NON COMMUTATIVE INTEGRATION FOR UHF ALGEBRAS WITH PRODUCT STATE

Phan Viet Thu

Department of Mathematics-Mechanics and Informatics

Collecge of Science, VNU

ABSTRACT. In this paper we shall give a proof for a lemma (Lemma 3) and a theorem (Theorem 3) stated in the paper [2] of Goldstein, S. and Viet Thu, Phan published in International Journal of Theorem Physics vol. 37. N_0 . 1. 1998 about the construction of Lp spaces for UHF algebras. We shall also give a proof for a technical theorem (Theorem 1), as a tool for the construction.

1. Uniformly matricial, UHF algebras

A unital C*-algebra A is called uniformly matricial of type $\{n_j\}, j = 1, 2, ..., n_j \in \mathbb{N}$ when there exists a sequence $\{A_j\}_{j\in\mathbb{N}}$ of C*-subalgebras of A and a sequence $\{n_j\}$ of positive integers, such that for each $j \in \mathbb{N}, A_j$ is *isomorphic to the algebra $M_{n_j}(\mathbb{C})$ of $n_j \times n_j$ complex matrices,

$$\mathbf{1} \in A_1 \subset A_2 \subset A_3 \subset \dots,$$

and $\bigcup_{j\in\mathbb{N}} A_j$ is norm dense in A. The sequece $\{A_j\}_{j\in\mathbb{N}}$ is called a generating nest of type $\{n_j\}$ for A. We shall also call it an approximating sequence for A. A uniformly matricial C^* -algebras A of type $\{n_j\}$ exists iff the sequence $\{n_j\}$ is strictly increasing and n_j divides $n_{j+1}; \forall j \in \mathbb{N}$. Moreover with these conditions A is unique (up to *isomorphism) and is a simple algebra. The uniformly matricial algebras and their representations are also called *UHF algebras* (from the terminology "uniformly hyperfinite algebras"). Which can be found in a vast literature.

2. Product states [3]

Let $\{A_i; i \in I\}$ be a family of C^* -algebras, $A = \bigotimes_{i \in I} A_i$ the infinite tensor product of $\{A_i; i \in I\}$, and for each $i \in I$, ρ_i a state of $A_{(i)}$, the canonical image of A_i in A. Then there is a unique state ρ of A such that

$$\rho(a_1 a_2 \dots a_n) = \rho_{i(1)}(a_1)\rho_{i(2)}(a_2) \dots \rho_{i(n)}(a_n),$$

where i(1), ..., i(n) are distinct elements of I and $a_j \in A_{(i(j))}; j = 1, 2, ..., n$. The state ρ is denoted by $\bigotimes_{i \in I} \rho_i$: and such states are called product states of $\bigotimes_{i \in I} A_i$. Given a product

Typeset by $\mathcal{A}_{\mathcal{M}}S\text{-}T_{E}X$

state ρ , the component state ρ_i are uniquely determained, since $\rho_i = \rho |A_{(i)}$. The product state is pure if and only if each ρ_i is pure and is tracial if and only if each ρ_i is tracial.

3. The inductive limit of a directed system of Banach spaces

Theorem 1. Let $\{B_f : f \in \mathbb{F}\}$ be a family of Banach spaces, in which the index set \mathbb{F} is directed by \leq . Suppose that if $f, g \in \mathbb{F}$ and $f \leq g$, there is an isometric linear mapping Φ_{gf} from B_f onto B_g and $\Phi_{hg}\Phi_{gf} = \Phi_{hf}$ whenever $f, g, h \in \mathbb{F}$ and $f \leq g \leq h$; then

(i). Φ_{ff} is the identity mapping on B_f .

(ii). There is a Banach space B and for each $f \in \mathbb{F}$, an isometric linear mapping U_f from B_f into B, in such way that $U_f = U_g \Phi_{gf}$ whenever $f, g \in \mathbb{F}, f \leq g$ and $\cup \{U_f(B_f) : f \in \mathbb{F}\}$ is everywhere dense in B.

(iii). Suppose that A is a Banach space, V_f is an isometric linear mapping from B_f into A, for each $f \in \mathbb{F}$; $V_f = V_g \Phi_{gf}$ whenever $f, g \in \mathbb{F}$; $f \leq g$ and $\cup \{V_f(B_f) : f \in \mathbb{F}\}$ is everywhere dense in A. Then there exists an isometric linear mapping W from B into A such that $V_f = WU_f$ for each $f \in \mathbb{F}$

Proof. (i). Denote by **1** the identity mapping on B_f . Since Φ_{ff} is an isometric linear mapping and

$$\Phi_{ff}(\Phi_{ff}-\mathbf{1})=\Phi_{ff}\Phi_{ff}-\Phi_{ff}=0.$$

It follows that $\Phi_{ff} = \mathbf{1}$.

