
VNU. JOURNAL OF SCIENCE, Mathematics - Physics, T.XXII, Nq2, 2006

“SHIFT-LEFT” ALGORITHMS TRANSFORMING
SEQUENTIAL PROCESSES INTO CONCURRENT ONES

Hoang Chi Thanh

H anoi University o f Science, V N U H

Abstract. Finding concurrent processes of a system is an objective of system
controls, because it shows an optimal way to perform processes. In this paper
we build two iterative algorithms for transforming sequential processes of a
reliance alphabet and of a Place/Transition net into concurrent ones. The
complexity of these algorithms is also considered.
Keywords: Reliance alphabet, trace, Petri net, concurrent step.

1. INTRODUCTION

Controls on concurren t system s alw ays are an im p o rtan t and complicated
problem. So far, op tim al perform ance of processes occurred on a concurren t system
is among the controls. For th is purpose, recognition of co n cu rren t processes of the
system is essen tia l. A lo t of models, such as P e tri n e ts [6,9], traces [1,3,4,8], CSP
[7], CCS [5], process a lgeb ras [2] have been being good tools for rep resen ting
s ta tis tica l as well as dynam ical s tru c tu re of system s. From th ese m odels, sequential
processes of a system a re no t difficult to recognize b u t co n cu rren t ones still are.
Therefore, how to transfo rm sequential processes of a system onto concurren t ones
is a g rea t problem on theory and application indeed.

A sim ple algorithm for finding the norm al form of traces is a good solution for
system s rep resen ted by reliance alphabet. P lace/T ransition n e t is one of su itab le
models to rep re sen t concu rren t system s. But the language g en e ra ted by a P/T net is
sequential. I t shows us only sequential perform ances of th e n e t’s processes. So
when several tran s itio n s can be perform ed concurrently . We w ill concen tra te on
building an ite ra tiv e a lgorithm for transform ing seq u en tia l p rocesses of a P/T net
into concurrent ones.

This paper is organized as follows. Section 2 constructs a “sh ift-le ft” algorithm
for finding the norm al form of a trace. In Section 3 we propose th e notation of
concurrency in P/T n e ts . Section 4 builds up an i te ra tiv e a lgo rithm for finding
sequences of m axim al concurren t steps on a P lace /T ransition n e t from the n e t’s
sequence of single steps. F inally , some conclusions a re given in Section 5.

2. N orm al form o f tra ce and its fin d in g

The theory of traces w as orig inated by A. M arzurkiew icz in [4] as an a ttem p t
to provide a good m ath em atica l description of the behav iou r of concurren t system s.
The norm al form of a trace gives an optim al way to perform a process rep resen ted

55

56 Hoang Chi Thanh

by the trace. In th is section we will construct a sim ple ite ra tiv e algorithm for
finding the norm al form of a trace.

2.1. Independence re la tion and traces

D e f in i t io n 2.1: Let E be an alphabet.

1 . An independence relation over z is a sym m etric and irreflexive b inary
relation over z.

2 . A reliance a lphabet is a couple c = (E, I), w here E is an a lphabet and I is an
independence re la tion over s .

Considering ad jacen t independent symbols in a s tr in g to be com m uting, one
can re la te d ifferent s trings as follow.

D e f in i t io n 2.2: L et c = (Z, I) be a reliance a lphabet.

1. The relation =c c= Z*xZ* is defined as follow: for X, y e E*, X =c y if and only if
there exist Xj, x 2 € E* and (a,6) € I such that X = x j a b x 2 and y = x j b a x 2.

2 . The C-equivalence relation =c c is defined as the leas t equivalence
relation over E* contain ing =c .

Thus, =c identifies ‘com m utatively sim ila r’ s trin g s — each such group of
strings is called a trace.

D e f in i t io n 2.3: Let c = (£, I) be a reliance a lphabet.

1. For an X e E*, th e t r a c e o f X, denoted by [x]c , is the equivalence class of =c
containing X.

2. A trace over c is a set t of strings over E such that t = [*]c for some X e £*
and X is called a representative of t .

3. A set of traces over c is called a trace language over c .
E x a m p le 2.4: Let c = (E, I) be the reliance a lp h ab e t given by the undirected

graph in Fig. 1.

a b c d

The trace t of abcecd = [abcecd]c = {abcecd, bacecd, acbecd, abeccdy abcced,
abcedcy baeccd, bacced, bacedc, acebcd, acbced, acbedc, aebccd, abecde, abccdel.

