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“SHIFT-LEFT” ALGORITHMS TRANSFORMING 
SEQUENTIAL PROCESSES INTO CONCURRENT ONES

Hoang Chi Thanh

H anoi University o f Science, V N U H

Abstract. Finding concurrent processes of a system is an objective of system 
controls, because it shows an optimal way to perform processes. In this paper 
we build two iterative algorithms for transforming sequential processes of a 
reliance alphabet and of a Place/Transition net into concurrent ones. The 
complexity of these algorithms is also considered.
Keywords: Reliance alphabet, trace, Petri net, concurrent step.

1. INTRODUCTION

Controls on concurren t system s alw ays are  an  im p o rtan t and  complicated 
problem. So far, op tim al perform ance of processes occurred on a concurren t system  
is among the  controls. For th is  purpose, recognition of co n cu rren t processes of the 
system  is essen tia l. A lo t of models, such as P e tri n e ts  [6,9], traces  [1,3,4,8], CSP 
[7], CCS [5], process a lgeb ras [2] have been being good tools for rep resen ting  
s ta tis tica l as well as dynam ical s tru c tu re  of system s. From  th ese  m odels, sequential 
processes of a system  a re  no t difficult to recognize b u t co n cu rren t ones still are. 
Therefore, how to transfo rm  sequential processes of a system  onto concurren t ones 
is a g rea t problem  on theory  and application indeed.

A sim ple algorithm  for finding the norm al form of traces  is a good solution for 
system s rep resen ted  by reliance alphabet. P lace/T ransition  n e t is one of su itab le  
models to rep re sen t concu rren t system s. But the language g en e ra ted  by a P/T net is 
sequential. I t  shows us only sequential perform ances of th e  n e t’s processes. So 
when several tran s itio n s  can  be perform ed concurrently . We w ill concen tra te  on 
building an  ite ra tiv e  a lgorithm  for transform ing seq u en tia l p rocesses of a P/T net 
into concurrent ones.

This paper is organized  as follows. Section 2 constructs  a “sh ift-le ft” algorithm  
for finding the  norm al form  of a trace. In  Section 3 we propose th e  notation  of 
concurrency in  P/T n e ts . Section 4 builds up an  i te ra tiv e  a lgo rithm  for finding 
sequences of m axim al concurren t steps on a P lace /T ransition  n e t from the  n e t’s 
sequence of single steps. F inally , some conclusions a re  given in  Section 5.

2. N orm al form  o f  tra ce  and  its  fin d in g

The theory  of traces  w as orig inated by A. M arzurkiew icz in  [4] as an a ttem p t 
to provide a good m ath em atica l description of the  behav iou r of concurren t system s. 
The norm al form of a trace  gives an  optim al way to perform  a process rep resen ted
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by the trace. In th is  section we will construct a sim ple ite ra tiv e  algorithm  for 
finding the norm al form of a trace.

2.1. Independence re la tion  and  traces

D e f in i t io n  2.1: Let E be an alphabet.

1 . An independence relation  over z  is a sym m etric and  irreflexive b inary  
relation  over z.

2 . A  reliance a lphabet is a couple c  = (E, I), w here E is an a lphabet and I is an 
independence re la tion  over s .

Considering ad jacen t independent symbols in a s tr in g  to be com m uting, one 
can re la te  d ifferent s trings as follow.

D e f in i t io n  2.2: L et c  = (Z, I) be a reliance a lphabet.

1. The relation =c c= Z*xZ* is defined as follow: for X, y  e  E*, X =c y  if and only if 
there exist Xj, x 2 € E* and (a,6) € I such that X = x j a b x 2 and y  = x j b a x 2.

2 . The C-equivalence relation  =c c  is defined as the  leas t equivalence
relation  over E* contain ing  =c .

Thus, =c identifies ‘com m utatively sim ila r’ s trin g s  — each such group of 
strings is called a trace.

D e f in i t io n  2.3: Let c  = (£, I) be a reliance a lphabet.

1. For an X e  E*, th e  t r a c e  o f  X, denoted by [x]c , is the equivalence class of =c
containing X.

2. A  trace  over c  is a set t  of strings over E such that t  = [*]c for some X e  £* 
and X is called a representative of t .