(ii). Let X be the Banach space consisting of all families $\{a_h : h \in \mathbb{F}\}$ in which $a_h \in B_h$ and $\sup \{||a_h|| : h \in \mathbb{F}\} < \infty$ (with pointwise-linear structure and the supremum norm). Let X_0 be the closed subspace of X consisting of those families $\{a_h : h \in \mathbb{F}\}$ for which the net $\{||a_h|| : h \in \mathbb{F}\}$ converges to 0 and let $Q : X \to X/X_0$ be the quotient mapping. Now for a given $f \in \mathbb{F}$, we define an isometric linear mapping U'_f from B_f into X as follows: when $a \in B_f, U'_f a$ is the family $\{a_h : h \in \mathbb{F}\}$. In which

$$a_{h} = \begin{cases} \Phi_{hf}a \text{ whenever } h \ge f; h, f \in \mathbb{F} \\ 0 \text{ otherwise.} \end{cases}$$
(1)

Note that

(α) The linear mapping $QU'_f: B_f \to X/X_0$ is an isometry.

(β) $QU'_f = QU'_g \Phi_{gf}$ when $f \leq g; f, g \in \mathbb{F}$.

For these, suppose that $a \in B_f$. To prove (α) , let $\{b_h : h \in \mathbb{F}\}$ be an element b of X_0 . Given any positive real number ε , it results from the definition of X_0 that there exists an element f_0 of \mathbb{F} such that $||b_k|| < \varepsilon$ whenever $h \in \mathbb{F}$ and $h \ge f_0$. Since \mathbb{F} is directed, we can choose $g \in \mathbb{F}$ so that $g \ge f$ and $g \ge f_0$. Since $U'_f a$ is the family $\{a_h\}$ defined by (1), we have

$$||U_{f}^{*}a - b|| \ge ||a_{g} - b_{g}|| \ge ||a_{g}|| - ||b_{g}|| \ge ||\Phi_{gf}a|| - ||b_{g}|| \ge ||a|| - \varepsilon.$$

Thus $||U'_f a - b|| \ge ||a||$. It follows that the distance $||QU'_f a||$ from $U'_f a$ to X_0 is not less than ||a||. The inverse inequality is apparent and (α) is proved. For (β) note that $a \in B_f$ and $\Phi_{gf} a \in B_g$; we have to show that

$$U'_f a - U'_g \Phi_{gf} a \in X_0.$$

Now $U'_f a - U'_g \Phi_{gf} a$ is an element $\{c_h : h \in \mathbb{F}\}$ of X and we want to prove that the net $\{||c_h|| : h \in \mathbb{F}\}$ converges to 0. In fact, we have the stronger result that $||c_h|| = 0$ when $h \ge g(\ge f)$, since

$$c_h = \Phi_{hf}a - \Phi_{hg}\Phi_{gf}a = 0$$

The range of the isometric linear mapping QU'_f is a closed subspace Y_f of the Banch space X/X_0 . When $f \leq g$

$$Y_f = QU'_f(B_f) = QU'_g \Phi_{gf}(B_f) \subset QU'_g(B_g) = Y_g.$$

From this inclusion and since \mathbb{F} is directed, it follows that the family $\{Y_f : f \in \mathbb{F}\}$ of subspaces of X/X_0 is directed by inclusion. Thus $\cup \{Y_f : f \in \mathbb{F}\}$ is a subspace B_0 of X/X_0 ; its closure is a Banach subspace B of X/X_0 . Now we take for U_f the isometric linear mapping QU'_f from B_f into B which completes the proof of (ii).

(iii). Under the conditions set out in (iii), the mapping $V_f U_f^{-1}$ is a linear isometry from $U_f(B_f)$ onto $V_f(B_f)$; when $f \leq g, V_g U_g^{-1}$ extends $V_f U_f^{-1}$, since for $a \in B_f$,

$$V_g U_g^{-1}(U_f a) = V_g U_g^{-1} U_g \Phi_{gf} a = V_g \Phi_{gf} a = V_f a = V_f U_f^{-1} U_f a.$$