2.2. N orm al form o f traces

One can define a com position operation on trace language.

“Shitf-left” a lgor ith m s transform ing sequential processes.. 57

D e f in i t io n 2.5: L et c — (£, I) be a reliance a lphabet.

For traces t h t2 over c , the trace composition of tj and t2, denoted by t ,.t2, is
defined by t , t 2 = [Xj.x2]c> where Xj, x2 € £* are representatives of tỵ and t2
respectively.

In general, a trace can be obtained as a trace com position of o ther traces bu t
trace decom positions of th e given trace do not have to be unique. Hence it is
desirable to have ‘norm al form ’ decom position of traces.

D e f in i t io n 2.6: L et c = (£, I) be a reliance a lp h ab et and / be a trace over c .
The following decom position t = t , . t2. □ tm, such th a t:

1 . for a ll 1 s i s m, £, * 0 ;

2. for all 1 < i < m , t, can be written as [«;], where Uị G £*, #a(u,)=l for each a e
alph(u,), and (a ,b) e I for a ll a, b e alph(Uj) such th a t a # b ; and

3. for a ll 1 s ỉ' s m-1, if Í, = [Uj] and tUj = [ui+1] th en , for each a e a lp h (u 1+i),
there exists b e alph(ii(), such that (a ,b) Ể I; is called the normal form of the trace t.

In [1] J . I. A albersberg and G. Rozenberg pointed out th a t every trace can be
uniquely decom posed in to a norm al form, i.e. a m inim al num ber of ‘m axim al
independent p a rts . They have bu ilt two algorithm s for finding the norm al form of
traces. The f irs t a lgorithm is based on in teger poin ters and the second one is based
on dependence graphs.

In the nex t subsection we build a sim ple ite ra tiv e algorithm for finding the
norm al form of a trace from its rep resen ta tive .

2.3. A lgorithm for f in d in g the norm al form o f traces

We give an in tu itiv e descrip tion of the algorithm . F irs t we consider the inpu t
string as a sequence of single p a rts , every p a rt consists of one symbol. The
algorithm repea ted ly goes back on the sequence of p a rts and sh ifts a symbol from a
p a rt onto the p revious p a r t if th e symbol is independen t w ith every symbol
belonging to the p revious p a rt. W hen no symbol can be shifted, the algorithm
term inates.

A lg o r i th m 2.7 (“S h ift-le ft” a lgorithm 1):

Input: A reliance a lp h a b e t c = (£, I) and a s trin g w e z*.

D eclaration : L et k = I w I , le t V be an a rray of leng th k over 2s and let u be an
a rray of leng th k over I*.

C om putation:

1 . for i := 1 to k do v(i) := {i£>[i]};
2 .7':= 2 ;

3. rep ea t

4. for every a € u(j) do
5. begin

58 Hoang Chi Thanh

6 . i := j - 1; OK := false-,
7. while V b € v(i), (a,b) € I do begin i := i - 1 ; OK := true end;
8. if OK then begin v(j) := v(j) \ {o}; ư(i) := v(i) u {a} end;

9. end;
10. if v(j) - 0 th en ignore v(j) and decrease k := k - 1 ;

1 1 .j := 7+ 1 ;
12 . u n til j > k ;
13. for i := 1 to £ do u(i) := lin(u(i,)) ;

Output: The strings u (l), u(2), u(k).
E x a m p le 2.8: Let c be the reliance alphabet given in Exam ple 2.4 and let

U) = aecbbed. Computing by the above algorithm, we have:

V : (a/, lei. I d , Ibl, Ibl, {el, id} ; k - 7
V : iq i, ie, cl, lb), ibl, lei, IdI ; k = 6

u : {a, bl, le, cl, (bl, lei, Idl ; k = 5

V : la, bl, le, c, bl, lei, [d j ; k = 4

V : la, bl, le, c, b}, le, d l ; k = 3
Hence, the ou tpu t of the algorithm is u(l) = ab , u(2) = bee , u(3) = de.

Formalizing the above we get the'following result.

T h e o re m 2.9: L et c = (£, I) be a reliance alphabet and le t w e £*. Let strings
u(l), u(2),..., u(k) be the ou tpu t of A lgorithm 2.7 for the in p u t (C,u;). Then
[u(l)].[u(2)] ... [u(k)\ is the norm al form of [w].

