e6(t,o(s))As for a[t) ts.

.l
to
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Note that when applying Definition, the condition -q eR+ is equivalent to 1t(t) ( i' Tns

means that we are working on time scales with bounded graininess'

Beside these definitions, we can find other exponentially stable definitions in lZtl and lZZl'

Theorem 3.3. Two definitions and are equivalenl on time scales with bounded graininess.

= "*o 
{ i tt.n l" l1;o"las} where"-''L*"\tG) u )

So

,. In 11 - ozl l-" if P(s) : o'

"tfr"1 " 
:\t"(tta:j'(s)t 

ifp(s) >0.

lim ln 11 - aul ( _a, for all s € lf.
"\p(") u

Therefore, e-o(t,r) ( e-o(t-t) for all a ) 0, -a € R+ and t 2 r. Hence, the stability due to

Definition implies the one due to Definition '
Conversely, with o ) 0 we Put

d(r) : ,{frr,
It is obvious that c(-) € R+ and er1.;(t, r) : l-a(t-"). Let M :: supr€r'+ p(')' lf M :0, i'e',

p(t) :0 for all , €'lf, then d(t) : -c,. When M > 0 we consider the functionl - t
with 0 < u < M. It is easy to see that this function is increasing. In both two cases we have

0(t) < B :: Iim '-":-' for all, € T+.-'\-/ \ ,- 
S\.M S

Therefore, e61.1(t,r) - "-a(t-r) 
( eB(t, r), for allt2 r.By noting that -B > 0 and 0 e R+

we conclude that Definition implies Definition . The proof is complete.

By virtue of Theorem , in this paper we shall use only Definition to consider the exponential

stability.

We now consider the condition of exponential stability for linear time-invariant equations

trL : An, (8)

where 4 a Sdxd (K: R or K: C). We denote o(A): {) e c, ) is an eigenvalue of A}.

Theorem 3.4. The trivial solution n : 0 of the equation (8) is uniformly exponentially stable if and

only if for every \ e o(A), the scalar equation rL : \r is unifurmly exponentially stable.

Proof.
t( ----> )1 Assume that the trivial solution n -- 0 of the equation (8) is uniformly exponentially stable

and .\ € o(A) with its corresponding eigenvector o € C9 \ {O}. It is easy to see that e^(t,r)u
isasolutionof theequation(8). Therefore,thereare N >I anda ) 0,-a eR+ suchthat

lel(t,r)ul ( l/e-o(t,r)llrll ,t2 r. Hence, le1(t,r)l ( Ne-o(t, r),t) r.
(( r " Let (@a(t, r))p" be the Cauchy operator of the equation (8). We consider the Jordan form

of the matrix A
/tt o \

s-1As: I l,ll
\o J"/

[ -" if p(t) : s,

l=3" irp(t) > o'
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where J; 6 Qdtxdl is a Jordan block

and); eo(A)id1-tdz-1 ...Idn:d,I (i(n (d.
Since

o':(^'i i 
:)

(t,r) \
f 
s-"

Q6Q,r)f
it suffices

100\
l 1 ...ol

t.:f'
^/

where the nentially stable. Let r : (m1, 12, .. , rd).
ra:Ar

The equation

11 * :x2

":.:."' rbl

dt

with the initial conditions 16 (z) : rfl, k - 1, . . . , d. The assumption that the equation rA : ,\z is
uniformly exponentially stable implies le1(t, r)l ( Ne-o(t, r), with N, a ) 0,-d €R+ and t 2 r.
The last equation of (9) gives r4 : ex(t,r)z!. So

lra(t)l: ler (r, ")"31 
< Nlroole_,(t, r) ( Nllz6 lle_o(t, r), for alt t ) r .

By the constant variation formula, we have the representation,

*a-r(t) : ex(t, r)r\t + | exft,a(s))e1(s, r)roaL,s

Therefore,

l* a-t (t)l ( Ne-o (r, r)lroa-tl + l,' 
N, 

" -.(t, o (s)) e -o (", ") | 
r! 

| 
As

( I/1"3-r l"-o(t,r) + w2lrool [' "_-1t,o(s))e_a(s, r)As
Ia 3

NlrS-, l"-.,(t,r) + N2l'9 | [' rN"l*il l, 1, -E-,1"ry,"_,n(L 
s)e-2" (s, r)As

g Nlz!-rle -g(t,r) + N2lr[le_zn(t,r) [' 
ot

3' J, r-TpG)'
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Since -a €r/c+,wehave t-apr(s) > 0whichis equivalentto 1-TpG) > ] for all s € 1f' Hence,

l"a-rl)l E .rrlr$-rle -gQ,r) + 3,^/2lr'31(t - r)e-a(t,r)'

Further, fromtherelation (-t)o(-3)(t) : -i+GT)'p(t) )- -T,itfollows thate-.i(t'r).e-g(t,t)

: e(-f)o(- i1|,r) ) e-2n(t,r). On the other hand, e-t\,.r) ( exp(-"(?")) for any t ) r'

Therefore, (t-r)e-g(t,r) ( (t-r)exp(-45d) < rP. Thus,

lrat(t)l < /(tll16lle-g(t, r),

wherd Kr : N* g/v2e"e(-l).,

continuingthisway, we canfindK > 0 and B>0with B € R+ suchthat

ll"ll < Kllrslle-B(t,r), for all t)- r.

