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AssTrAaCT. In this paper we shall give a proof for a lemma (Lemma 3) and a theorem
(Theorem 3) stated in the paper [2] of Goldstein, S. and Viet Thu, Phan published
in International Journal of Theoremtical Physics vol. 37. Np. 1. 1998 about the
coustruction of Lp spaces for UHF algebras. We shall also give a proof for a technical
theorem {Theorem 1), as a tool for the construction.

1. Uniformly matricial, UHF algebras

A unital C*-algebra A is called uniformly matricial of type {n;},7 =1,2,...,n; €N
when there exists a sequence {A;};en of C*-subalgebras of A and a sequence {n;} of
positive integers, such that for each j € N, A; is *isomorphic to the algebra M, (C) of
1 % 1y complex matrices,

1€ Ay C Ay C A3 C ..
and U A; is norm dense in A. The sequece {A;} en is called a generating nest of type
JjeN
{n;} for A. We shall also call it an approximating sequence for A. A uniformly matricial
(*-algebras A of type {n,} exists iff the sequence {n;} is strictly increasing and n; divides
n;4+1:Vj € N. Morcover with these conditions A is unique (up to *isomorphisin) and is a
siinple algebra. The uniformly matricial algebras and their representations are also called

UHF algebras (from the terminology “uniformly hyperfinite algebras™). Which can be

found in a vast literature.

2. Product states [3]

Let {A;:i € I} be a family of C*-algebras, A = ®,¢7A; the infinite tensor product
of {A;;i € I}, and for each i € I, p; a state of A(;y, the canonical immage of 4, in A. Then
there is a unique state p of A such that

plaraz..a,) = piay(a)pi)(az)...pic)(an),

where i(1),..., i(n) are distinct elements of I and a; € A(;(;y:7 = 1,2,...,n. The state p is
denoted by @;¢crpi: and such states are called product states of ®;c7A4;. Given a product
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state p, the component state p; are uniquely determained, since p; = p|Ag). The product
state is pure if and only if each p; is pure and is tracial if and only if each p; is tracial.

3. The inductive limit of a directed system of Banach spaces

Theorem 1. Let {By : f € F} be a family of Banach spaces, in which the index set F is
directed by <. Suppose that if f,g € F and f < g, there is an isometric linear mapping
g from By onto B, and Prg®Pys = Py whenever f,g,h € F and f < g < h; then

(). @y is the identity mapping on By.

(ii). There is a Banach space B and for each f € F, an isometric linear mapping U ¥
from By into B, in such way that Uy = U,®,; whenever f,g € F, f < g and U{Uy(By) :
f € F}is everywhere dense in B.

(iii). Suppose that A is a Banach space, Vy is an isometric linear mapping from B f
into A, for cach f € F;Vy = V,®,; whenever f,g € F; f < g and U{Vy(By) : f € F} is
everywhere dense in A. Then there exists an isometric linear mapping W from B into A
such that Vy = WUy for each f € F

Proof. (i). Denote by 1 the identity mapping on Bj. Since @4y is an isometric lincar

mapping and

Prp(Pss—1)=DspPpy - Dyp = 0.

It follows that &, = 1.

(i1). Let X be the Banach space consisting of all families {a), : h € F} in which
an € By and sup {|lan|| : h € F} < oo (with pointwise-lincar structure and the supremuin
norm). Let X be the closed subspace of X consisting of those families {ay, : h € F} for
which the net {[|as|| : h € F} converges to 0 and let Q: X — X/X, be the quotient
mapping. Now for a given f € F, we define an isometric linear mapping U} from By into
X as follows: when a € By, Uta is the family {a), : h € F}. In which

Pnpa whenever h > fih, feF
an = { (1)

0 otherwise.

Note that
() The lincar mapping QU% : By — X/X is an isometry.
(9) QU = QU}®, s when f < g f, g €F.

For these. suppose that a € By. To prove (a), let {b, : h € F} be an element b of
Xo. Givew any positive real number €, it results from the definition of Xy that there exists
an clement fy of F such that ||bc|| < € whenever & € F and / 2 fo. Since F is directed,

we can choose g € F so that ¢ > f and g > f,. Since Uta is the family {a;} defined by
(1). we have

1Usa = bl = llag = byl > llag|| = [1bg]| > [|@4all = |[bgl] > |la]| - e.
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Thus ||Uja = b|| > [[a]|. It follows that the distance |QU}al| from Uta to Xo is not
less than ||a||. The inverse inequality is apparent and () is proved. For (4) note that
a € By and ®,5a € B,: we have to show that

U}a — U;CI)gfa € Xop.

