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A b str a c t . We study the convergence of positive recursive sequence Zn + 1  = / ( x n , i n_ i) . 
Here f ( x , y )  is a positive continuous function of two variables. Our results are appli­
cable for rational recursive sequences X n + 1  =  — ậ x n + B  and x  _  ̂ xn - i+ £

* u T a * n  — 1 + 0  ^  * n - l  +  a x n + Ò

Ladas has conjectured that the first sequence would always converge while we prove 
that the second may be 2 -periodic.
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1 . I n t r o d u c t io n  a n d  P re l im in a r ie s

For application we should compute with numbers. We should also find global convergent 
numerical algorithms. The first well-known numerical algorithm is the Newton-iteration to 
find roots of real functions. But Newton-iteration is locally convergent only. This is not so 
good, because in the practice only global convergent algorithms are applicable. The other 
very bad thing in computational algorithms is the periodicity. In this case, the computers 
are unable to give us approximated results, although the running time is over. Hence, at 
the end of the 20th  century there are more and more interests in the investigating nonlinear 
difference equations. For example, to solve (approxim ated) the equation / ( x ,x )  =  X in the 
set of positive numbers we let Xo, Xi > 0 be given and Xn+1 =  / ( x n, £n_i) for n = 1, 2, • • •. 
We wish tha t the recursive sequence { x n }n  converges rapidly to a root of the equation 
/ ( x ,x )  =  X. But in the practice unpleasant things would occur: Or the periodicity or the 
convergence not so rapid.

G. Ladas and more authors give several problems and conjectures involving the 
convergence and the periodicity of positive rational recursive sequences. In the following 
we will deal with this problem systematically.
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Consider the following difference equation

Xfi+I =  / ( x n ,x n _ i) , for n =  1, 2, • * • , ( z 0, Xi > 0 are given). (1)

Here /  is a continuous function on [0, oo)2 and taking values in the (0, oo). If this sequence 
converges to a positive number* £ then we must have

l  = f ự , l ) .  (2 )

Therefore, we assume that there is a unique positive number Í  such that (2) holds. Clearly 
this is not sufficient. Wc should assume more conditions. First of all we have

L em m a 1. If  every solution of (1) is convergent to a positive number £, then the 
following system

X = f ( y , x ) ,

y =  f ( x , v )
has a unique (positive) solution X =  y  = L

Proof: Let (x,y) be a positive solution of the above system. Consider the difference 
equation (1) with Xi =  X and XQ = y. Then X2 = / ( x ,y )  =  y  and 2*3 =  f ( x 2 , x \ )  — 
f ( ụ , x)  =  X. By induction, we obtain  X 2 k — y  and X2/C+1 =  X. But by our assum ption the 
sequence {.rn } is convergent to  <?, hence X = y  =  L  The proof is complete.

The following Lemma, will show that the condition of Lemma 1 is sufficient if the 
function f ( x , y )  is bounded and decreasing in the variable X and increasing ill the variable

y-

L em m a 2. Assume that the function f ( x , y )  is decreasing in the variable X for each 
y > 0 and increasing in the variable y for cacti X > 0. Suppose further that

M  := sup f ( x , y )  < oo,
x ,y>  0

arid the system

a  = f((3, a), 

p  = f ( o , 0 )

has the only solution a  = /3 =  L Then every positive solution of (I) converges to L

Proof: Clearly, Xn+1 =  f { x n, x n- \ )  < III for all n  =  2 ,3 ,* * .  Without loss of generality 
wo assume? x n < M  for all n = 0 ,1, • • •. Consider the following system of difference 
equations

^*n+l =  f  (0m &n) 1 
ftn + 1 ==
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for n = 0 ,1, • • •. Here we let ao =  0, Po = M . Clearly,

a Q < x n < Po for all n  =  0,1, • • • .

T lir function f { x ,  y) is decreasing in X and increasing in y, hence

Xn+2 =  /(Zn + l,£»i) <  / ( a 0,/?o) =  /?1

and similarly.

•*n+2 =  f ( x n+i , x n) > f(f30, a 0) =  Qi for all n = 0 ,1, • • • .

By induction we can see th a t

a k < x n+2k < 0k for all k, n  =  0 , 1, • • • .

On the other hand note th a t Qo < a  1 and /?0 >  /?1 - Since the function / ( x ,  y) is increasing 
ill X and decreasing in Ị/, we get

=  f  (01, Oil) >  f(0O,OtO) =  Qi

and similarly /?2 < /̂ 1 • By induction we can see that the sequence {a/c} is increasing and 
the sequence {/?*} is decreasing. Let a  he the lim it of the { an } and let p  be the limit of 
{0n}- Then a  and satisfy the following system

a  =  / ( /? ,a ) ,

0  =  /(<*,/?).

Our assumption assures that Q =  /3 =  L The proof is complete.

R e m a rk .  In some cases the function / (x ,y )  is decreasing in the variable y only. The 
following Lemma will give another sufficient condition for the convergence of the recursive 
sequence ( 1 ).

