NON COMMUTATIVE INTEGRATION FOR UHF ALGEBRAS WITH PRODUCT STATE

Phan Viet Thu

Department of Mathema tics-Mechanics and Informatics

Collecge of Science, *VNU*

A bstract. Ill this paper we shall give a proof for a lemma (Lemma 3) and a theorem (Theorem 3) stated in the paper [2] of Goldstein, S. and Viet Thu, Phan published in International Journal of Theoremitical Physics vol. 37. *N*₀. 1. 1998 about the construction of Lp spaces for UHF algebras. We shall also give a proof for a technical theorem (Theorem 1), as a tool for the construction.

1. Uniformly matricial, UHF algebras

A unital C^{*}-algebra A is called *uniformly matricial of type* $\{n_j\}$, $j = 1, 2, ..., n_j \in \mathbb{N}$ when there exists a sequence $\{A_j\}_{j\in\mathbb{N}}$ of C*-subalgebras of A and a sequence $\{n_j\}$ of positive integers, such that for each $j \in \mathbb{N}, A_j$ is *isomorphic to the algebra $M_{n_j}(\mathbb{C})$ of $n_i \times n_j$ complex matrices,

$$
1 \in A_1 \subset A_2 \subset A_3 \subset \ldots,
$$

and $\bigcup A_j$ is norm dense in A. The sequece $\{A_j\}_{j\in\mathbb{N}}$ is called a *generating nest of type j* € ^ ${n_i}$ for *A*. We shall also call it an *approximating sequence* for *A*. A uniformly matricial C^* -algebras A of type $\{n_j\}$ exists iff the sequence $\{n_j\}$ is strictly increasing and n_j divides n_{i+1} ; $\forall j \in \mathbb{N}$. Moreover with these conditions A is unique (up to *isomorphism) and is a simple algebra. The uniformly matricial algebras and their representations are also called *UHF algebras* (from the terminology "uniformly hyperfinite algebras"). Which can be found in a vast literature.

2. Product states [3]

Let $\{A_i; i \in I\}$ be a family of *C**-algebras, $A = \otimes_{i \in I} A_i$ the infinite tensor product of $\{A_i; i \in I\}$, and for each $i \in I$, ρ_i a state of $A_{(i)}$, the canonical image of A_i in A. Then there is a unique state ρ of \tilde{A} such that

$$
\rho(a_1a_2...a_n) = \rho_{i(1)}(a_1)\rho_{i(2)}(a_2)... \rho_{i(n)}(a_n),
$$

where $i(1),..., i(n)$ are distinct elements of *I* and $a_j \in A_{(i(j))}; j = 1, 2, ..., n$. The state ρ is denoted by $\otimes_{i\in I}\rho_i$: and such states are called product states of $\otimes_{i\in I}A_i$. Given a product

Typeset by $A\mathcal{M}S$ -T_FX

state ρ , the component state ρ_i are uniquely determained, since $\rho_i = \rho | A_{(i)}$. The product state is pure if and only if each ρ_i is pure and is tracial if and only if each ρ_i is tracial.

3. The inductive limit of a directed system of Banach spaces

Theorem 1. Let ${B_f : f \in \mathbb{F}}$ be a family of Banach spaces, in which the index set \mathbb{F} is *directed by* \leq . Suppose that if $f, g \in \mathbb{F}$ and $f \leq g$, there is an isometric linear mapping Φ_{gf} from B_f onto B_g and $\Phi_{hg}\Phi_{gf} = \Phi_{hf}$ whenever $f, g, h \in \mathbb{F}$ and $f \leq g \leq h$; then

(i). Φ_{ff} is the identity mapping on B_f .