3. A set of traces over c  is called a trace language  over c .
E x a m p le  2.4: Let c  = (E, I) be the reliance a lp h ab e t given by the  undirected

graph in  Fig. 1.

a b c d

The trace t of abcecd = [abcecd]c = {abcecd, bacecd, acbecd, abeccdy abcced, 
abcedcy baeccd, bacced, bacedc, acebcd, acbced, acbedc, aebccd, abecde, abccdel.

2.2. N orm al form o f  traces

One can define a com position operation on trace  language.
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D e f in i t io n  2.5: L et c  — (£, I) be a reliance a lphabet.

For traces t h t2 over c ,  the trace composition  of tj  and  t2, denoted by t ,.t2, is 
defined by t ,  t 2 = [Xj.x2]c> where Xj, x2 € £* are representatives of tỵ and t2 
respectively.

In general, a trace  can be obtained  as a trace com position of o ther traces bu t 
trace decom positions of th e  given trace do not have to be unique. Hence it is 
desirable  to have ‘norm al form ’ decom position of traces.

D e f in i t io n  2.6: L et c  = (£, I) be a reliance a lp h ab et and  / be a trace over c . 
The following decom position t = t , . t2. □ tm, such th a t:

1 . for a ll 1 s  i s  m, £, * 0 ;

2. for all 1 < i < m , t, can be written as [«;], where Uị G £*, #a(u,)=l for each a  e 
alph(u,), and (a ,b ) e I for a ll a, b e alph(Uj) such th a t  a  # b ;  and

3. for a ll 1 s  ỉ' s  m-1, if  Í, = [Uj] and tUj = [ui+1] th en , for each a e a lp h (u 1+i), 
there exists b e  alph(ii(), such that (a ,b ) Ể I; is called the normal form of the trace t.

In [1] J . I. A albersberg  and G. Rozenberg pointed out th a t  every trace can be 
uniquely decom posed in to  a norm al form, i.e. a m inim al num ber of ‘m axim al 
independent p a rts . They have bu ilt two algorithm s for finding the  norm al form of 
traces. The f irs t a lgorithm  is based on in teger poin ters and  the  second one is based 
on dependence graphs.

In the nex t subsection  we build  a sim ple ite ra tiv e  algorithm  for finding the 
norm al form of a trace  from its  rep resen ta tive .

2.3. A lgorithm  for  f in d in g  the norm al form o f  traces

We give an  in tu itiv e  descrip tion  of the algorithm . F irs t  we consider the inpu t 
string  as a sequence of single p a rts , every p a rt consists of one symbol. The 
algorithm  repea ted ly  goes back on the  sequence of p a rts  and  sh ifts a symbol from a 
p a rt onto the  p revious p a r t  if  th e  symbol is independen t w ith every symbol 
belonging to the  p revious p a rt. W hen no symbol can be shifted, the algorithm  
term inates.

A lg o r i th m  2.7 (“S h ift-le ft” a lgorithm  1):

Input: A reliance  a lp h a b e t c  = (£, I) and a s trin g  w e z*.

D eclaration : L et k = I w I , le t V be an a rray  of leng th  k  over 2s and let u be an 
a rray  of leng th  k over I*.

C om putation:

1 . for i := 1 to k do v(i) := {i£>[i]};
2 .7':=  2 ;

3. rep ea t

4. for every a € u(j) do
5. begin



58 Hoang Chi Thanh

6 . i := j  - 1; OK := false-,
7. while V b € v(i), (a,b) € I do begin i := i - 1 ; OK := true  end;
8. if OK then  begin v(j) := v(j) \  {o}; ư(i) := v(i) u  {a} end;

9. end;
10. if  v(j) -  0  th en  ignore v(j) and decrease k := k - 1 ;

1 1 .j := 7+ 1  ;
12 . u n til j  > k ;
13. for i := 1 to £ do u(i) := lin(u(i,)) ;

Output: The strings u (l), u(2), u(k).
E x a m p le  2.8: Let c  be the reliance alphabet given in  Exam ple 2.4 and let 

U) = aecbbed.  Computing by the above algorithm, we have:

V : (a/, lei. I d , Ibl, Ibl, {el, id} ; k - 7
V : iq i, ie, cl, lb), ibl, lei, IdI ; k  = 6 

u : {a, bl, le, cl, (bl, lei, Idl ; k  = 5

V : la,  bl, le, c, bl,  lei, [d j  ; k = 4

V : la,  bl,  le, c, b}, le, d l ; k = 3
Hence, the  ou tpu t of the  algorithm  is u( l )  = ab , u(2) = bee , u(3) = de. 

