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THE CJT EFFECTIVE ACTION APPLIED TO CRITICAL
PHENOMENA FOR THE ABELIAN HIGGS MODEL
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Abstract: The Abelian Higgs Modcl is considered by means of the Cornwall - Jackiw
- Tomboulis (CUT) effective action at finite temperature. The calculations in Hartree
- Fock approximation is presented and it is shoum that the symmetry is restored at the
critical termperature which is derived divectly from the gap equation.

1. INTRODUCTION

The CJT effective action [1] and its theninal effective potential is known as a method
which provides approximation beyond two - loop and higher, in particular, in the non-
perturbative sector [2]. Weinberg (3], Doland - Jackiw [4], Kirznhits and Linde [5] showed
that the renormalizable field theories which is spontaneously broken syminetry can restore
the syimmetries at critical temperature 7.

Our main aim is to present in detail a general formalism of thermal CJ'T effective
action because it concerns the nature of the phase transition. It is important to study the
high temperature symmetry restoration model. We have used dimensional regularization
at finite temperature to calculate the CJT effective potential up to the second order and
the eritical temperature in Higgs model. Up to now, Higgs mechanisiu is recognized as an
optimized generation of masses via spontaneous symmetry breaking.

The paper is organized as follows. In the section II the Abelian Higgs model and the
tormalism of CJ'I" effective action are presented. Section I1I is devoted to considering the
thermal effective potential and the SD equations. In the section IV the critical temperature
at which symmetry is restored is directly derived from the gap equation. The discussion
and conclusion are given in section V.

2. THE HIGGS MECHANISM AND THE CJT EFFECTIVE ACTION FOR
THE HIGGS MODEL

Let us apply the formalisin of CJ'1 effective action to investigating the Higgs model,
which is desceribed by the Lagrangian

1 ‘
L= FWFY 4 (0 + icA B[O - icA)B] - m?P'

~ M®*®)’ +n0,0"'n + Lar (2.1)
where @A, and 1 are the complex scalar, the gauge and the ghost fields, respectively
and F,,, = 0,A, — d, A, is the invariant field tensor, L¢r is the term gauge - fixing.

It is well known. the Lagrangian (2.1) is invariant under the local Abelian gauge
transformation

&(r) — P'(x) = DD (1) (2.2)

) 1,
Aulz) = A'y(z) = Au(x) - a()“(-)(:r) (2.3)
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If m? > 0 there is a symmetric ground state & = &* = 0. If m? < 0 there is again
a ring of degenerate ground states, whose expectation value (thermal average) is

<0|‘I>|0)[j =y (2.4)
Let us choose 1
®'(x) = 72 [Xll(i') +ix/5(r)] (2.5)

so that (0[x’,10}3 = v, (0|x’,]0)s = 0 and define the physical field x; = x’; — v, X = X5

The Lagrangian (2.1) becomes

1 1 ] o 1 .
Fa—— —IF#,,F‘“’ g (@ux1)® + 5 (Fux2)? - 5 (m? + 3\2) x1°
1

-5 (M + 02) xa® - woxy (xd +x3) - S (xd + xd)

2 4
—evA 0" x, — eA* (x10,x3 — X20uX1) + §(f2A;nA’ (X? + Xf)

1. .
+ 502A,,A“ (v +2vx,) + 070, 0"n + Lar (2.6)

The masses of x;,x, and A, bosons, respectively, are

—(m?* + 3\?)

H1 =
pa = —(m? + Av?)
M = ev

7”2

At T = 0, as its well known, v — vy = / —"- and X, is massless and does not

represent an observable particle in scattering experiments (Abbers and Lee, 1973).
Take the gauge - fixing term in R gauge as

1

1
Laop = —-— 5

og (0" A+ Eevxy)? =

. I 5 &
(0"AL)* - i&zuzxﬁ + evA "X, (2.7)

So, the mixing term evA 0" x,, which corresponds to the coupling MW ---- | got
rid of the Lagrangian. The free propagators in Euclide momentum space of x,, x, and
A, in the R¢ gauge, respectively, are

k | I -
e — D, (k) = T 2.8
o(k) k2 + u? + ie \25)
k 2 !
_____ o ae DR = oo, 2.9
o(k) k2 + Eu? + ie (29)
k 1 o
~ D n k = e e w = 1 - __L‘i—
AN opw (k) W2+ €2 + ie 9y ( 6)1.'2-5.'\[‘2
ky k. kaky
_ Yuw — _’1\72_ _ _ﬁ_ (2.10)
k2 + M? +ie  Kh? + M '
where 112 = —(m? 4+ 3\v?), M = ev and £M? are the bare masses of the y;. x2 bosons and

A, gauge boson, respectively, in the R gauge.
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In the limit & = 0 one gets the Landau gauge and the vector field satisfies the
Lorentz condition 9, A" = 0, the theory is "manifestly renormalizable”. For { = 1 there
is so - called t'"Hooft - Feynman gauge. The unitary gauge is recovered in the limit £ — oc.