(ii). There is a Banach space B and for each $f \in \mathbb{F}$, *an isometric linear mapping* U_f *from* B_f *into B, in such way that* $U_f = U_g \Phi_{gf}$ whenever $f, g \in \mathbb{F}, f \le g$ and $\cup \{U_f(B_f)$: $f \in \mathbb{F}$ *is everywhere dense in B.*

(iii). Suppose that A is a Banach space, V_f *is an isometric linear mapping from* B_f *into A, for each* $f \in \mathbb{F}$; $V_f = V_g \Phi_{gf}$ whenever $f, g \in \mathbb{F}$; $f \le g$ and $\bigcup \{V_f(B_f) : f \in \mathbb{F}\}$ is *everywhere dense in A. Then there exists an isometric linear mapping w from D into A such that* $V_f = W U_f$ for each $f \in \mathbb{F}$

Proof. (i). Denote by 1 the identity mapping on B_f . Since Φ_{ff} is an isometric linear mapping and

$$
\Phi_{ff}(\Phi_{ff}-1)=\Phi_{ff}\Phi_{ff}-\Phi_{ff}=0.
$$

It follows that $\Phi_{ff} = 1$.

(ii). Let X be the Banach space consisting of all families ${a_h : h \in \mathbb{F}}$ in which $a_h \in B_h$ and sup $\{|a_h|\, : h \in \mathbb{F}\}\lt \infty$ (with pointwise-linear structure and the supremum norm). Let X_0 be the closed subspace of X consisting of those families ${a_h : h \in \mathbb{F}}$ for which the net $\{||a_h|| : h \in \mathbb{F}\}\)$ converges to 0 and let $Q: X \to X/X_0$ be the quotient mapping. Now for a given $f \in \mathbb{F}$, we define an isometric linear mapping U'_f from B_f into *X* as follows: when $a \in B_f$, $U'_f a$ is the family $\{a_h : h \in \mathbb{F}\}$. In which

$$
a_h = \begin{cases} \Phi_{hf}a \text{ whenever } h \geqslant f; h, f \in \mathbb{F} \\ 0 \text{ otherwise.} \end{cases}
$$
 (1)

Note that

(α) The linear mapping $QU_f': B_f \to X/X_0$ is an isometry.

(3) $QU'_f = QU'_g \Phi_{gf}$ when $f \leq g; f, g \in \mathbb{F}$.

For these, suppose that $a \in B_f$. To prove (α) , let $\{b_h : h \in \mathbb{F}\}$ be an element *b* of X_0 . Given any positive real number ε , it results from the definition of X_0 that, there exists an element f_0 of $\mathbb F$ such that $||b_k|| < \varepsilon$ whenever $h \in \mathbb F$ and $h \ge f_0$. Since $\mathbb F$ is directed, we can choose $g \in \mathbb{F}$ so that $g \geq f$ and $g \geq f_0$. Since $U_f^{\prime}a$ is the family $\{a_h\}$ defined by (1) , we have

$$
||U_f^r a - b|| \ge ||a_g - b_g|| \ge ||a_g|| - ||b_g|| \ge ||\Phi_{gf}a|| - ||b_g|| \ge ||a|| - \varepsilon.
$$

Thus $||U'_{f}a - b|| \ge ||a||$. It follows that the distance $||QU'_{f}a||$ from $U'_{f}a$ to X_{0} is not less than ||a||. The inverse inequality is apparent and (α) is proved. For (β) note that $a \in B_f$ and $\Phi_{qf}a \in B_q$; we have to show that

$$
U_f' a - U_g' \Phi_{gf} a \in X_0.
$$

Now $U_f' a - U_g' \Phi_{gf} a$ is an element $\{c_h : h \in \mathbb{F}\}\$ of X and we want to prove that the net $\{|c_h|\,:\,h\in\mathbb{F}\}$ converges to 0. In fact, we have the stronger result that $||c_h|| = 0$ when $h \geqslant g \ (\geqslant f),$ since

$$
c_h = \Phi_{hf}a - \Phi_{hg}\Phi_{gf}a = 0.
$$

The range of the isometric linear mapping QU'_f is a closed subspace Y_f of the Banch space X/X_0 . When $f \leq g$