Formalizing the above we get the'following result.

T h e o re m  2.9: L et c  = (£, I) be a reliance alphabet and  le t w e £*. Let strings 
u(l),  u(2),..., u(k)  be the ou tpu t of A lgorithm  2.7 for the  in p u t (C,u;). Then 
[u(l)].[u(2)] ... [u(k)\ is the  norm al form of [w].

The algorithm  is very sim ple and easy to im plem ent on com puter. I t transfers 
a sequential process rep resen ted  by a string  into a concurren t process. The

complexity of th is  algorithm  is 0 ( k 2).

3. Concurrency in P/T nets

F irs t of all, we recall some notations concerning P e tri nets.

3.1. P lace/Transition nets

A Petri net is a trip le  N = (P, T, F), w here p, T are  d isjo in t se ts and F c ( P x T )  
u  (T X P) is a relation , so-called the flow relation  of the  ne t N.

A n e t is sim ple  if  and only if its two different e lem ents have no common p re ­
set and post-set. A sim ple ne t is used to rep resen t s ta tis tica l s tru c tu re  of a system. 
From a sim ple net one can construct different ne t models by adding some 
com ponents for rep resen ting  dynam ical s tru c tu re  of the  system. The 
Place/Transition net is such a net and is defined in [6] as follows:
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D efin ition  3.1: The 6-tuple X = (P, T, F, K, M°, W) is called a
rLace /  Transition  net iff:

l .  7 í =  (P, T, F) is a sim ple net, whereas an element of p is called a place  and 
an element of T is called a transition .

2. K : p N <u {cc} is a function showing a capacity on each place.
3. w  : F -> N \  {oc} is a function assigning a weight on each arc of the flow

relation F.

: p  u  ^  is an in itia l m arking, which is not g rea te r  th a n  capacity
on each place, i.e.: V p  e p, M°(p) < K(p).

The initial marking represents given tokens on each place of a net. The tokens 
are  no g rea te r th an  the  capacity  of the corresponding place. If  tokens on each place 
belonging to the pre-set of some transition are greater than or equal to weight of the 
arc connecting th is  place to the  transition, i.e. it  is enough for “paying” then the 
nitial m arking  can activa te  the  corresponding transition  A fter perform ing the

Place. bei- 2 n g  to the p reset of th is“ ion are

and tokens o 7 1  1 K r  COnneCting ^  cor^ P o n d in g  place to th is  transition  
ea ce beIon^ ng t0 the p°s t -set of th is tran sition  are  increased by 

weight of the arc  connecting th is  transition  to the corresponding place I t m ust be
ensured that new tokens on each place are not greater than the O pacity of that place

perform ednand t h in itia l T rk in g  „activates some tran sitio n , the tran s itio n  is
tran sition  ĩn d  n we a new  m ark ing’ the new m ark ing can ac tiva te  an o th e ĩ 
. . u pr0ces!  repea ted ly continues in such a way. T herefore, the
ac ivities happened  on a P/T n e t will be m athem atically  form alized as follows: ’

The m a rk in g  M  : p  -> N  u  {oc} can ac tiva te  a t ra n s i t io n  t  iff:
1. V p e 't , M ip) > w (p, t) and

of t 2 V p  6 * ’ M (p  ̂ ~ K(p  ̂ " W^ ' P^’ where ' t' t% a re  the p re-se t and  the  post-set

t.h J  n a l a se ’ the  m ayking  M is S0' called M o tiva tin g . A fter perform ance ofthe tran sition  t, we get the  following new m arking:
M(p) - W(p,t) , if p

M ’fpJ = M(p) + W (t,p) , if p  e t ' \  't
M(p) - W(p,t) + W (t,p) , if p  e ' t n t '  