The shifted full Lagrangian is being

S 1 1 1 1
L= = TP P+ 2 (8u0) + 5 Buxa)’ + 5udxd + 5333

2 2 2 2
A 1
- AUXl (X? =+ X%) - Z (X? + X%) + EAIIQA;‘A#
1
- §eQA“A“ (x3+x3) - = B“A 2+ nt9,0"n (2.11)

The generation of mass for the vector field via spontaneous symmetry breaking is
known as the Higgs mechanism. It is a central concept in modern gauge theories.
Hence, the quadratic Lagrangian for the Abelian Higgs model takes the form

1 1 1 1
£=- —Fu.,F‘“' + 5 (6“)(,,)2 + §xa1\'fabXb + §MQA.U
A 1
- ZX F QA;LX - E (6‘“A“)2 + n+3,15”1’] (2.12)

where x? = X%, x* = (x?)?% a = 1,2 and M = ev is mass of vector boson, My is

diagonal mass matrices. At T = 0 it takes the form:

m? + 3\? 0
A[“l‘ ( 0 m? + /\ug ) (218

The classical action is given by

I, Ayl = [ det (@)
- [[ sty [xu( D34z - i) + A @A (@ - A" W)

()55 @ = g+ [ deLim(a) (214

The CJT generating functional for connected Green’s function is defined by

Z§T(J, K] = expiW§'TJ, K] = —ZT(;_@ / [Dxa] [DAu] [Dn+] [Dn]
p{/ dz[£(@)Juxa(e) + Ju(@) A*(2) + 7* (2)n(2) + 0* (2)j()]
+5 | sty [xu@Kale )

+ AM(2) K, (z,y)AY (y) + 7 (2) K (x, y)n(y)] } (2.15)

where the physical fields satisty the periodic condition

o (L) =2 (-Lx) 0
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with @ = (x,.A,,n). We have then

(SVVg’"IT . JWrﬁC./T -
§Ta(m) Xel) 5wy ) (2.17)
W g JT " 5'[,{,rg‘JT |
5](:1:) =n+($)’ 6]+(12) =TT('«L‘) (2.18)
and
5wﬁCJT 1
Ko@) 2 Xa@xs(¥) + Das(z.y)] (2.19)
614’80/7‘ 1 . ) .
Koy 2 A @A)+ A" (zy) (2.20)
5wC.IT 1
5;‘"—([;,3,) =5 [n* (@)n(y) + S(z,y)] (2.21)

The CJT effective action is a double Legendre transformation of W[‘,C" 3
rg-”f[xc,, A% 0. D, A, s] = [,CJT[JG,'J,L,,,]*,]', K, Ko, K]
- [ e[ L@hnal@) + 9@ 4 @) + 1 @)ia) + 5 (@)
—% // dwdy[xa(m)Kab(r, Y)x6(y) + Dav(z,y) Kpa(y. z)

+ A () K () A () + O (3, 4) Ko (3, )
+ @K (@, y)ny) + S, y)K (v, 7)) (2:22)

Of course, the physical state corresponds to vanishing external source. Physical
solution require

5FC.IT
° =0 (¢ = Xa» s 1) (2.23)
(Sé(l?) Xay ‘A, 9
sTGIT
=0 (G = Dub- Auuﬂ S) (224)

6G(:E)IG=G"
In order to obtain the loop expansion of ng T we define the functional operator as

- 621[){0;‘4“ '7] 62[1'11[
G gz, y) = — 2%l RV A
i) = 5 se(y) t 56(2)66()

where the action I[X{u A,“-r[] is obtained from the classical action I[xu, A, 17] in (2.11)
by shitting the fields x,,, A, m by xa, A, and 7.