$$
Y_f = QU'_f(B_f) = QU'_g \Phi_{gf}(B_f) \subset QU'_g(B_g) = Y_g.
$$

From this inclusion and since $\mathbb F$ is directed, it follows that the family $\{Y_f : f \in \mathbb F\}$ of subspaces of X/X_0 is directed by inclusion. Thus $\bigcup \{Y_f : f \in \mathbb{F}\}\)$ is a subspace B_0 of X/X_0 ; its closure is a Banach subspace *B* of X/X_0 . Now we take for U_f the isometric linear mapping QU'_f from B_f into B which completes the proof of (ii).

(iii). Under the conditions set out in (iii), the mapping $V_f U_f^{-1}$ is a linear isometry from $U_f(B_f)$ onto $V_f(B_f)$; when $f \leq g, V_gU_g^{-1}$ extends $V_fU_f^{-1}$, since for $a \in B_f$,

$$
V_g U_g^{-1}(U_f a) = V_g U_g^{-1} U_g \Phi_{gf} a = V_g \Phi_{gf} a = V_f a = V_f U_f^{-1} U_f a.
$$

From this and since the family $\{U_f(B_f) : f \in \mathbb{F}\}\$ is directed by inclusion, there is a linear isometry W_0 from $\cup \{U_f(B_f) : f \in \mathbb{F}\}$ onto $\cup \{V_f(B_f) : f \in \mathbb{F}\}$ such that W_0 extends $V_f U_f^{-1}$ for each $f \in \mathbb{F}$. Moreover, W_0 extends by continuity to an isometric linear mapping *W* from *B* onto *A*. *W* extends $V_fU_f^{-1}$ for each $f \in \mathbb{F}$ and thus $WU_f = V_f$. **Remark.** The Theorem 1 and its proof is adapted from Kadison and Ringrose (see [3]). **Definition.** In the circumstance set out in the Theorem 1, we say that the Banach spaces ${B_f : f \in \mathbb{F}}$ and the isometries ${\Phi_{gf} : f \leq g; f,g \in \mathbb{F}}$ together constitute a directed system of Banach spaces. The Banach space *B* occurring in (ii) (together with the isometries $\{U_f: f \in \mathbb{F}\}\)$ is called the *inductive limit* of the directed system. The effect of (iii). is to show that the construction in (ii) arc unique up to isometry.

4. $L^p(A,\varphi)$ for finite discrete factors

Let *M* be finite discrete factor acting on *H* and τ a (finite) faithful normal tracial state on M (the definition and properties of these notions can be found in $[3]$). For $p \in [1,\infty]$, let $L^p(M,\tau)$ denote the L^p space with respect to τ as constructed in [1, 4, 5]. Recall that $\|\cdot\|_p^{\tau}$ norm on $L^p(M,\tau)$ is difined by

$$
||a||_p^{\tau} = \tau (|a|^p)^{1/p}
$$
 for $a \in M, p \in [1, \infty[$.

Non Commutative Integration for UHF Algebras with Product State 13

For $p = \infty$, put $||a||_{\infty}^{\tau} = ||a||$. Then $||.||_{p}^{\tau}$ turns $L^{p}(M,\tau)$ into a Banach space, moreover the Holder inequality

$$
||ab||_r^{\tau} \leq ||a||_p^{\tau} ||b||_q^{\tau}
$$

hold for all $a,b \in M$ with $p,q,r \in [1,\infty]$ such that $1/p + 1/q = 1/r$ and for each $a \in$ $M, p \in [1, \infty[$

$$
||a||_p^{\tau} = \sup_{||b||_q^{\tau} \leq 1} |\tau(a, b)|; q \in [1, \infty[\text{ such that } 1/p + 1/q = 1.
$$

Let now φ be an arbitrary faithful (normal) state on *M*. There exists unique $h \in M$ such that

$$
\varphi(a) = \tau(ha) \quad \text{for all} \ \ a \in M.
$$

Moreover *h* is positive, invertible and $\tau(h) = 1$.