L e m m a  3. Assume that the function f ( x , y )  is increasing in the variable X for each 
tj > 0 and. decreasing in the variable y for each X > 0. Suppose further that

M  := sup f ( x , y )  < oo,
x , y >  0

and the system

a =  / ( a ,  /3),

0 = /(/3, a)

has the only solution a  =  Ị3 =  L Then evei'y positive solution of (1) converges to i.

Proof: See [2].
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2. Positive  ra t io n a l  recu rs ive  sequences

Now consider the positive rational recursive sequence

Ẳ x n + 13
*£? 1+1

Jx^c I ID
- — — ’- —— — , for n  =  1,2, • • , (x0, x i  > 0 are given). (3)
3-71 I CI JCfi—1 I 0

Here A , B  and a,b are positive parameters. G. Ladas has conjectured tha t this sequence 
always converges. In [2] we prove this conjecture with small restriction on these parame­
ters. It is also proved that the recursive sequence (3) is not periodic with minimal period
2 or 3. We have

// A _  A x  +  Bf ( x >y )  =  — — — 7-X + ay  + b

Note that the function f ( x , y )  is decreasing in the variable y and noil-monotone decreasing 
in the variable X for each y  > 0, so we cannot apply Theorems of [1,3]. Now consider the 
equation t  = This has the only positive solution

y / ( A - b ) *  + 4 B ( a + l )  + ( A - b )
2 ( a + l )

Combining Lemma 4 with [2, Theorem 1] we have:

T h e o re m  1 . Assume that A  > D/b.  I f  one of the following conditions holds, then the 
above conjecture of Ladas is true:

(i) A ^  b;

(it) A > I) and a ^  1;

(Hi)A > l),a > Ỉ and. (A -  b)2 ^  4D/(a -  1).

Otherwise, for every recursive sequence (3) we have

a  ^  l im in fxn ^  Í  ^  limsupXn ^  /?,

where

1 1 —> oc

0 - ị ụ A - h ) + j {A - w - £ L )

The following theorem is also proved in [2]:
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T h e o re m  2 . I f  A  < b, then the above conjecture of Ladas is true.
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Now we assume A = b and try to prove Ladas’ conjecture in this case. Unfortu­
nately, at this time we always have to restrict on A, B  and a.

T h e o re m  3. Assume A  =  b and a < 1. I f  B  < 4A2/(a  +  1), then the above conjecture 
of Ladas is true.

Proof: First note that if B  ^  A 2, we can apply the case (i) of Theorem 1. Therefore,
without loss of generality we assume that B  > A 2. On the other hand we have

We prove that two roots of the equation (6) having absolute values less than 1 (and 
consequently yn —¥ 0 as n —» oo). This is equivalently to show

To end th is we consider two possible cases: If B  <  i42(a -f 1 ), then we have A > I  

and consequently \A — Ị\ + aỉ. = A + {a — <  A (because a <  1 ). The second case is
B  > i42( a + l) .  Wo have ^  ểarid | i 4 - £ |+ a /=  (a + l)^ -y l  =  y / B(a  + 1 ) - A  < 2A - A  = A 
(bi'causr D  < 4 A 2/ ( a  -f 1 )). The proof i: s complete.

(4)

A

(5)

Now consider the following linear difference equation

for 1V= 1,2, ••• , (ỉA) =  ổo, y i = ỏ i ) -

IJn — OlA” +  Ơ2^2 )

where Aj 2 arc roots of the following equation

(6)

A > \ A - e \  + a£.

T h e o re m  4. Assume A = b and 1 ^  a ^  2. I f  D < 9A2/ (a  +  1), then the above 
conjecture of Ladas is true.



Proof: Note as before that if D ^  A 2, we can apply the case (i) of Theorem 1. Therefore, 
assume without loss of generality that B > A 2. Consider the function

A x + B
f ( x , y )  =
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X  + ay +  A

We have „ „
s B  ,  d  A  n A y  +  (A  -  D ) 

/ ( * .» )  =  7  and ^ / ( I , » ) =  ; ; + 0 ; + ^ " -

Therefore,

dx
and consequently

a
—  f ( x , B / A )  > 0 (because a > 1)

AD AD A
inf / (£ ,y )  =  /(0 ,  D/ A)  = —rz------ — > 7—  Yi'D ~  —7T*

a:,1/6 (0 ,BM) A 2 4- ciB ( a - f l ) B  a + 1

Note th a t X„+1 =  / ( x Tl,x n _ i), so

4̂
xn > ------ for n = 4,5, • • • .

a +  1

On the other hand, putting ổn =  |:rn — 1̂, it follows from (5) that

I A -  f.\sn 4- a£Sn I 
8" »  '   2A ■

Now consider the following linear difference equation

IA -  £\yn 4- a iyn- 1 /, f , _ n
ĩ/n+1 =  ---------  2̂ 4---------  n =  5,6, • • • , (2/4 =  Ở4, 2/5 =  ỏfJ-

Trivially ổn ^  yn for all n = 4, 5, • • • and yn has the following form

2/n =  axA? -f a^Ao,

where Ai 2 arc* roots of the following equation

2AÀ2 =  \ A - e \ \  + ai.  (7)

We provo that two roots of the equation (7) having absolute values loss than 1 (and
couseqiK'iitly yn —> 0 as II —> oo). This is equivalently to show

2A > \ A - e \  + at.

