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Abstract. This paper deals with a formula of stability radii for an linear difference equation

(LDEs for short) with the coeffrcients varying in time under structured parameter perturbations.

It is shown that the Io- real and complex stability radii of these systems coincide and they are

given by a formula of input-output operator. The result is considered as an discrete version of
a previous result for time-varying ordinary differential equations [1].
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1. Introduction , *

Many control systems are subject to perturbations in terms of uncertain parameters. An important
quantitative measure of stability robustness of a system to such perturbations is called the stability
radius. The concept of stability radii was introduced by Hinrichsen and Pritchard 1986 for time-
invariant differential (or difference) systems (see [2, 3]). tt is defined as the smallest value p of the
norm of real or complex perturbations destabilizing the system. If complex perturbations are allowed,
p is called the complex stability radius. If only real perturbations are considered, the real radius is
obtained. The computation of a stability radius is a subject which has attracted a lot of interest over
recent decades, see e.g. '2, 3, 4, 51. For fuither considerations in abstract spaces, see [6] and the
references therein. Earlier results for time-varying systems can be found, e.g., in [1, 7]. The most
successful attempt for finding a formula of the stability radius was an elegant result given by Jacob

[1]. In that paper, it has been given by virtue of ou@ut-input operator a formula for Lo- stability for
time-varying system subjected to additive structured perturbations of the form

i(t): B(t)r(t) + E(t)A(F(.)"(.)Xt), t> 0,r(0): ns,

where E(t) and F(t) are given scaling matrices defining the structure of the perturbation and A is
an unknown disturbance. We now want to study a discrete version of this work by considering a

difference equation with coeffrcients varying in time

r(n * I) : (An * EnL,Fn)n(n), n e N. (1)

E-m ai | : honglanle229 @gmai l. com



176 L.H. Lan / wu Journal of science, Mathematics - physics 26 (2010) lz5-Ig4

This problem has been studied by F. Wirth [8]. However, in this work, he has just given an estimate
for stability radius. Following the idea in [1], we set up a formula for stability radius in the space lo
and show that when P : 2 artd A, E, F are constant matrix, we obtain the result dealt with in [5]

The technique we use in this paper is somewhat similar to one in [1]. However, in applying the
main idea of Jacob in [1] to the difference equations, we need some improvements. Many steps of the
proofs in the paper [1] are considerably reduced and this reduction is valid not only in discrete case
but also in confinuous time one.

An outline of the remainder of the paper is as follows: the next section introduces the concept
of Stability radius for difference equation in t . In Section 3 we prove a formula for computing the
/r-'stability radius.

2. Stability radius for difference equation

We now establish a formulation for stability radius of the varying in times system

I n(nrr): Bnr(n), n € N, n> m
I x(m): zs) e IRd.

(2)

It is easy to see that the equation (2) has a unique solution n(n) : e(n,m)rgwhere O :
!O("' m)In>^>o is the Cauchy operator given by Q(n,m) : Bn_! . .'. 8^,n ) m and, b(m,m) :
'I' Suppose that the trivial solution of (2) is,exponently stable, i.e., there exist positive constants
M and a € (0,1) such that - '

llO(n, rn)lln6a,a { Matn-^, n2 m} 0.

we introduce some notations which are usualry used rater.
and N be the set of all nonegative integer numbers. put

o l(0, oo;X) : {u: N -+ X}.

Let X, Y be two Banach spaces

o Io(0, oo;)() : {yf l(0, oo;X) 
' DZo ll"(")llo < oo} endowedwith the norm llull1,10,oo;X)(DLo llu(n)llo)t/n a *.

. lp(s,t; X) : {u e lo(0,oo;X) : u(n): 0 if n I [s,t]].
o L(Io(O,oo;X),/o(0,m;f)) is the Banach space of-all linear continuous operators from

lo(0, oo;X) to Jr(0, oo;Y).

Sometime, for the convenience of the formulation, we identify lr(s,t;X) with the space of all
sequences ("("))'":r.

The truncated operators of J(0, oo;X) are defined by

(3)

q(r(.))(k): 
{ frl*,' ?: f,. 

,,

and

t"(.)1"(k): {
An operator f € L(le@,oo; X), lo(0, oo; )r))
(see [1]).