For all $a \in M$ and $p \in [1, \infty)$ put

$$
||a||_p = \tau (|h^{1/2p}ah^{1/2p}|^p)^{1/p}.
$$

For $p = \infty$, let $||a||_{\infty} = ||a||$. We define the belinear from

$$
\langle a, b \rangle = \tau(h^{1/2p}ah^{1/2p}b) \quad \forall a, b \in M.
$$

Lemma 1. For all $p \in [1, \infty]$ we have

- (i) $\|\cdot\|_p$ is a norm on M.
- $(iii) \mid a, b \mid \leq \frac{|a||_p}{|b||_q}$ where $1/p + \frac{1}{q} = 1, q \in [1, \infty], a, b \in M$.
- (iii) $||a||_p = \sup_{||b||_q \leq 1} |< a,b>$ $|, \forall a \in M, b \in M; q \in [1,\infty]; 1/p + 1/q = 1.$

Lemma 2. If $p, s \in [1,\infty]$ and $p \leq s$, then $||a||_p \leq ||a||_s$ for all $a \in M$. (For the proof of Lemma 1 and Lemma 2: see [2]).

The norm $||.||_p$ turns M into a Banach space which we denote by $L^p(M, \varphi)$. If $\varphi = \tau$ then $L^p(M, \varphi) \equiv L^p(M, \tau)$.

Note that mapping $a \mapsto h^{1/2p}ah^{1/2p}$ defines an isometric isomorphism between $L^p(M,\varphi)$ and $L^p(M,\tau)$.

Lemma 3. For each $p \in [1, \infty]$, the Banach space $L^p(M, \varphi)$ is isometric to the Haagerup space $L^p(M)$.

Proof. We may assume that $\varphi = \tau$ and $p < \infty$. Note that, since the modular automorphism group $\{\sigma_t^{\tau}\}\)$ acts trivilly on M ,

$$
\mathbb{M} = M \rtimes_{\sigma\tau} \mathbb{R} \cong M \otimes L^{\infty}(\mathbb{R}).
$$

Furthermore, the canonical trace $\bar{\tau}$ on the crossed product M equals $\tau \otimes e^{-s} ds$. The Haagerup space $L^p(M)$ consists of products $a \otimes exp((.)/p)$ where $a \in M$. Hence it is enough to show that the mapping

$$
a \mapsto a \otimes exp((.)/p)
$$

is an isometry. It is clear that one needs only to consider the case $p = 1$. We must show that

$$
\tau(|a|) = \overline{\tau}(x_{]1,\infty[}(|a| \otimes exp(.))).
$$

 ∞ (see. Terp [7]). Let $|a| = \int \lambda de_\lambda$ be the spectral decomposition of $|a|$. We calculate $\check{\mathrm{o}}$

$$
\overline{\tau}(\chi_{]1,\infty[}(|a|\otimes exp(.))) = \int_{-\infty}^{\infty} \tau(\chi_{]e^{-s},\infty[}(|a|))e^{-s}ds
$$

$$
= \int_{0}^{\infty} \tau(\chi_{]t,\infty[}(|a|))dt
$$

$$
= \int_{0}^{\infty} (\int_{0}^{\infty} (\chi_{\{t<\lambda\}}d\tau(e_{\lambda}))dt
$$