The algorithm is very sim ple and easy to im plem ent on com puter. I t transfers
a sequential process rep resen ted by a string into a concurren t process. The

complexity of th is algorithm is 0 (k 2).

3. Concurrency in P/T nets

F irs t of all, we recall some notations concerning P e tri nets.

3.1. P lace/Transition nets

A Petri net is a trip le N = (P, T, F), w here p, T are d isjo in t se ts and F c (P x T)
u (T X P) is a relation , so-called the flow relation of the ne t N.

A n e t is sim ple if and only if its two different e lem ents have no common p re ­
set and post-set. A sim ple ne t is used to rep resen t s ta tis tica l s tru c tu re of a system.
From a sim ple net one can construct different ne t models by adding some
com ponents for rep resen ting dynam ical s tru c tu re of the system. The
Place/Transition net is such a net and is defined in [6] as follows:

“Sh itf- lef t” a lg o r i th m s tra n sfo rm in g sequ en tia l p rocesses.. 59

D efin ition 3.1: The 6-tuple X = (P, T, F, K, M°, W) is called a
rLace / Transition net iff:

l . 7 í = (P, T, F) is a sim ple net, whereas an element of p is called a place and
an element of T is called a transition .

2. K : p N <u {cc} is a function showing a capacity on each place.
3. w : F -> N \ {oc} is a function assigning a weight on each arc of the flow

relation F.

: p u ^ is an in itia l m arking, which is not g rea te r th a n capacity
on each place, i.e.: V p e p, M°(p) < K(p).

The initial marking represents given tokens on each place of a net. The tokens
are no g rea te r th an the capacity of the corresponding place. If tokens on each place
belonging to the pre-set of some transition are greater than or equal to weight of the
arc connecting th is place to the transition, i.e. it is enough for “paying” then the
nitial m arking can activa te the corresponding transition A fter perform ing the

Place. bei- 2 n g to the p reset of th is“ ion are

and tokens o 7 1 1 K r COnneCting ^ cor^ P o n d in g place to th is transition
ea ce beIon^ ng t0 the p°s t -set of th is tran sition are increased by

weight of the arc connecting th is transition to the corresponding place I t m ust be
ensured that new tokens on each place are not greater than the O pacity of that place

perform ednand t h in itia l T rk in g „activates some tran sitio n , the tran s itio n is
tran sition ĩn d n we a new m ark ing’ the new m ark ing can ac tiva te an o th e ĩ
. . u pr0ces! repea ted ly continues in such a way. T herefore, the
ac ivities happened on a P/T n e t will be m athem atically form alized as follows: ’

The m a rk in g M : p -> N u {oc} can ac tiva te a t ra n s i t io n t iff:
1. V p e 't , M ip) > w (p, t) and

of t 2 V p 6 * ’ M (p ̂ ~ K(p ̂ " W^ ' P^’ where ' t' t% a re the p re-se t and the post-set

t.h J n a l a se ’ the m ayking M is S0' called M o tiva tin g . A fter perform ance ofthe tran sition t, we get the following new m arking:
M(p) - W(p,t) , if p

M ’fpJ = M(p) + W (t,p) , if p e t ' \ 't
M(p) - W(p,t) + W (t,p) , if p e ' t n t '

M(p) , otherwise

and we often w rite th a t: M [í > M ’

SOrae 0ther, transiti0n and then we s e t a " ° th “
»ímĨ. This, Zt . °11 a, m ark ings reachable from the m ark in g M is denoted by

° stoie spoce of * e " e t * 11 is “ • ‘ f° r

narkings and ĩ : Ĩ : F ’ r T b" • P /T "et' i* * M'’ M/ M" be a “ «>>•“ * of, be a sequence of tran sitions of the n e t I , such th a t:

60 Hoang Chi Thanh

M‘ '[í* > M ', ỉ = 1, 2, ... , n.

The sequence M°[t 1 > M ‘[t2 > M2 ... Mn l [r > Mn i l lu s t ra te s a sequential
process of the ne t and the word a = t1 t2 ... tn eT * is called activities sequence on
the net.

The set of all activities sequences on the net £ is called the language gen era ted
by the net £ and denoted by L(z):

L(E) = { t ể t2 ... t n 13 M 1, M2 , . . . , Mn l, Mn e *[M°] :

M°[t 1 > M‘[t2 > M2 . . . Mn l[tn > Mn}

B ut the language generated by a ne t is sequential. I t shows us only sequential
perform ances of the P/T n e t’s processes.