0, 0(kcs,
r(k), k) s.

is said to be causal lf. qAtrl : TtA for any t > 0
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Let A € L(Je(0,oo;Ks),lo(0,oo;K")) be a causal operator. We consider the syste- (2)
subjected to perturbation of the form

r(n * 7) : Bnr(n) + E"A(F."(.))(t), n € N, (4)

where E, e Kd"";tr\, e Kn"a. the operator ,4 is a perturbation.
A sequence (A@D € l(0, oo;rcd) is called a solution of (a) with the initial value y(ns) - rs

if
a(n*7): Bna(n) + E"A(lF.y(.)1",)("), n) no. (5)

. Suppose that (g(n)) is a solution of (a) with the initia.l value gr(n6) : no. It is obvious
that for n > nx ) ns the following constant-variation formula holds

n-l

a(n):Q(n,m)y(m)+t Q(n,k+t)D1,A([n^-t(F.aO)],,)(k) *EnA(n*-r[4s(.)],,)(")
m 

n-l
. 

P 
Q(n,k+t)EpA(lF.y(.)l-)(k) + E,A([F.s(.)]-X"). (6)

We are now in position to give a formula for stability radii for difference equation. Now
let the unique solution to the initial value problem for ( ) with initial value condition r(ns) : 7t
denote by 

"(. ;no,ro). In the following, we suppose that
Hypothese 2.1. E^; F"i are bounded on N.

We define the following operators '
(n 6z)(n) : F" D;i Q(n,te + I)Eeu(k)),
(f,suxn) : tlj e(n, k + r)E1,u(k),

for all u e lo(0,miK"), n > 0. The first operator is called the input-output operator associated
with (2). Put

$.,,u)(n): (1Lo[z],0) @), (f.,ou)(rz) : (fl6[z],,)("). (7)

We see that these operators are independent of the choice of. Tn. It is easy to verify the
following auxiliary results.
Lemma 2.2. Let (3) and Hypothesis hold. The following properties are true

a) Lno, € L(lo(ns,mi K"), lr(rn, *;Kn)) ; il^ e L(Ir(ns,mi K'), lo(n6, oo; Kd)),
u lln4ll ( llLyll , t> t' > o,

c) There exist constants M1) 0 such that

ll(D(', ns)16lho(,,0,*;Nd) ( Mr llrollxo , no > 0, zs € Kd.
With these operators, any solution n(n) having the initial condition x(rn) : u6) of (a)

can be rewritten under the form

r(n) : Q(n,ns)xs +\,"oA(1F."(.)l*)("), n> ra. (s)
Definition 2.3. The trivial solution of (a) is said to be globally lo-stable if there exist a constant
Mz>Osuchthat

for all rs € Kd.

ll"(';ro, zo)l[r(,,",-;6ry ( Mz llrollrc, , (e)
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Remark 2.4. From the inequality

ll* (r; no, ro) 
| Inco ( ll" (. ; rn, r o)ll 66o,oo;Kd)

for any n ) no, it follows that. that the globat lr-stability property implies the Kd- stability in initial
condition.

In comparing wilh [1, Definition 3.4], in the discrete case, we use only the relation (g) to
define lr-stability.

3. A,formula of the stability radius

First, the notion of the stability radius introduced in [1, 2, 9] is extended to time-varying
difference system (2).
Definition 3.1. The complex (real) structured stability radius of (2) subjected to linear, dynamic
and causal perturbation in (4) is defined by

rK(A; B,E,F):inf{llAll : thetrivialsolutionof (a) isnotgloballyro-stable},
where K: C,lR, respectively.
Proposition 3.2. If A e L(le(O, m;Kq),lo(0, oo;K")) rs causal and satisfies

ll'4ll < ffi llL",ll-',

then the trivial solution of the system (4) is globally t r- stable. r
Proof' Let m) nobe arbitrarilygiven. It is easy to see that there exists an ll[s ) 0 such that

llr(n;ns,ro)llN, ( Ms ll"oll V no .-( n < nL. (10)

Therefore.

ll, (., ro, r o)llh @o,n,n6o; 
( (rn - ns) Ms llr sll . (11)