From this and since the family $\{U_f(B_f) : f \in \mathbb{F}\}$ is directed by inclusion, there is a linear isometry W_0 from $\cup \{U_f(B_f) : f \in \mathbb{F}\}$ onto $\cup \{V_f(B_f) : f \in \mathbb{F}\}$ such that W_0 extends $V_f U_f^{-1}$ for each $f \in \mathbb{F}$. Moreover, W_0 extends by continuity to an isometric linear mapping W from B onto A. W extends $V_f U_f^{-1}$ for each $f \in \mathbb{F}$ and thus $WU_f = V_f$. **Remark.** The Theorem 1 and its proof is adapted from Kadison and Ringrose (see [3]). **Definition.** In the circumstance set out in the Theorem 1, we say that the Banach spaces $\{B_f : f \in \mathbb{F}\}$ and the isometries $\{\Phi_{gf} : f \leq g; f, g \in \mathbb{F}\}$ together constitute a directed system of Banach spaces. The Banach space B occurring in (ii) (together with the isometries $\{U_f : f \in \mathbb{F}\}$) is called the *inductive limit* of the directed system. The effect of (iii). is to show that the construction in (ii) are unique up to isometry.

4. $L^p(A, \varphi)$ for finite discrete factors

Let M be finite discrete factor acting on H and τ a(finite) faithful normal tracial state on M (the definition and properties of these notions can be found in [3]). For $p \in [1, \infty]$, let $L^p(M, \tau)$ denote the L^p space with respect to τ as constructed in [1, 4, 5]. Recall that $||.||_p^{\tau}$ norm on $L^p(M, \tau)$ is difined by

$$||a||_p^{\tau} = \tau (|a|^p)^{1/p}$$
 for $a \in M, p \in [1, \infty[.$

Non Commutative Integration for UHF Algebras with Product State

For $p = \infty$, put $||a||_{\infty}^{\tau} = ||a||$. Then $||.||_{p}^{\tau}$ turns $L^{p}(M, \tau)$ into a Banach space, moreover the Holder inequality

$$||ab||_r^{\tau} \leq ||a||_p^{\tau} ||b||_q^{\tau}$$

hold for all $a, b \in M$ with $p, q, r \in [1, \infty]$ such that 1/p + 1/q = 1/r and for each $a \in$ $M, p \in [1, \infty[$

$$||a||_p^{\tau} = \sup_{||b||_q^{\tau} \le 1} |\tau(a,b)|; q \in [1,\infty[$$
 such that $1/p + 1/q = 1.$

Let now φ be an arbitrary faithful (normal) state on M. There exists unique $h \in M$ such that

$$\varphi(a) = \tau(ha) \text{ for all } a \in M.$$

Moreover h is positive, invertible and $\tau(h) = 1$.

For all $a \in M$ and $p \in [1, \infty]$ put

$$||a||_p = \tau (|h^{1/2p}ah^{1/2p}|^p)^{1/p}.$$

For $p = \infty$, let $||a||_{\infty} = ||a||$. We define the belinear from

$$\langle a,b \rangle = \tau(h^{1/2p}ah^{1/2p}b) \quad \forall a,b \in M.$$

Lemma 1. For all $p \in [1, \infty]$ we have

- (i) $||.||_p$ is a norm on M.
- (ii) $|\langle a, b \rangle| \leq ||a||_p ||b||_q$ where $1/p + 1/q = 1, q \in [1, \infty], a, b \in M$.
- (iii) $||a||_p = \sup_{a,b>|, \forall a \in M, b \in M; q \in [1,\infty]; 1/p + 1/q = 1.$ $||b||_q \leq 1$

Lemma 2. If $p, s \in [1, \infty]$ and $p \leq s$, then $||a||_p \leq ||a||_s$ for all $a \in M$. (For the proof of Lemma 1 and Lemma 2: see [2]).

The norm $||.||_p$ turns M into a Banach space which we denote by $L^p(M,\varphi)$. If $\varphi = \tau$ then $L^p(M, \varphi) \equiv L^p(M, \tau)$.

Note that mapping $a \mapsto h^{1/2p} a h^{1/2p}$ defines an isometric isomorphism between $L^p(M, \varphi)$ and $L^p(M, \tau)$.

Lemma 3. For each $p \in [1, \infty]$, the Banach space $L^p(M, \varphi)$ is isometric to the Haagerup space $L^p(M)$.