=G Yz -y) (2.25)

It we define the Fourier transformaticns of G(x-y) as

Glk) = /d;EG(I — y)etkE-y) (2.26)
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then we have got the functional operators

D L0 k) =k* + M3, (2.27)
A(:ulr/(x' ") ‘_‘(k2 + (‘2,\2)guu + k;tku (228)
where A% = —(m? + Ax%)bap + 2AXaXs 1s the mass matrices of Higgs bosons.

(1\12)“,, = e?x%g,, is the mass of vector boson.

The expression for Fg" T can be derived directly basing on [1]
1 _ _
F;CJT :I[Xu- Ap- ’f] +§TT' [lnDoabD(,bl + Dmlb(Xs k)Dab]

1
:?—Tr [l'n.A(,,,,,A‘l + A1 (x k) Duw — 1]

g ouv
1
+ 5Tr(InSeS™" + 57! (k)S - 14T [Xas Aps M, Dabs By 5] (2.:29)

\.vher('z the trace, the logarithm and the product anlbDab and AOWA;,}... are taken in the
functional sense.
The momentum representation in the Euclide space of the thermal propagators in
the Landau gauge are as follows
1

Doas(k) = , 2.30
oR) = Ty KT M (2.30a)

Kk _
Dou(k) = [‘2”"”2*" gfw] (2.30b)
(2nnT)? + k?

Ac—)_“lu(,\’v k) = ("2 = 1”2)9;:1/ -+ "‘;1ku (230C)

l'ﬁf) is given by all those two - particle irreducible vacuum graphs which, upon cut-

ting off one line, yield proper self - energy graphs. It is easily verified that, corresponding
to Lagrangian (2.10), only the diagram of order and e?, which is shown in Fig. 1 are under
discussion.

Fig 1. The two - loop graphs of order A and e? for Fg‘,)
s 3A -
1% == [3Daa(p) Dus(a) + 2Dus(#) Dica(0)]
3e2gy,,
I D ()G (0) + D) Dy 1) (2:31)
362g“,,

1 Dab(P)Guu(Q)Dba(p =t Q)
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3. THERMAL EFFECTIVE POTENTIAL AND THE SCHWINGER DYSON
EQUATIONS

The symmetry is spontaneously broken if the equations (2.23) has a non - vanishing
solution \(.r) # 0. For (x)3 = const, the CJT effective potential is defined by

r§/T = -V T [ @ (3.1)

In field theory at finite temperature, we use Euclide time 7. which is restricted

to the interval 0 < 7 < ﬁ(ﬁ = ,‘—lf) The Feynman rules are the same as those at zero
temperature except that the momentum space integral over the time component ky is
replace by a sum over Matsubasa frequencies for boson w,, = (2mn)/B = 2anT (we set
Boltzmann constant k = 1)

Starting from (2.27) - (2.28) and (3.1),(3.2) we arrive at the expression in Hatree -

Fock approximation for the thermal CJT effective potential in Euclide momentum space.
FCIT 0 3
Va ™ [N My, MY =V ‘T=()+VTHERMAL(X“)

proa A g1 2 2 2 2
=5 Xt ZX' + 52;[171(1\7 +9M;,) + In(k” + M )]

The stationary condition require

5‘/,5'”‘ Tl e?
6\,2 = ? L] 5\2 -+ 2)\Dub5ab + _Q.Q“UG;[U =0 (31)

Substituting (3.3) into (2.24) we have got the system of SD equations for the inverse
of full propagators

D) k) =D (. k) = 2~

=D, (x, k) — M (k) = k2 + M2, (3.5)
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where Uﬂzb = My, + Oy = (m? + Ax?)ab + 2Axaxs + Hap

k - 2—
‘ll/( ) OJHI(Y A’) (SG“U(’\,)

go,uu(\ A) H;w(l") = (kz 3 gn?)g;u/ + ""’L""U (36)

where 9, = ez_x'zgw + I, = My, + .
The second terms in Eqs (3.5) and (3.6) are represented by the graphs given in Fig 2

ele
@
E

Fig 2. The graphs corresponds to the thermal proper energy

o‘/( JT 6‘/2(/}”
—-———I’I“k, b) 2——— =11, (k
((l) ADuh(k) ((( ) ( ) 5Gjm(k) ‘l( )
—————— a=1
----a=2

The svstem of equations (3.5) and (3.6) are rewritten, respectively, in the usual form of
the gap equations
2 0,2
. i e
\/(21 == T — 4 Dgpbap — 2\ JJIUC‘U/ (37)