Now Uja — U,®,ya is an element {c, : h € F} of X and we want to prove that the
net {||eal| - h € F} converges to 0. In fact, we have the stronger result that ||ca|| = 0 when
h > g(> f). since

Chp = (I)hf(l = @;lgtl)gfa w= (),

The range of the isometric linear mapping QU7 is a closed subspace Ys of the Banch
space X/Xy. When f < g

Yi = QU(Bys) = QU,®,4(By) C QU (By) = Y,.

From this inclusion and since F is directed, it follows that the family {Y; : f € F}
of subspaces of X/Xj is directed by inclusion. Thus U{Ys : f € F} is a subspace Bo of
X/Xy: its closure is a Banach subspace B of X/X,. Now we take for Uy the isometric
linear mapping QU)’c from By into B which completes the proof of (ii).

(iii). Under the conditions set out in (iii), the mapping Vfo_l is a linear isometry
from Us(By) onto V¢ (By); when f < g, V‘,,Ug—1 extends Vfo“l, since for a € By,

VU YUga) = VU, WU, @gpa = Vy®yga = Via = ViU; Usa.

From this and since the family {Us(By) : f € F} is directed by inclusion, there
is a linear isometry Wy from U{U(By) : f € F} onto U{Vf(By) : f € F} such that Wy
extends Vfo“1 for each f € F. Moreover, W, extends by continuity to an isometric linear
mapping W tfrom B onto A. W extends ‘Vfo_1 for each f € F and thus WUy = V;.
Remark. The Theorem 1 and its proof is adapted from Kadison and Ringrose (see [3]).
Definition. In the circumstance set out in the Theorem 1, we say that the Banach
spaces {By : f € F} and the isometries {®,7 : f < g: f,9 € F} together constitute a
directed system of Banach spaces. The Banach space B occurring in (ii) (together with
the isometries {Uy : f € F}) is called the inductive limit of the directed system. The effect

of (iii). is to show that the construction in (ii) are unique up to isometry.

4. LP(A, ) for finite discrete factors

Let Al be finite discrete factor acting on H and 7 a(finite) faithful normal tracial
state on M (the definition and properties of these notions can be found in [3]). For
p € [1,00], let LP(M,7) denote the LP space with respect to 7 as constructed in [1, 4, 5].
Recall that [|][7 norm on LP(AM, 7) is difined by

llal|} = 7(la")"/*  for a € M,p € [1,00].
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For p = oo, put [a]|%, = |la||. Then |||} turns LP(M, ) into a Banach space,
moreover the Holder inequality

lladlI7 < llall; 118117

hold for all a,b € M with p,q,r € [1,00] such that 1/p + 1/q = 1/r and for each a €
M,p € [1,00]
\lal|;, = sup |r(a,b)|;q € [1,00[ such that 1/p+1/q=1.
| lIbll; <1
Let now ¢ be an arbitrary faithful (normal) state on M. There exists unique h € M

such that
¢(a) = 7(ha) for all a € M.

Moreover h is positive, invertible and 7(h) = 1.
For all a € M and p € [1,00[ put

llall, = 7(|h*/*Pan!/2PP) Ve,
For p = o0, let ||al|o = ||a||. We define the belinear from
< a,b >= 1(hY/*Pah!/?Ph) Ya,be M.

Lemma 1. For all p € [1, c0] we have
(i) |||, is a norm on M.
(ii) | < a,b > | <|la||p||b|lq where 1/p+1/q =1,q € [1,00],a,b € M.

(iii) |lall, = sup |<a,b>|,Va€e M,be M;q€ [l,00]:1/p+1/q = 1.
Hbllg <1

Lemma 2. If p,s € [1,00] and p < s, then [|a||, < ||a]|s for all a € M. (For the proof of
Lemma 1 and Lemma 2: see [2]).

The norm ||.||, turns M into a Banach space which we denote by LP(M, ). If
@ =71 then LP(M, p) = LP(M, 7).

Note that mapping a ~— h'/2Pah?/? defines an isometric isomorphism between
LP(M, ) and LP(M, 7).
Lemma 3. For each p € [1, 00}, the Banach space LP(M, ) is isometric to the Haagerup
space LP(M).
Proof. We may assume that ¢ = 7 and p < oo . Note that, since the modular automor-
phism group {07} acts trivilly on M,

M=M xR M®L®R).

Furthermore, the canonical trace 7 on the crossed product M equals T®e~*ds. The
Haagerup space LP(M) consists of products a ® exp((.)/p) where a € M. Hence it is
cnough to show that the mapping

a a®exp((.)/p)
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is an isometry. It is clear that one needs only to consider the case p = 1. We must show
that

7(la]) = 7(2)1,0((la] ® exp(.)))-

(see. Terp [7]). Let |a| = [ Adey be the spectral decomposition of |a|. We calculate:
0

T(Xje-+,x((la]))e*ds

T(X)1,00((|a] ® ezp(.)))