Proof. We may assume that $\varphi = \tau$ and $p < \infty$. Note that, since the modular automorphism group $\{\sigma_t^{\tau}\}$ acts trivilly on M,

$$\mathbb{M} = M \rtimes_{\sigma\tau} \mathbb{R} \cong M \otimes L^{\infty}(\mathbb{R}).$$

Furthermore, the canonical trace $\overline{\tau}$ on the crossed product \mathbb{M} equals $\tau \otimes e^{-s} ds$. The Haagerup space $L^p(M)$ consists of products $a \otimes exp((.)/p)$ where $a \in M$. Hence it is enough to show that the mapping

$$a \mapsto a \otimes exp((.)/p)$$

is an isometry. It is clear that one needs only to consider the case p = 1. We must show that

$$\tau(|a|) = \overline{\tau}(x_{]1,\infty[}(|a| \otimes exp(.))).$$

(see. Terp [7]). Let $|a| = \int_{0}^{\infty} \lambda de_{\lambda}$ be the spectral decomposition of |a|. We calculate:

$$\overline{\tau}(\chi_{]1,\infty[}(|a|\otimes exp(.))) = \int_{-\infty}^{\infty} \tau(\chi_{]e^{-s},\infty[}(|a|))e^{-s}ds$$
$$= \int_{0}^{\infty} \tau(\chi_{]t,\infty[}(|a|))dt$$
$$= \int_{0}^{\infty} (\int_{0}^{\infty} (\chi_{\{t<\lambda\}}d\tau(e_{\lambda}))dt$$

(since the indicator functions are non-negative and bounded, using the Fubini theorem, we have further)

$$= \int_{0}^{\infty} (\int_{0}^{\infty} (\chi_{\{t < \lambda\}} dt) d\tau(e_{\lambda})).$$
$$= \int_{0}^{\infty} (\int_{0}^{\lambda} dt) d\tau(e_{\lambda})$$
$$= \int_{0}^{\infty} \lambda d\tau(e_{\lambda}) = \tau(|a|). \quad \Box$$

5. Non commutative integration or L^p spaces for UHF algebras with product state

Theorem 2. (Theorem 13.1.14 of [3]). Suppose that $\{A_j : j \in \mathbb{N}\}$ is a sequence of mutually commuting finite type I factors acting on a Hilbert space H. (and each containing the unit of $\mathbb{B}(H)$), A is the C^* -algebra generated by $\bigcup_j A_j; \xi$ is a unit cyclic vector for A and $\omega_{\xi}|A$ is a product state $\otimes \rho_j$, where ρ_j is a faithful state of $A_j, j \in \mathbb{N}$. Then $\omega_{\xi}|A^-$ is a faithful normal state of A^- (the weak operator closure of A), the corresponding modular automorphism group $\{\sigma_t\}$ of A^- leaves each A_j invariant and $\{\sigma_t|A_j\}$ is the modular automorphism group of A_j corresponding to ρ_j .

Proof: (The proof of Theorem 2 can be found in [3]).

Let A be a UHF C^{*}-algebra with a generating nest $\{A_n\}_{n\in\mathbb{N}}$, let φ be a product stste of A with respect to the sequence $\{A_n\}$. There exists the a sequence $\{B_j\}$ of mutually

commuting finite type I subfactors of A (each containing unit of A)). Such that $A_n = \bigotimes_{j=1}^{n} B_j$ or, equivalently $\bigcup_{j=1}^{n} B_j$ generates A_n and $\bigcup_{j=1}^{\infty} B_j$ generates A as C^* -algebra. Denote the restriction of φ on B_j by φ_j we have

$$\varphi(b_1, b_2, ..., b_n) = \varphi(b_1) ... \varphi(b_n) = \varphi_1(b_1) ... \varphi_n(b_n)$$

 $\forall b_j \in B_j; j = 1, 2, ..., n.$ Put $\varphi^{(n)} = \varphi | A_n$ we have

$$\varphi^{(n)} = \varphi_1 \otimes \ldots \otimes \varphi_n$$

Theorem 3. Let A be a UHF algebra with a generating nest $\{A_n\}, n \in \mathbb{N}$ and φ a product state on A with respect to the sequence $\{A_n\}$. Suppose that for each i; φ_i is faithful. Then for $p \in [1, \infty], L^p(A, \varphi)$ is the inductive limit of $\{L^p(A_n, \varphi^{(n)})\}$; moreover

$$L^p(A,\varphi) \cong L^p(\pi_{\varphi}(A))) = L^p(M).$$

Proof: Denote by $(H_{\varphi}, \pi_{\varphi}, \xi_{\varphi})$ respectively $(H_{\varphi(n)}, \pi_{\varphi(n)}; \xi_{\varphi(n)})$ the GNS representation of the pair (A, φ) (respectively $(A_n, \varphi^{(n)})$). Let us first note that $\pi_{\varphi}(A)$ = M and $N_{\infty} = \{0\}$, which shows that

$$L^p(\pi_{\varphi}(A)) \cong L^p(A, \varphi). (\cong L^p(M))$$

and analoguosly

$$L^p(\pi_{\varphi(n)}(A_n))$$
 $\cong L^p(A_n, \varphi^{(n)}) \quad \forall n \in \mathbb{N}^*; p \in [1, \infty].$