; 3
mub = (Tn'2 + ’\Xz)‘sub * 2AXaXb + —2—¥ [Dab(p) + Dba(p)]

3e2q,. 3(%2g,,,
+ T’EF Cuulp) + 22 }P‘Tl‘ G () Dualk + p) (39

2 . 3¢ gyuv
ml‘“, =€ X Yuv + [Daa(p) o Dub(p)] (Sub

2

: 2( L
- ‘*T’w [Des()Duath + )] (39

The thermal effective potential V7 is obtained by evaluating Vﬁc‘” at the values of
‘Jﬁl‘m and 933“,,

in the forms

given by equations (3.8) and (3.9), which contain divergent thermal loops

d3k 1
I } : 10
a / 2m)3 k2 + M2(T) (3.10)
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where k% = k% = ki + k2, and M2%(T) is called "thermal mass”

[ Z /' d*k 1 1 (3.11)
: 2m)3 k2 + M2(T) (k + p)? + M(T) .

The proper way is to use dimensional regularization and perform ¢ — 0 limit.
When M = 0, it is being

. i ..(I / 1% 2(k 1
= lim pu E
- (2m)3=2¢ (27nT)? + k k?
2 2
drpe? £(-1) 9
1+ ¢(2ln o& +2)40 ] 3.12
12[ +e( e T (€7) A

where y is renormalization scale.

When A # 0 (3.10) and (3.11) take the form

li 2e 1
I} = lim p®T / - -
a=ia Z 21)3-2 (27nT)2 + k2 + M2

'12 dmpler  E€(-1) 9 o
= {l-*-f(Z[IL ity 2)+U(f )} (3.13)
ji=ae 1 1

Iy = lim 7T e - 3.14
' Z / (2m)3-2 k2 4+ ME(T) (k + p)? + MF(T) (3:14)

lm %p / &k . . |

— l p
/ 2032 k2 + M2 (k + p)2+ M3 + 12

i A 1 1
I Z 3-2¢ : T2 2 2 fe T : 2 2 2
(2m) (2nnT)* + k* + My (2mnT + p,)? + k* + M

n=L °

! . A 1 . .
) = 172 1" = [/ l:.‘;‘.“l/z, — : / —1/2 Z] 2 3.15
2= {/ A7V ( ”-171'1’\[2 (v + 2). ; A dz|4+0(e) (3.15)

where A = p?2(1 - z) — p22 + M2,

So there is not logarithmic UV divergence in I3, i.e no 1/e term. When ¢ — 0 the
finite part of Iy is T (M — \/M?2 + p2). By using (3.11) - (3.15) we can evaluate the masses

1/2 1/2
S’Jt(lli - A\]ub + (T + £ 1 ) and 9 — M + (' 3 )

4. RESTORATION OF SPONTANEOUS SYMMETRY IN THE HIGGS
MODEL

It's well known that in the case m? < 0 the symmetry is spontaneously broken if

Jd Vf" T
d\*?

=0 for x#0 (4.1)
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The symmetry will be restored at high temperature if there exits y = 0 so that

aVerJT
[ — . ‘2
ox? =0 ¢ (4.2)

So. the root non - trivial of equation (2.23) for y? = 0, which is directly derived by
minimizing the thermal effective potential OVJ( TT/9x? = 0, leads to the critical tempera-
ture.

The gap equations (3.7) for y2 = 0 takes the form

= =By — —/'\('“”G“H =0 (43)

Substituting into (4.3) the part finite of propagators for scalar and vector boson,
respectively, one gets
,LL? B T2 3e2 T2

-—— = +—— 4.4
A 122X 6 (1.4)
The critical temperature is obtained directly from (4.4)
12442
Ic=—+—"7= 4.5
€= TUrt3e) (4.5)

The restoration of symmetry and critical phenomena appear at 7. which depends
on two coupling constants e and .

5. CONCLUSION AND DISCUSSION

In the preceding section we have calculated the critical temperature T, at which
the high temperature restoration of the spontaneously broken symmetry takes place. This
is a second order phase transition (Weinberg (2], Kapusta [5]).

If ¢?/A > 1 when y > 7. there is the first order phase transition.

In the application of the composite operator method, the next consideration will
deal with the critical phenomena in Higgs sector of gauge theory, which provide the (non)
restoration of symmetry at high temperature.

The author would like to thank Prof. Tran Huu Phat for suggestion of this problem..
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