(since the indicator functions are non-negative and bounded, using the Fubini theorem, we have further)

$$
= \int_{0}^{\infty} (\int_{0}^{\infty} (\chi_{\{t < \lambda\}} dt) d\tau(e_{\lambda}).
$$

$$
= \int_{0}^{\infty} (\int_{0}^{\lambda} dt) d\tau(e_{\lambda})
$$

$$
= \int_{0}^{\infty} \lambda d\tau(e_{\lambda}) = \tau(|a|). \quad \Box
$$

5. Non commutative integration or L^p spaces for UHF algebras with product state

Theorem 2. *(Theorem 13.1.14 of [3]).* Suppose that $\{A_i : j \in \mathbb{N}\}\)$ is a sequence of *mutually commuting finite type I factors acting on* a *Hilbert space H* . *(and each containing the unit of* $\mathbb{B}(H)$), A is the C*-algebra generated by $\bigcup A_j$; ξ is a unit cyclic vector for A *j and* ω_{ξ} *A* is a product state $\otimes \rho_j$, where ρ_j is a faithful state of A_j , $j \in \mathbb{N}$. Then ω_{ξ} $|A^-$ is a *faithful normal state of* A^- *(the weak operator closure of A), the corresponding modular automorphism group* $\{\sigma_t\}$ *of* A^- *leaves each* A_j *invariant and* $\{\sigma_t | A_j\}$ *is the modular* automorphism group of A_j corresponding to ρ_j .

Proof: (The proof of Theorem 2 can be found in [3]).

Let *A* be a UHF C^* -algebra with a generating nest $\{A_n\}_{n\in\mathbb{N}}$, let φ be a product stste of *A* with respect to the sequence $\{A_n\}$. There exists the a sequence $\{B_j\}$ of mutually commuting finite type I subfactors of *A* (each containing unit of *A*)). Such that $A_n =$ \bigotimes B_j or, equivalently $\bigcup\;B_j$ generates A_n and $\bigcup\;B_j$ generates A as C^* -algebra. Denote $j = 1$ $j = 1$ $j = 1$ the restriction of φ on B_j by φ_j we have

$$
\varphi(b_1,b_2,...,b_n)=\varphi(b_1)...\varphi(b_n)=\varphi_1(b_1)...\varphi_n(b_n)
$$

 $\forall b_j \in B_j$; $j = 1, 2, ..., n$. Put $\varphi^{(n)} = \varphi | A_n$ we have

$$
\varphi^{(n)} = \varphi_1 \otimes ... \otimes \varphi_n
$$

Theorem 3. Let A be a UHF algebra with a generating nest $\{A_n\}$, $n \in \mathbb{N}$ and φ a *product state on A with respect to the sequence* $\{A_n\}$ *. Suppose that for each i;* φ_i *is faithful. Then for* $p \in [1, \infty], L^p(A, \varphi)$ *is the inductive limit of* $\{L^p(A_n, \varphi^{(n)})\}$ *; moreover*

$$
L^p(A,\varphi) \cong L^p(\pi_{\varphi}(A)^{\prime\prime}) = L^p(M).
$$

Proof: Denote by $(H_{\varphi}, \pi_{\varphi}, \xi_{\varphi})$ respectively $(H_{\varphi(n)}, \pi_{\varphi(n)}; \xi_{\varphi(n)})$ the GNS representation of the pair (A, φ) (respectively $(A_n, \varphi^{(n)})$). Let us first note that $\pi_{\varphi}(A)$ " = M and $N_{\infty} = \{0\},$ **which shows that**

$$
L^p(\pi_{\varphi}(A)^{\prime\prime})\cong L^p(A,\varphi).(\cong L^p(M))
$$

and analoguosly

$$
L^p(\pi_{\varphi(n)}(A_n)^{\sigma}) \cong L^p(A_n, \varphi^{(n)}) \quad \forall n \in \mathbb{N}^*; p \in [1, \infty].
$$