7(X]t,00[(|a]))dt

0/(6/ X{t<rydT(en))dt

(since the indicator functions are non-negative and bounded, using the Fubini theorem,

we have further)

([ (xgeenydt)dr(es).

dt)d’f((i)\)

o, Oy

Adr(ey) = 7(|a]). O

I

5. Non commutative integration or L? spaces for UHF algebras with product
state

Theorem 2. (Theorem 13.1.14 of [3]). Suppose that {A; : j € N} is a sequence of
mutually commuting finite type I factors acting on a Hilbert space H. (and each containing

the unit of B(H)), A is the C*-algebra generated by |J A;; € is a unit cyclic vector for A
J
and we|A is a product state ®p;, where p; is a faithful state of A;,j € N. Then we|A™ isa

faithful normal state of A~ (the weak operator closure of A), the corresponding modular
automorphism group {o:} of A~ leaves each A; invariant and {o;|A;} is the modular
automorphism group of A; corresponding to p;.

Proof: (The proof of Theorem 2 can be found in [3]).
Let A be a UHF C*-algebra with a generating nest {A,}.en, let ¢ be a product
stste of A with respect to the sequence {A,,}. There exists the a sequence {B;} of mutually



Non Commutative Integration for UHF Algebras with Product State 15

commuting finite type I subfactors of A (each containing unit of A)). Such that A,, =

n T o0

& B; or, equivalently |J B; generates A,, and |J B; generates A as C*-algebra. Denote
i=1 j=1 i=1
the restriction of ¢ on B; by ¢, we have

(b, ba, "'7b11) = ‘P(bl)-“‘P(bn) == (Pl(bl)---‘Pn(bn)

Vb; € Bj;j=1,2,...,n. Put <,0(”) = ¢|A,, we have
(P(") =¥ ®...® Pn

Theorem 3. Let A be a UHF algebra with a generating nest {A,,},n € N and ¢ a
product state on A with respect to the sequence {A,}. Suppose that for each i; p; is
faithful. Then for p € [1,00], LP(A, ) is the inductive limit of {L?(A,,"™)}; moreover

LP(A, ) = LP(m,(A)") = LP(M).

Proof: Denote by (H,, 7, &,) respectively (H,n), Tp(n); €p(n)) the GNS representation of
the pair (A4, ) (respectively(A,,, ™). Let us first note that m,(A)" = M and N, = {0},
which shows that |

LP(m,(A)") = LP(A, ¢).(= LP(M))

and analoguosly
LP(m ) (An)") = LP(A,, ™) ¥n e N*;p e [1,00].

By [3 Theorem 11.4.15. and Remark 11.4.16]. A is simple, ¢ is a primary stat, so 7,
is faithful and 7,(A)" is a factor. Thus A is isometrically isomorphic to m,(A4). Upon
identifying A with m (A),y takes the form we |A for the cyclic unit vector &,. The
sitnation remains true for each pair (A,,¢!™) and (H o, Tpm, €pm) we conclude now

that we, |7, (A)" is faithful, hence s, = 1. It implies that M = 7,(A)" and also N, = {0},
i.e. L>(A,p) = M and

LP(A, ) = LP(M) = LP(n,(A)").
For the pair (A,,¢"), by hypothesis, @; are faithful states of Bj; Then (" =
@ @; is a faithful state of A, = ® By.
gl =1

Ay are finite factor of type I; m i (An) = m,m(A)” and we ,, are faithful on
]
T (An)”. It implies

¥

S;p(”) = 1, AI” = 7T¢('1)(An);
LOO(A",(p(n)) >~ M,;
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L (Ap, ™) 2 LP(M,,) = LP(my00-(An)) p € [1,00].

The modular automorphism of of m,(A)” = M associated with we_ leaves each

T, (A,)" = M, invariant. Thus there exists a o-weakly continuous conditional ex-

pln)

pectation E,, from M onto M, for all n € N and LP(M,) can be canonically isomet-

rically embeded into LP(M,,) if n < m. Denote this embedding by ®,,,; the family

{LP(M,,); ®,:m,n € N} forms a directed system of Banach spaces, with the induc-
= .

tive limit |J LP(M,) = LP(M). Since for each n, LP(M,) = LP(A,, ") the family

n=1

{LP(A,, ")} has the same inductive limit LP(M) and from the fact that LP(M) =
LP(A, ), it implies that the family {LP(A,, »""))} has the inductive limit LP(A, ). O
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