To this end consider two possible cases: If D < (a + l)-42, then we have A > Í — 
\ j B / ( a  + 1) and consequently |i4 — 1̂ + ad =  Ấ -f (a — l )̂ 1 ^  A + Í < 2i4 (because a ^  2).



The second case is B  > (a +  I ) A2. We have A ^  £ and \A — £\ +  ai  =  (a -I- \ ) i  — A  =  
>/B(a +  1) — Ẩ < 2>A -  A  =  2A (because B  <  9A 2/ (a + 1)). The proof is complete.

Due to Ladas’ problem we consider the following recursive sequence

Xn+ 1 =  1  B  , for n  =  1,2, ••• , (x0,x i  >  0 are given). (8)
£n_i +  ax-n +  b

Here A ,B  and a, b are positive parameters. We have

A y  + B
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y + ax + b

Now consider the equation £ = f  (£,£). This has the only positive solution

_  y / (A  -  6)2 +  4B(a  +  1 ) + ( A - b )
2(a +  1)

An elementary computation gives

Đ
M  := sup / (x ,y )  =  max{Ấ, — }

£,y>  0 0

On the other hand,
Ô  r /  V aAx  + (Ab — B )

/ ( z ,y )  =<9?/ ’ (y +  ax  +  6)2

Note th a t the function f ( x , y )  is decreasing in the variable X and if A  > B / b  this function 
is increasing in the variable X. We should solve the system

a  =  f(0 ,ot)

/3 = / ( a , /5)

to obtain a  = /3. This requires some restrictions on parameters A , B , a  and b. First the 
above system is equivalent to

a 2 +  aa/3 +  ba =  A a  + B,

p 2 +  aa(3 + b(3 = A/3 +  B.

Taking the difference between these equations we obtain

(a  -  /3)(a + /3 + b) = A (a  -  P).

If A  ^  6 we should have a  =  /3. Now we assume A > b and a  + /3 = A — b. Now taking
the sum of equations of (11) we obtain

( a 2 +  p 2) +  2aa/? +  6(a rf /3) = A (a  + P) + 2B,
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or equivalently,

(a  +  p Ý  +  2(a -  l)a/? =  (i4 -  fr)(a + 0) + 2B.

Replace a  4- /3 = A — b we obtain

(a — I) aft = B.

Therefore, if a ^  1 this is a contradiction. Or equivalently, the recursive sequence (8 ) is 
convergent if a ^  1. Now let a > 1. We have

a p =  B
a — 1

If a  Ỷ /3 we should have (a  +  P)2 > 4a/3. Hence the recursive sequence (8) is convergent

( A - b ) 2 ^  4B
a — I

To sum up we obtain

T h e o re m  5. Assume that A > D/b.  I f  one of the following conditions holds, then the 
recursive sequence (8) is convergent:

(i) A ^  b;

(ii) A  > b arid, a ^  1;

( in)A > b, n > 1 and (A — b)2 <  4J3/(a -  1).

R e m a rk .  If conditions (i)-(iii) of the above theorem do not hold, then there is a
2-periodic solution of the equation (8). Indeed, let

then the solution with XQ = a  and X\ = /3 is 2-periodic (not convergent). In contrast with 
Ladas1 conjecture the recursive sequence (8) may be not convergent.

Next wc prove the recursive sequence (8) is convergent with only one restriction 
that A < b. To this end let

TT/ \ Ay  IĨH ( x , y , u , v )  =  — —
V + au + b
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Note that Moreover, u, v) is monotone increasing in vari­
ables X , y and decreasing in variables u,v.  We consider the following system of difference 
equations

1 HịĩLnỉ ^n —1) ^n— 1)

^n+1 lj 5 ^n— l) for 71 =  lj 2j • • • .

Here, we let

Ao =  Ai =  0

Bu0 = Ui = M  + ------
b -  A

Clearly, £n+i =  / ( x n,x n_i) ^  M  = supx y>0 f ( x , y )  for all n = 1,2, •••. Hence, we 
assume without loss of generality that X 0 , X ị  ^  M.  So we have

U q í ĩ - U i ^  U2

^0 ^  Ai ^  À2 

Ao ^  £o ^  ^0

Aị ^  oc2 ^  Uỵ.

By induction, we can prove that {Àn} is monotone nondecreasing, {"Un} is monotone 
nonincreasing and An < x n ^  txn for n  = 1,2, • • •. Let A be the limit of {An} and let u be 
the limit of {un}. Then

Au  +  B
u =

A =

(a + 1)A +  b 
AX + B

(a 4- 1 )u + b
By our assum ption A  < b, the above system has the only positive solution u  =  A =  t .  We
obtain

T h e o re m  6 . I f  A  < b, the recursive sequence (8) is always convergent.
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