So when several tran s itio n s of the ne t can be perform ed concurrently.

3.2. Sequence o f m axim al concurrent steps

L et u c T be a subset of tran sitio n s of the ne t z and u * 0 .
D e f in i t io n 3.2: The subset u is called a step on the ne t I iff th e re is a

m arking M 6 |«[M0) satisfy ing the following inequalities:

1 . V p e *u, M(p) > £ w (p, t) and
teU

2 . V p 6 u \ M (p) < K(p) - X p)'
teU

In such a case, the transitions in the step u can be performed concurrently
and a fte r th e ir perform ance we get the following m arking:

M (p) - ỵ w (p , t)
ưu , i f p 6 u \ u

M(p) + X w(t’P) , i f p e u * \ * u

M(p) - ỵ W(p,t) + X w(t>p) , i f p G * u n u *

M ’(p) =

tẻu tèu
M(p)

, otherwise

We also denote th a t: M[u > M’ and the m arking M is called U -activating.

Such as above, we can find sequences of steps on the net. As big are the steps
as high concurrency is.

E x a m p le 3.3: C onsider a P/T nets p resen ted by the labelled directed b ipartite
graph in Figure 2.

s h i t f - le f t a lg o r ith m s tra n s fo r m in g se q u e n tia l processes... ^

K M°

Pi 3 3

P2 2 0

Ps 8 1

P4 5 5

Ps 4 1

Fig 2. A P/T net

On this net we recognize the following sequential process:

M° [t t > M 1 [h > M2 [t3 > M3 [t 4 > M4

P i 3 1 2 2 2

P2 0 2 0 0 0

Pi 1 6 6 2 4
p 4 5 2 2 2 0

Ps 1 1
2 4

— ------------
4

The initial marking M° can activate the subset {t„ t4} and we have:

M° [{tj, t4}> M r = (1 , 2 , 6 , 0, 1).

So the subset {th t4} is a concurrent step on th is P/T net.

Let M°ỊUi > M'fUa > M2 ... Mk l[Uk > M k be a sequence of steps on the n e t s .
The sequence illustrates a concurrent process on the net. What steps are “biggest”?
The following definition answers this question.

D e f in i t io n 3.4: The sequence of steps M ^Ư! > M 1[U2> M2 . . . Mk l[Uk> Mk is
called a sequence o f m axim al concurrent steps iff for each i - 1 2 ... k-l-

V t G u i+1, M ''1 is not (UịUỊí}) -activating.

If transitions of each step can be performed concurrently, then the total time
for perform ance of the process decreases considerably. Therefore, we alw ays expect
to find sequences of maximal concurrent steps and at that time, the performance of
processes becomes optimal. In order to do so, we propose second “shift-left”
algorithm in the next section.

32 H oang Chi Thanh

ị A lgorithm fin d in g seq u en ces o f m axim al con cu rren t step s

Let s = (P T F, K, M°, W) be a P/T net. Each sequential process: M°[i; > MUi2
> M2 . > Mk of the ne t may be considered as a sequence of single steps:
M°[{*;} > M'[{í2} > M2 . . ,Mk l [{£*} > Mk and as an inpu t of our algorithm .

The algorithm repeatedly goes back on the sequence of steps and shifts a
t ra n s i t io n from a s tep in to th e previous s tep if w hen ad d in g the t ra n s i t io n to th is
p r e v i o u s s t e p , t h e o b t a i n s d s t e p b e c o m G S a c t i v a t e d b y t h e c o r r e s p o n d i n g m a r k i n g .

When no transition can be shifted, the algorithm terminates.
A lg o rith m 4.1 (“Shift-left” algorithm 2):
In p u t: A sequen tia l process M°[£;> M'[£2> M2 . . . Mk *[£*> M k on a P/T net.

Output'. A sequence of m axim al concurrent steps on the net.