M(p)  , otherwise

and we often w rite  th a t: M [í > M ’

SOrae 0ther, transiti0n  and then  we s e t a " ° th “
»ímĨ. This, Zt .  °11 a, m ark ings reachable from the  m ark in g  M is  denoted by

° stoie  spoce of * e " e t * 11 is “ •  ‘ f° r

narkings and ĩ :  Ĩ :  F ’ r  T  b" •  P /T "et' i* *  M'’ M/ ........ M" be a “ «>>•“ *  of, be a sequence of tran sitions of the  n e t I ,  such th a t:
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M‘ '[ í* > M ', ỉ = 1, 2, ... , n.

The sequence M°[ t 1 > M ‘[ t2 > M2 ... Mn l [ r  > Mn i l lu s t ra te s  a sequential
process of the  ne t and the  word a  = t1 t2 ... tn eT  * is called activities sequence on
the net.

The set of all activities sequences on the net £ is called the language  gen era ted  
by the net £ and denoted by L(z):

L(E) = { t ể t2 ... t n 13 M 1, M2 , . . . , Mn l, Mn e *[M°] :

M°[ t 1 > M‘[ t2 > M2 . . . Mn l[ tn > Mn}

B ut the language generated  by a ne t is sequential. I t  shows us only sequential 
perform ances of the  P/T n e t’s processes.

So when several tran s itio n s  of the  ne t can be perform ed concurrently.

3.2. Sequence o f  m axim al concurrent steps

L et u  c  T be a subset of tran sitio n s of the  ne t z  and u  * 0 .
D e f in i t io n  3.2: The subset u  is called a step on the ne t I  iff th e re  is a

m arking M 6 |«[M0) satisfy ing  the following inequalities:

1 . V p  e *u, M(p) > £  w (p, t ) and
teU

2 . V p  6 u \  M (p) < K(p) - X  p)'
teU

In such a case, the transitions in the step u  can be performed concurrently 
and a fte r th e ir perform ance we get the  following m arking:

M ( p ) - ỵ w ( p , t )
ưu ,  i f  p  6  u  \  u

M(p) +  X  w(t’P) , i f  p e  u *  \  * u

M(p) - ỵ  W(p,t) +  X  w(t>p) ,  i f  p  G  * u  n  u *

M ’(p) =

tẻu tèu
M(p)

, otherwise

We also denote th a t: M[ u > M’ and the m arking M is called U -activating. 

Such as above, we can find sequences of steps on the  net. As big are  the  steps 
as high concurrency is.

E x a m p le  3.3: C onsider a P/T nets p resen ted  by the labelled directed b ipartite  
graph in Figure 2.
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K M°

Pi 3 3

P2 2 0

Ps 8 1

P4 5 5

Ps 4 1

Fig  2. A P/T net

On this net we recognize the following sequential process:

M° [ t t > M 1 [ h  > M2 [ t3 > M3 [ t 4 > M4

P i 3 1 2 2 2

P2 0 2 0 0 0

Pi 1 6 6 2 4
p  4 5 2 2 2 0

Ps 1 1
2 4

— ------------
4

The initial marking M° can activate the subset {t„ t4} and we have:

M° [ {tj, t4}> M r = (1 , 2 , 6 , 0, 1).

So the subset {th t4} is a concurrent step on th is P/T net.

Let M°ỊUi > M'fUa > M2 ... Mk l[Uk > M k be a sequence of steps on the n e t s . 
The sequence illustrates a concurrent process on the net. What steps are “biggest”? 
The following definition answers this question.

D e f in i t io n  3.4: The sequence of steps M ^Ư! > M 1[U2> M2 . . . Mk l[Uk> Mk is 
called a sequence o f  m axim al concurrent steps iff for each i -  1 2  ... k-l-

V t G  u i+1, M ''1 is not (UịUỊí}) -activating.