Now fix a number m) ns such that ll,4ll lln--ll < 1. Due to the assumption on ll,4ll, such an rn
exists. It follows from (6) that

r (n, ns,ro) : Q (n, m) r (m, no, r o). i 6 (n, k + I) E pA(fur *-r(F.r (., ns, r g))l,r) (k)
k:rn

n-I
+ D E 1,A([F.r(., ns, rs)]^) (k)

k:tn
forn) rn. Therefore,

Fnr(n;no,ro) : FnQ(n,m)r(m;no,ro) + $-, (A(n,._{F*l,,)))(,") + $.^(A([Fr]_)))(").
(r2)

Ilom (10) and (12) we have

ll F 
" 

(. ; no, r o)ll6qto?,K: ) < | 
| 
I O (., m) n (m; no, ro)ll 

6 6,*, * o 
1

+ ll(n -(,4(n^-1[Fr]n,)))(.)l["1-,oo,Kc) + ll(L-(,4(tri]-yyy1:;ll,o1_,*,*n;( Ifr ll4 ll ll"(*;n6, zs) lls,
+ lln--ll llall ll("--rlF"l",)(')llr,(ne,rn,uce; + llL-ll llAllll[Fn]*)(.)lho1-,-,xo;.
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Therefore,

(1 - lln--ll llall) lle"( ;no,ro)llh@,oo,Kc) ( llF.ll(MMs + M4lln-*lllall) llroll

which implies that

ll,p."(.; no,ro)llb-*oo,Kq) < (1 - lln--ll ll,4ll)-t llr.ll (Mtut + M4ll\-^lllall) llroll ' (13)

setting M5 :: ('1 - lln -ll llAll)-1 wl(MMs + M4llL^llllAll) we obtain

lltr'."(.; no,ro)llro1-,-,nca; < Ms lltolln<r.

Henc€, using (11) we have

llF."(.;nn,ro)llb@o,oo,Kq) ( Mo llrollrc, ,

where Ma : Mt -t Ms. Further, bV (S)

llr(.;nr,"o)l[o1,,0,-,16^o; ( llo(', ns)Pn,arsllro1,,o,-,rd; + llfl'"llll/llllF.r( ,'o,'o))llb(ns,oo,Ka)

< Mlllp,,-rroll * llfi,.llll,allllr.r(., no,ro))llb,,o,oo,Ke) { Mz 1lP"o-rroll'

where Mz : Mr + 11C',lllllllM6 The proof is complete'

Thus, by Proposition 4.3, the inequality

"N(A; 
B, E, F)> s13^ llL^ll-t

holds. We prove the converse relation'
We note that llf"ll is decreasing in nt Therefore, there exists the limit

1

"ltiL 
llL"ollro(o'-;Ke) :: l'

proposition3.3. ForeveryS,p < d < ll[4ll-r thereexistsacausaloperatorAe L(lo(o,a;
Kq), le(g, oo; K")) with llAll I 5 such that the trivial solution of @) * not globally l r- stable'

proof. Letusfixthenumberse ) 0,.y> psatisfying0 < 7(1 -e1)-r <,4. Since lllL"lllo1s,-;Ko; J

h, *, ,
llL,,llro(0,*,re"1, l, Yn) o.

In particular, lln-oll > ]. tfrerefore, we can choose a function fs e tr(O,oo; K") with ll/0lhr(o,oo;Ks) :
1 such that l

llLo/ollloto,-;Nc; ) 1'

FYom the properties

,gg lln',,Iollro(o,oo;N"; : 1, #* lln'on''-Ioll,,1o,-,onl : llro/oll t i'
it follows that there exists an rrls € N satisfying

-*lo o(n^o7o)llu(o,oo;xe; ) l'
ll*-,/oll '-P\,-t ' 'Y

Denoting /o : ffi n^o{o we obtain

ll/ollro(0,*,N") : 1, support ,fo e [0, rns] and lllLo/olll,to,-;No) ) 1'
1
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Further, for any n) ms we have

Lo?"yh)(") : F'Dffo Q(n,k * I)Ep(tr^"h)(k): FnD(n,mo r r) DPo o(-o + r,k + r)Ek(it^;DG).
Therefore, by virtue of (3), there exists ns ) ms such that

lln 6(z'-oh)llre(ns,oo;Kc; < !llnll,r1o,oo;Ks). (14)

Similarly, *. 
"un 

find ns ;-m4 1rr1 and fi satisfyini

ll/rll : 1, support h g[ns l-I,m1]
und'

llLo/r lho(no+r,nr;n< r), +, iln s6^rh)[ro(n1,oo;Kc; <,j..rlln!r10,oo;Ks).