1 . for i := 1 to k do u , := {£,} ;

2 . for j := 1 to k-1 do

3. begin

4. i :=j ;
5 . while i >= 1 do

begin
for every tran s itio n t e Ui+1,

if MM is (U,u{i})-activating then

begin we replace:

M ‘(p) =

M l l (p)- I W(p,t)
tẻ ư ịẩ ịt ì

M i i (p)+ ỵ W(t,p)
tẻ U ịẩ ltl

M i l (p)- ỵ W(p,t)+ ỵ W(t,p)
tè U ịẩ ltl tèU ịẩ lt)

M l I (p)

, if p 6 *(U, uW) \ (U,

, if p € (U, <j{t}Y \ *(Ui u{i})

, if p e *(U, u{í}) n (U,

, otherwise

and u, := UịU{í} , U i+1 := ui+1\{i} , i.e. we “shift-left” the tran s itio n t from the
ỉtep u +1 into the previous step Uj. After shifting, if ui+1=0 then we ignore both ui+1
____1 A /ĩi+ 1 .and Ml+1;

end ;
i := i - 1

end :

6. end ;

7. stop.
The algorithm goes back because we want not only making steps maximal

concurrent but also reducing the number of steps.

“Shitf-left” a lgor ithm s transform ing sequential p ro cesse s ..

Example 4 .2: We apply this algorithm to the P/T net drawn in Fig. 2 with tltu
input M°[íi > M l [t2 > M 2[t3 > M 3[t4 > M4.

- After 1st going back:

The marking M° is {tj, t2}- activating, so we shift left t 2 and get the following
sequence:

M° [> M 1 [{t3} > M2 [{t4} > M3

Pi 3 2 2 2

P2 0 0 0 0

p 3 1 6 2 4

p 4 5 2 2 0

Ps 1 2
------1--------1

4 4

- A fter 2nd going back:

The marking M1 now is {t3, t4}-activating, so we shift left t4 and obtain the
following sequence:

M° [{̂ 2̂ 2} > M1 [> M2

Pi 3 2 2

p 2 0 0 0

Ps 1 6 4
p 4 5 2 0

Ps 1 2 4

The obtained sequence M° [{tlft 2} > M l [{t3, t 4) > M2 is indeed a sequence of
maximal concurrent steps of the net..

Theorem 4 .3 : When Algorithm 4.1 terminates, its output is the sequence of
maximal concurrent steps of the P/T net.

The complexity of this algorithm is 0 (1 T I. I p I .k2). So the complexity is square
in the number of steps. This algorithm is simple and easy to implement on
computers.

5. Conclusion

In the paper, we construct one more a very simple algorithm for finding the
normal form of a trace; propose the notation of concurrent step on a P/T net and
build up an efficient algorithm to transform sequential processes of a P/T net into
concurrent ones. These algorithms are not only useful for concurrency control on
system s but also suitable for calculating concurrent behaviours of a system with

(34 H o a n g Chi Thanh

jv n am ica l s tru c tu re s . The a lgorithm s may be applied for processing transactions on
da tabase, for finding the norm al form of a sem i-trace.

A ck n o w le d g em en t- . This paper was w ritten during my stay a t De M ontfort
U niversity , L eicester, UK. I would like to th an k Professor Hongji Yang, Dr. Dang
Van H ung and th e IIST/UNU for my valuable tim e a t Leicester.

R eferences

1. J .I . A albersberg and G. Rozenberg, Theory o f Traces, T heoretical Com puter
Science 60(1988), pp. 1-82.

2 J.A. Bergstra and J.w . Klop, Algebra for communicating processes with
abstraction, T heoretical C om puter Science 37, 1(1985), pp. 77-121.

•3 R. Janicki, Trace sem an t ic s for c o m m u n ica t in g sequ en t ia l processes, Tech.
R eport R-85-12, Univ. of Aalborg, D enm ark, 1985.

4 A. M azurkiew icz, Concurrent program schemes and their interpretations,
DAIMI R eport PB-78, A arhus Univ., D enm ark, 1977.

ị. R. M ilner, C om m unication and Concurrency, P rentice H all, 1989.

Ó. w . Reisig, Petri Nets: A n Introduction, Springer-V erlag, 1985.

f. A .w . Roscoe, The Theory and Practice o f Concurrency, P ren tice Hall, 1998.
ị H .c . T hanh , A n algorithm for fin d in g the norm al form o f traces and

synchronous traces, Jo u rn a l of C om puter Science and Cybernetics, Vol. 17, No.
1(2001), pp. 72-77.

ỉ H .c . T hanh , Control problem on Tim ed place I transition nets, VNUH Jo u rn a l of
Science, Vol. XX, No 4(2004), pp. 48-55.