The theorem is proved.

Remark 3.5. It is easy to give an example where on the time scale 'lf, the scalar dynamic equation

ra : ),r is exponentially stable but it is not exponentially uniformly stale. Indeed, denote ((o, b)) :

{n e N ia<ncb}. ConsiderthetimeScale

y : l)lz'", 2'"*tlU ( (r'"*t, 22"+2)).
n

Let ): -2 andr €'lf, says 2- ( r ( 2rn*r. We can choose a: -I and N - y"+r to obtain

les(t,r)l ( Ne-1(t,r). However, we can not,choose l{ to be independentfrom r'

4. The domain of exponential stability of a time scale

' We denote

,S: {) € C, the scalar equation rL : \r is uniformly exponentially stable}.

The set S is called the domain of exponential stability of the time scale lf. By the definition,

if)€s,thereexisra)0,-oeR+andN)lsuchthatlel(t,r)l (l/e-'(t,z)forallt)r.
Theorem 4.1. S is an open set in C'

Proof.

Let.\ €,S. There areo> 0,-a € I{'+ and N >Isuchthat lel(t,r)l ( Ne-o(t,r) for allt>
r andassume that p, € C,lp- 

^l 
< e, where 0 < e < #. W" considerthe equation aL: pfi:

),r 1 (p, - )), with the initial condition r(r) : rs'
By the formula of constant variation, we obtain

It
r(t) : es(t,r)rs + 

J" 
ex(t,o("))(p - ))r(s)As'

This implies
1t

l"(t)l < l/lz6le-.(t,r) * J" 
Nee_-o(t,o(s))lr(s)lAs

: Nlrole-o(t,r) + L' #6e o(t,s)lz(s)lAs,
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#5(Nrzor *1.'#,)##o"
Applying the Gronwall's inequality, we have

l"(t)l
. e-*(t,") 

( Nl'01",-f'a,, (f'")'
or

l"(r)l < I/l"ole_o*,_y.,., (t,r) : Nlz6le_1o_ N4(t,r) for all t 2 r.
Itiiobviousthata-Ne > 0 and-(a-Ne) e /cr. Thisrelationsaysthat {p ec:lp-^l< e} c ^g,i.e., S is an open set in C. The proof is complete.
Example 4.2.

1. When lf : IR then ,S: {) € C, ft) < 0}.
2. When T : hZ (h > 0) then ,S : {^ € C, 11 +,\hl < 1}.
3. WhenT: UEo[2k,zk+ 1] then^9: {) € C,n.\*Inl1 +^l < 0}.
Indeed,if):-1 thenforall?elfthereexistsr€'lf,t>Tsuchthatl+),pt(t):0,this

implies r(o(t)) : 0. Therefore, in this case the equation rL : ),r is (uniformly) exponentially stable.
Now assume 

^+ -1. When 2m: s ( /:2nwe have le1(t,s)l :6s}("--)11 + ),ln-m _

"(It}+tnl1+'\l)(n-m). 
Thus, A €,s if and only if n)+ln11 *^l < 0. rf s,t €.rf such that2m {s{2m*1and 2n{t ( 2n*1. Since, lel(t,s)l :le\Qrntr-')e7(2n,2m-t2)e^(t-zn)11+^)l <

Ne1n.l+r.,1t+x11p(t, s) we have the proof. . .
4. Similarly, if lf :ULo[k, k+d],o e (0,1) then ^g: {) e c,cft.\tlnl1 +(1 -o))l <

0), where we use the convention lnO : -oo.

5. Stability radius of linear dynamic equations with constant coefficients on time scales

Assume that the nominal equation

rL:Ar (1 0)

is uniformly exponentially stable, where a 6 ngdxd (K : IR. or K : C).
Consider the perturbed equation

ru : Atr I DL.EI, (11)

with D € Kdtl, E € Kq"d, and A € K'xs is an unknown time-invariant linear parameter disturbance.
Denote I/: {A € K,rs, o(A+ DLE) g S}
Definition 5.1. The structured stabilityradius of the dynamic equation (10) is definedby

r(A; D; E):: inf{llAll the solution of (11) is not uniformly exponentially stable}.