By [3 Theorem 11.4.15. and Remark 11.4.16]. A is simple, φ is a primary stat, so π_{φ} is faithful and $\pi_{\varphi}(A)$ " is a factor. Thus A is isometrically isomorphic to $\pi_{\varphi}(A)$. Upon identifying A with $\pi_{\varphi}(A), \varphi$ takes the form $\omega_{\xi_{\varphi}}|A$ for the cyclic unit vector ξ_{φ} . The situation remains true for each pair $(A_n, \varphi^{(n)})$ and $(H_{\varphi^{(n)}}, \pi_{\varphi^{(n)}}, \xi_{\varphi^{(n)}})$ we conclude now that $\omega_{\xi_{\varphi}}|\pi_{\varphi}(A)$ " is faithful, hence $s_{\varphi} = \mathbf{1}$. It implies that $M = \pi_{\varphi}(A)$ " and also $N_{\infty} = \{0\}$, i.e. $L^{\infty}(A, \varphi) \cong M$ and

$$L^{p}(A,\varphi) \cong L^{p}(M) = L^{p}(\pi_{\varphi}(A)^{"}).$$

For the pair $(A_n, \varphi^{(n)})$, by hypothesis, φ_j are faithful states of B_j ; Then $\varphi^{(n)} = \bigotimes_{j=1}^n \varphi_j$ is a faithful state of $A_n = \bigotimes_{j=1}^n B_j$.

 A_n are finite factor of type I; $\pi_{\varphi^{(n)}}(A_n) = \pi_{\varphi^{(n)}}(A)$ " and $\omega_{\xi_{\varphi^{(n)}}}$ are faithful on $\pi_{\varphi^{(n)}}(A_n)$ ". It implies

$$s_{\varphi^{(n)}} = \mathbf{1}; M_n = \pi_{\varphi^{(n)}}(A_n);$$
$$L^{\infty}(A_n, \varphi^{(n)}) \cong M_n;$$

$$L^{p}(A_{n},\varphi^{(n)}) \cong L^{p}(M_{n}) = L^{p}(\pi_{\varphi^{(n)}}.(A_{n})) \ p \in [1,\infty].$$

The modular automorphism σ_t^{φ} of $\pi_{\varphi}(A)^{"} = M$ associated with $\omega_{\xi_{\varphi}}$ leaves each $\pi_{\varphi^{(n)}}(A_n)^{"} = M_n$ invariant. Thus there exists a σ -weakly continuous conditional expectation E_n from M onto M_n for all $n \in \mathbb{N}$ and $L^p(M_n)$ can be canonically isometrically embedded into $L^p(M_m)$ if $n \leq m$. Denote this embedding by Φ_{mn} ; the family $\{L^p(M_n); \Phi_{mn}; m, n \in \mathbb{N}\}$ forms a directed system of Banach spaces, with the inductive limit $\bigcup_{n=1}^{\infty} L^p(M_n) \cong L^p(M)$. Since for each n, $L^p(M_n) \cong L^p(A_n, \varphi^{(n)})$ the family $\{L^p(A_n, \varphi^{(n)})\}$ has the same inductive limit $L^p(M)$ and from the fact that $L^p(M) \cong L^p(A, \varphi)$. \Box

References

- Dixmir, J. Formes lineaires sur un aneau d' operateur, Bull. Soc. Math. France, 81(1953), 3-39.
- Goldstein, S. and Viet Thu, Phan L^p-spaces for UHF algebras, Inter. J. of Theor. Phys., 37(1998), 593-598.
- Kadison, R. V. and Ringrose, J. R. Fundamentals of the theory of operator algebras, vol I (1983). Vol. II(1986), Academic Press, New York-London.
- Nelson, E., Notes on non-commutative integration, J. Funct. Anal., 15(1974), 103-116.
- 5. Segal. I. E. A non-commutative extension of abstract integration, Ann. Math., **57**(1953), 401-457.
- Takesaki. M. Conditional expectations in von Neumann algebras, J. Funct. Ann., 9(1972), 306-321.
- 7. Terp M. L^p -spaces associated with von Neumann algebras, Notes, K ϕ benhavns Universitet, Matematisk Institut, Rapport $N_0\mathbf{3}(1981)$.