By [3 Theorem 11.4.15. and Remark 11.4.16]. A is simple, φ is a primary stat, so π_{φ} is faithful and $\pi_{\varphi}(A)$ is a factor. Thus *A* is isometrically isomorphic to $\pi_{\varphi}(A)$. Upon identifying A with $\pi_{\varphi}(A), \varphi$ takes the form $\omega_{\xi_{\varphi}}|A$ for the cyclic unit vector ξ_{φ} . The situation remains true for each pair $(A_n, \varphi^{(n)})$ and $(H_{\varphi^{(n)}}, \pi_{\varphi^{(n)}}, \xi_{\varphi^{(n)}})$ we conclude now that $\omega_{\xi\varphi}|\pi_{\varphi}(A)|$ is faithful, hence $s_{\varphi} = 1$. It implies that $M = \pi_{\varphi}(A)$ and also $N_{\infty} = \{0\},$ i.e. $L^{\infty}(A,\varphi) \cong M$ and

$$
L^p(A,\varphi) \cong L^p(M) = L^p(\pi_{\varphi}(A)^{\prime\prime}).
$$

For the pair $(A_n, \varphi^{(n)})$, by hypothesis, φ_i are faithful states of B_i . Then $\varphi^{(n)} =$ $\bigotimes \varphi_j$ is a faithful state of $A_n = \bigotimes B_j.$ $j = 1$ $j = 1$

 A_n are finite factor of type I; $\pi_{\varphi^{(n)}}(A_n) = \pi_{\varphi^{(n)}}(A)$ " and $\omega_{\xi_{\varphi^{(n)}}}$ are faithful on $\pi_{\varphi^{(n)}}(A_n)$ ". It implies

$$
s_{\varphi^{(n)}} = \mathbf{1}; M_n = \pi_{\varphi^{(n)}}(A_n);
$$

$$
L^{\infty}(A_n, \varphi^{(n)}) \cong M_n;
$$

$$
L^p(A_n, \varphi^{(n)}) \cong L^p(M_n) = L^p(\pi_{\varphi^{(n)}}(A_n)) \quad p \in [1, \infty].
$$

The modular automorphism σ_t^{φ} of $\pi_{\varphi}(A)^{m} = M$ associated with $\omega_{\xi_{\varphi}}$ leaves each $\pi_{\varphi^{(n)}}(A_n)^{\nu} = M_n$ invariant. Thus there exists a σ -weakly continuous conditional expectation E_n from M onto M_n for all $n \in \mathbb{N}$ and $L^p(M_n)$ can be canonically isometrically embeded into $L^p(M_m)$ if $n \leq m$. Denote this embedding by Φ_{mn} ; the family ${L^p(M_n);\Phi_{mn};m,n \in \mathbb{N}}$ forms a directed system of Banach spaces, with the inductive limit $\bigcup L^p(M_n) \cong L^p(M)$. Since for each $n, L^p(M_n) \cong L^p(A_n, \varphi^{(n)})$ the family $n=1$ ${L^p(A_n, \varphi^{(n)})}$ has the same inductive limit $L^p(M)$ and from the fact that $L^p(M) \cong$ $L^p(A,\varphi)$, it implies that the family $\{L^p(A_n, \varphi^{(n)})\}$ has the inductive limit $L^p(A,\varphi)$. \Box

References

- 1. Dixmir. J. Formes lineaires sur UI1 aneau d' operatevir, *Dull. Soc. Math. France,* 81(1953), 3-39.
- 2. Goldstein, S. and Viet Thu, Phan L^p -spaces for UHF algebras, *Inter.* J. of Theor. *Phys.*, **37**(1998), 593-598.
- 3. Kadison. R. V. and Ringrose, J. R. *Fundamentals of the theory of operator algebras*, vol I (1983). Vol. 11(1986), Academic Press, New York-London.
- 4. Nelson, E., Notes on noil-commutative integration, *J. Fund. Anal.,* 15(1974), 103- 116.
- 5. Segal. I. E. A non-coinmutative extension of abstract integration, *Ann. Math.,* 57(1953), 401-457.
- 6. Takesaki. M. Conditional expectations in von Neumann algrbras, *J. Funct. Ann.*, $9(1972), 306-321.$
- 7. Terp M. *Lp-spaces associated with von Neumann algebras*, Notes, *KỘ* benhavns Universitet, Matematisk Institut, Rapport $N_03(1981)$.