If transitions of each step can be performed concurrently, then the total time 
for perform ance of the  process decreases considerably. Therefore, we alw ays expect 
to find sequences of maximal concurrent steps and at that time, the performance of 
processes becomes optimal. In order to do so, we propose second “shift-left” 
algorithm in the next section.
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ị  A lgorithm  fin d in g  seq u en ces  o f  m axim al con cu rren t step s

Let s  = (P T F, K, M°, W) be a P/T net. Each sequential process: M°[i; > MUi2 
> M2 . > Mk of the  ne t may be considered as a sequence of single steps:
M°[{*;} > M'[{í2} > M2 . . ,Mk l [{£*} > Mk and as an inpu t of our algorithm .

The algorithm repeatedly goes back on the sequence of steps and shifts a 
t ra n s i t io n  from a s tep  in to  th e  previous s tep  if w hen ad d in g  the  t ra n s i t io n  to th is  
p r e v i o u s  s t e p ,  t h e  o b t a i n s d  s t e p  b e c o m G S  a c t i v a t e d  b y  t h e  c o r r e s p o n d i n g  m a r k i n g .  

When no transition can be shifted, the algorithm terminates.
A lg o rith m  4.1 (“Shift-left” algorithm  2):
In p u t: A sequen tia l process M°[£;> M'[£2> M2 . . . Mk *[£*> M k on a P/T net.

Output'. A sequence of m axim al concurrent steps on the  net.

1 . for i := 1 to k do u ,  := {£,} ;

2 . for j  := 1 to k-1 do

3. begin

4. i :=j ;
5 . while i >= 1 do 

begin
for every tran s itio n  t e Ui+1,

if MM is (U,u{i})-activating then 

begin we replace:

M ‘(p) =

M l l (p)- I  W(p,t)
tẻ ư ịẩ ịt ì

M i i (p)+ ỵ  W(t,p)
tẻ U ịẩ ltl

M i l (p)- ỵ  W(p,t)+ ỵ  W(t,p)
tè U ịẩ ltl tèU ịẩ lt)

M l I (p)

, if p  6 *(U, uW ) \  (U,

, if p  € (U, <j{t}Y \  *(Ui u{i})

, if p  e *(U, u{í}) n  (U,

, otherwise

and u, := UịU{í} , U i+1 := ui+1\{i} , i.e. we “shift-left” the  tran s itio n  t from the 
ỉtep u +1 into the previous step Uj. After shifting, if ui+1=0 then we ignore both ui+1
____1 A /ĩi+ 1 .and Ml+1; 

end ;
i := i - 1 

end :

6. end ;

7. stop.
The algorithm goes back because we want not only making steps maximal 

concurrent but also reducing the number of steps.
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Example 4 .2: We apply this algorithm to the P/T net drawn in Fig. 2 with tltu 
input M°[íi > M l [t2 > M 2[t3 > M 3[t4 > M4.

- After 1st going back:

The marking M° is {tj, t2}- activating, so we shift left t 2 and get the following  
sequence:

M° [ > M 1 [ {t3} > M2 [ {t4} > M3

Pi 3 2 2 2

P2 0 0 0 0

p 3 1 6 2 4

p 4 5 2 2 0

Ps 1 2
------1--------1

4 4

- A fter 2nd going back:

The marking M1 now is {t3, t4}-activating, so we shift left t4 and obtain the  
following sequence:

M° [ {̂ 2̂ 2} > M1 [ > M2

Pi 3 2 2

p 2 0 0 0

Ps 1 6 4
p 4 5 2 0

Ps 1 2 4

The obtained sequence M° [{tlft 2} > M l [{t3, t 4) > M2 is indeed a sequence of 
maximal concurrent steps of the net..

Theorem 4 .3 : When Algorithm 4.1 terminates, its output is the sequence of 
maximal concurrent steps of the P/T net.

The complexity of this algorithm is 0 (1  T I. I p  I .k2). So the complexity is square 
in the number of steps. This algorithm is simple and easy to implement on 
computers.

5. Conclusion

In the paper, we construct one more a very simple algorithm for finding the 
normal form of a trace; propose the notation of concurrent step on a P/T net and 
build up an efficient algorithm to transform sequential processes of a P/T net into 
concurrent ones. These algorithms are not only useful for concurrency control on 
system s but also suitable for calculating concurrent behaviours of a system with
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jv n am ica l s tru c tu re s . The a lgorithm s may be applied for processing transactions on 
da tabase, for finding  the  norm al form of a sem i-trace.
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