Continuing this way, we can find the sequences (/r) and rlk t oo, nk-t I rn* 1n6 having the
following properties

ll"f*llrr1o,-,N") :.1, support fx e ln1,-1*I,m1,1,
(with n-1 - -1, TTL_1: -1) and

lln'ofxll66r-r11,n6;xe; ) 1, ll\,s(n^*h)llr,(n6,oo;rca; < fillnll,"10,oo;Ks). (15)

Denote

Qh : i rr.-,*, ,nn7n-o(lhl^n-r*1), 
*

k:0
where lc denotes the indicator function of the set C. Let f : DLo f*. By (15) we see that
Lof / lo(0, oo; Kq). Further,

o support Q/r c [n*t + L,nt],

' ll(Lo-Q)hlh"to,oo;Kc) ( illoo{rr- o-,h)llt,6o-r,oo;Kc) 
= P f;llnll,,p,*;K"):rllhllrolo,-;N";,ft:1

i.e.,

llLo - Ql[o10,-;nco) < €. (16)
By Hahn-Banach theorem, for any /c e N, there exists a linear functional, namely z[, defined
on lr(np_1;I,np,Ka) such that K1 --------

ll"lll :1 and 
"i@ofxl\i_r+r) 

: lln-ofnllu,,n_r11,n6;Kc).

We define a sequence of causal operators Ap € L(to@, miKq),lo(0, oo;K")) by

A1"h:ffi'4ft1::-,+,)'
The sequence (Ap) has the following properties

o A*$-ofx): A*(Q"fr) : fk+r,. ll,arll ( r.
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@

An:\t*n.
k:0

It is obvious

' ll'4ll :suP{ll'atll : ke N}'

Therefore, the operator (1- (Q-Lo)A) is invertible and ll(/- (a-Lo)I)-tll < (1-e7)-1. Set

A:A(I-(a-Lo)I)-',
":(I-(A-n-o)A)Q/.

We see that

ll.4ll : llAn(I - (A - Lo)I)-'ll < .y(t - e7)-1 ( 6,

and

Hence, t
(I -\'s\)z: g, Gn

which implies that

1r - floar)a :f,-Ag, (18)

where a:f,-Az. Fbom (1s) we have F^a@): z(n) for any n2 no.Therefore, a /Ip(0,oo;Ke)
because z /. lr(0, oo;Ke) and F is bounded. Moreover, the relation (18) says that g(') is a

solution of the system

a@i-L) : Bna(n) + E"(A(F.y(.))X") + E"(As)(n), (1e)

with the initial condition g(0) : 0. Put

h(n) :: E"(As)(n).

It is easy to see that h(n) has a compact support. Substituting into the first one we obtain

u@ r r) : Bna(n) + n;e@.)s(.)X") + h(n). (20)

For any rn 2 0, the equation

r(n-tL): Bnr(n) + E"(L(F."(.)))("), (21)

has a uniquely solution, say r(', Tn,fro),with the initial condition n(m;m,roj': 16. We show

that the sequence (A@)) defined by

a@+1) : i x(n*1, k + 1, h(k)), e(0) : 0. (22)
k:0

Q -n sa)z: (I - (Q - ro),4)Q/ - n olQ/ : f)
/ao"\

:Q ( /-tloD1[n,-1nt,na]llo([/l-,-,+r) ) 11o,"o1lLo("fo) :' g'
\ i:o r-:o /
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is a solution of (20) with 9(0) : 0. Indeed,

a@ *1) : i r(n r I, te + I, h(k)): i r(n r r, k + r, h(k)) + h(n)
/c:0 k:0

n-l n-l: I Bnx(n, k + r,h(k)) + \n^a1r.x(., k +r, h(k)))(n) + h(n)
; rt=0 /c=0

n-l

. 
: Bna(n,,h+1,h(,t))+ E^A(F.I", ,k+1, h(k)))(n)+h(n)

.-l
: Bnu(n,,k + 1, a(,t)) + E^A(F.D"(., k + 1, h(k)))(n) + h(n).

rk=0

Therefore,

a@+ r) : BnPn_ta(n,k + 1, h(k)) + E"A((F.y( ))))(") -r h(n),

i.e., we get (20).