By the assumption on (10) and due to Theorem , we have o(A) g 
^g and

r(A; D;E) : inf{llAll : A e tr/} : sup{r } 0,o(A+ DAE) g S V A € K,,q, llAll < "}.
Let ) e p(A) :: C \ a(,4), we define

r;(A;D;E)::sup{r >0, € p(A+ DLE) for all A € Kr"s with llAll ( r}.
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For a subset O 9 p(A), we define

ra(A; D; E):: sup{r > 0,Q e p(A + DLE) for all A e Kr"q with llAll ( r}'

Theorem 5.2. [See 173]l For all )' e p(A) we have r;(A;D;F\ , where I is"t - 1lE(\r - A1-r',,
the identity matrix.

Corollary 5.3. [See [13]l If A 9 p@)then re(A; D;E): 
i2tn

Applying this result with O : C^9 : C \ ^9 we have,

Theorem 5.4. I
r(A; D; E) : ra(A; D; E): 

ert" [E6l _^-.o
Denote G()) :: E(^I - A)-rn. By virtue of the properties ijgCtf) :0 and C^S to be

closed, we see that llc(,\)ll reaches its maximum value on C,S. Moreover, since the function G()) is

analytic, the maximum value of llG())ll over C,S can be achieved on the boundary ECS : dS. Thus,

Theorem 5.5.

r(A; D; E) : ra(A; D; E): { ruffi llG(l)ll} 
t

We now construct a destabilizing perturbation whose norm is equal r(,4; D; E).Since llc())ll
reaches its maximum value on C,S, by the theorem , there exists a h e ES such that r(A; D; E) :
llc()o)ll-''

Letu € Cr satisffing llc(.\s)zll : llc()o)ll, ll"ll :1. Applying the Hahn-Banach theorem,

there exists a linear functional y* defined on Kq such that g.(G()6)u) : llG(.\s)ull : llc()6)ll arfd

lls.ll :1. putting A :: llG()o)ll-lug- we get

ll^ll < 11c()o)ll-1ll"lllly.ll : llG(^o)ll-'.

From
AG()6)u : llG(lo)ll-luy.G() o)u : u,

we have

ll^ll > 11c()o)ll-1.
Combining these inequalities we obtain

llall : llG(^o)ll-'.
Furthermore ,let r: ()01 - A)-'nu and from

()01- A- DLE)': ()s1-.4)(^01 - A)-rDu- DllG(^0)ll-rus"EQ,oI - A)-rDu
: Du - Dllc(^o)ll-luy.G(.\o)u:0,

it follows that )o e o(A + DLE) n C^S. This means A e ,A/ and it is a destabilizing perturbation.

Example 5.6. Let lf : ULo[k, k + ]l and

o-(o -2\. /t r\ ,:(o 2\
U -r), ': (i oJ *a 

" - \t -r)'
We have the domain of exponential stability of this time scale is

^e 
: {} e c, }n.l+ ln11 + f.l; < 01.
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.s: {^ e c, jll.r + ln l1 + J.l1 < 01.

Fig. 1. The domain of stability.

It is easy to see thar o(A) : {-1, -2} g s. The boundary of ^g is the set 69 : {) €
c,+m)+h11 +?ll :oland

/ ?(t+rt z \c()) : ( "Trt i,Tfl+' 
)\' PBXT'/

With the maximum norm of IR2, i.e., ll@,il|| : max{lzl,lgl} we have

llc(^)ll :max { 2l^+rl+2 l^+.21 1 - z(lt+tl+r)" \ /' ---- rll-+31+a'l)tlT)+21/: lrzlu+21
' : 2 /r- 1 \-l^+Z\'-1,l+11/'

Put ) : r -f yi. From ) e 0Swe have (2r+S)2 + 4A, : ge-?" and r ( 0.
Then

llc(^)il : F(,),: ---: (,. -+) ., : F(0) ror arl r ( 0.

lZ"-t' +u +; \ tlZ"-t'-"-Z/
rherefore 

ruBt llc(^)ll : llc(0)ll : 2 and r(A; D; E) : +.
With the vector u: (I,1) it yields

llc(o)ull : llc(o)ll :2
Take the functional a* : (I,0), we have sr*(G(O)z): llC(O)zll : llG(0)ll :2 and llg.ll :1. Let

A : llc(o)ll-'ur. : (i :)" \i 0/
we see that o(A+ DLE): {0, -2} ( ^g which implies A e ,A/ and r(,4,; D;E): i : lllll.

6. Conclusion

In this paper we have considered the exponential stability and given a formula for the stability
radius of time-invarying linear dynamic equations with linear disturbance on time scales by giving
the domain of exponential stability and showing the existence of a "bad" perturbation.whose norm is
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equal to the stability radius. In the theory of stability radii, the investigation whenever the real stability

radius and complex one are equal is very important. Since the structure of the stability set is rather

complicated, so far we have to leave it as open question'
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