If (21) is globally lo- stable, it follows that

(*ll" ynlt/n
llu(')lh"1o,*;Kd) : { I llD r(n,k+ 1, h(k))ll I(n=o llk=o . ll J

( a / n \P)l/P- E (I tt"t"',t + 1, ,n(rDll) ]
e/g \1/p

< L t L llr(n;k + 1, h(/c))lf | (usins Minkowski's inequality)
,t:0 \n:/c+l /

( Mro i ttnf*ltt ( *m.
,k:0

Hence, it follows that

llu(') llr"1o,-;Ka; ( oo'

That contradictsto y(.) /lr(0,oo;Kd). This means that (a) is not globallystable.
Summing up we obtain.

Theorem 3.4. For lo-stability, the complex stability radius and real stabitity radius are equal and it
is given by

ra,(E, A; B, C) : rrR(E, A; B, C) : 
;r"go 

llL^ ll-1 .

Corollary 3.5. Let B, E, F be constant matrices and p : 2. Then, there holds

( lln,., -,-r-''l 
-l

rc : rR : { sup ll, t, - B)-t ntt >

[ltlir tt tt )
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Proof. Since B, E, F are constant matrices, we have

(r,6u) (n) : FTb (n, k )- r) Eu1, : FY( ii ") EupFl a^-r"-r nu*.
k=O k:0 \m=n / t:O

Denote by H(h) the Fourier transformation of the function h. We see that

H g'su) : : ("F:: Bn-k-7 Bu*) "-o*: : ("F, pn-k-. nun) "-o*
: i, (i a.-xe+i"-tu) Eu1,e-ik,: fl r ("t-I - B)-1 Euos-;t,

k:o \n:,t / k:o
: F(ei,I-B)-'niu1,"-ik _ F("n I-A)-1 nn1u7

k:0
: (r @i'r - B)-' 

") 
, fu) : p ({"n' , - B)-') nn 1"1 .

Therefore,

H (\'su) : F ("i'I - B)-' EH (u) '

Using Parseval equality we have

llH (h)ll : llhll

for any h e l2(0, m;Ke). Hence,

llLo,ll : llr (Lo")ll :llr 1"n'r - B)-'E fI(")ll

Thus,

llroll : '"p llr ("0'I - a;-'r.a1"1ll
llull(l " r'

: sup llr 1"'' r - B)-' E.H @)ll - sup llr p" r - s)-'rll
llri.,i;1g1 tt '- - -t ''ll ,'ll \ / ll

Or

llLoll : '"p llr 1t - a1-r nll.vrr 
ltl=rll 

\ / 
ll

Since limt- * F (tA - B)-t E : 0,

rc : rr* : {r*o ll, ao - B)-'tll} '
lltl>t " " )

The proof is complete.

Example 3.6. Calculate the stability radius of the unstructured system

X.^+t : (-r2 _t, ) "" 
Yn ) o. (23)

The matrix (-2 1 \ '
1 1 _1J hur two eigenvalues )1 :113 and )2 :213 which line in the unit ball.

Therefore, the system (23) is asymptotically stable. F\rrther

ll(rr-B)-'ll :(:fu -@)
\-5P=;f' slz-st+2 /
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we know that ll(tl- B)-tll is the largest eigenvalue of (tI - B)-t 1t - a1-r which is

-762t + r62P + 61 + 5rft2ffi- s2a1a s7
2(8rt4 - r62ts + r77t2 - 36t + 4)

Hence,

"p llltl - B)-'ll :',ro :9 * 1A.Itl=l,' , rr lrl:r 8 8'-
Thus,

' rc : rR : (Y+ lvoz) 
-' 

.
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