VNU. JOURNAL OF SCIENCE, Mathematics - Physics, T.XXIl, Ny2, 2006

“SHIFT-LEFT” ALGORITHMS TRANSFORMING
SEQUENTIAL PROCESSES INTO CONCURRENT ONES

Hoang Chi Thanh
Hanoi University of Science, VNUH

Abstract. Finding concurrent processes of a system is an objective of system
controls, because it shows an optimal way to perform processes. In this paper
we build two iterative algorithms for transforming sequential processes of a
reliance alphabet and of a Place/Transition net into concurrent ones. The
complexity of these algorithms is also considered.

Keywords: Reliance alphabet, trace, Petri net, concurrent step.

1. INTRODUCTION

Controls on concurrent systems always are an important and complicated
problem. So far, optimal performance of processes occurred on a concurrent system
is among the controls. For this purpose, recognition of concurrent processes of the
system is essential. A lot of models, such as Petri nets [6,9], traces [1,3,4,8], CSP
[7], CCS [5], process algebras [2] ..., have been being good tools for representing
statistical as well as dynamical structure of systems. From these models, sequential
processes of a system are not difficult to recognize but concurrent ones still are.
Therefore, how to transform sequential processes of a system onto concurrent ones
i1s a great problem on theory and application indeed.

A simple algorithm for finding the normal form of traces is a good solution for
systems represented by reliance alphabet. Place/Transition net is one of suitable
models to represent concurrent systems. But the language generated by a P/T net is
sequential. It shows us only sequential performances of the net’s processes. So
when several transitions can be performed concurrently. We will concentrate on
building an iterative algorithm for transforming sequential processes of a P/T net
into concurrent ones.

This paper is organized as follows. Section 2 constructs a “shift-left” algorithm
for finding the normal form of a trace. In Section 3 we propose the notation of
concurrency in P/T nets. Section 4 builds up an iterative algorithm for finding
sequences of maximal concurrent steps on a Place/Transition net from the net’s
sequence of single steps. Finally, some conclusions are given in Section 5.

2. Normal form of trace and its finding

The theory of traces was originated by A. Marzurkiewicz in [4] as an attempt
to provide a good mathematical description of the behaviour of concurrent systems.
The normal form of a trace gives an optimal way to perform a process represented

55

56 Hoang Chi Thanh

by the trace. In this section we will construct a simple iterative algorithm for
finding the normal form of a trace.

2.1. Independence relation and traces

Definition 2.1: Let £ be an alphabet.

1. An independence relation over £ is a symmetric and irreflexive binary
relation over Z.

2. A reliance alphabet 1s a couple C = (Z, I), where Z is an alphabet and I 1s an
independence relation over Z.

Considering adjacent independent symbols in a string to be commuting, one
can relate different strings as follow.

Definition 2.2: Let C = (Z, I) be a reliance alphabet.

1. The relation =c c £'xZ" is defined as follow: for x, y € £°, x =¢ y if and only if
there exist x,, x, € £ and (a,b) € I such that x = x,abx, and y = x,bax,.

2. The C-equivalence relation = c X°xI" is defined as the least equivalence
relation over I’ containing =¢.

Thus, = identifies ‘commutatively similar’ strings — each such group of
strings 1s called a trace.

Definition 2.3: Let C = (£, I) be a reliance alphabet.

1. For an x € I’, the trace of x, denoted by [x]., 1s the equivalence class of =¢
containing x.

2. A trace over C is a set t of strings over I such that ¢ = [x]; for some x € T’
and x 1s called a representative of t.

3. A set of traces over C is called a trace language over C.

Example 2.4: Let C = (Z, I) be the reliance alphabet given by the undirected
graph in Fig. 1.

a b c d
O ! ~
e
Fig.1

The trace t of abcecd = [abcecd], = (abcecd, bacecd, acbecd, abeccd, abcced,
abcede, baeced, bacced, bacede, acebed, acbeed, acbede, aebeed, abecde, abeede).

2.2. Normal form of traces

One can define a composition operation on trace language.

“Shitf-left” algorithms transforming sequential processes... o7

Definition 2.5: Let C = (Z, I) be a reliance alphabet.

For traces ¢, t, over C, the trace composition of ¢, and ty, denoted by ¢,.t,, is
defined by ¢,%, = [x,x]c, where x,, x, € I° are representatives of ¢, and ¢,
respectively.

In general, a trace can be obtained as a trace composition of other traces, but
trace decompositions of the given trace do not have to be unique. Hence it is
desirable to have ‘normal form’ decomposition of traces.

Definition 2.6: Let C = (%, I) be a reliance alphabet and ¢ be a trace over C.
The following decomposition ¢ = ¢,.t,. (1 t,,, such that:

l.foralll1sism,t #

2. for all 1 Si < m, ¢; can be written as [x;], where u; € 7, #,(u,)=1 for each a e
alph(u;), and (a,b) € I foralla, b € alph(y;) such that a #b; and

3. for all 1 i <m-1,if ¢ = [y] and ¢,, = [u;.,] then, for each aealph(u,,,),
there exists b € alph(w;), such that (a,b) ¢ I; is called the normal form of the trace i

In [1] J. I. Aalbersberg and G. Rozenberg pointed out that every trace can be
uniquely decomposed into a normal form, i.e. a minimal number of ‘maximal
independent’ parts. They have built two algorithms for finding the normal form of
traces. The first algorithm is based on integer pointers and the second one is based
on dependence graphs.

In the next subsection we build a simple iterative algorithm for finding the
normal form of a trace from its representative.

2.3. Algorithm for finding the normal form of traces

We give an intuitive description of the algorithm. First we consider the input
string as a sequence of single parts, every part consists of one symbol. The
algorithm repeatedly goes back on the sequence of parts and shifts a symbol from a
part onto the previous part if the symbol is independent with every symbol
belonging to the previous part. When no symbol can be shifted, the algorithm
terminates.

Algorithm 2.7 (“Shift-left” algorithm 1):
Input: A reliance alphabet C = (£, I) and a stringw € X",

Declaration: Let k = |w |, let v be an array of length & over 2% and let u be an
array of length & over 2.

Computation:

1. for i:=1 tok do v(i) := {w[i]};
2.1 =2:

3. repeat

4. for every a € v(j) do

5. begin

58 Hoang Chi Thanh

6.1:= j-1; OK := false;
7. while V b € v(i), (a,b) €] do begin i:=i-1; OK :=true end;
8. if OK then begin v(j) := v(j) \ {g}; v(i) := v(i) U {a} end;

9. end,;
10. if v(j) = @ then ignore v(j) and decrease k :=k - 1;
11.j:= j+1;

12. until j >k
13. for i := 1 to k do u(i) := lin(v(i)) ;
Output: The strings u(1), u(2), ..., u(k).

Example 2.8: Let C be the reliance alphabet given in Example 2.4 and let
w = aecbbed. Computing by the above algorithm, we have:

v :{a), (e, [c], (b], (b], le}, [d] ; k=7
v :{al, fe, ¢/, (b}, (b}, le}, (d] ; k=6
v:la, bl le,cl, (b, (e, {d}; k=5
v:{a, bl fe c bl lel, [d; k=4
v:la, bl,fe c bl le,d ; k=3
Hence, the output of the algorithm is u(1) = ab, u(2) = bee , u(3) = de.

Formalizing the above we get the following result.

Theorem 2.9: Let C = (, I) be a reliance alphabet and let w € T*. Let strings
u(l), u(2),..., u(k) be the output of Algorithm 2.7 for the input (C,w). Then
[u(D)]).[u(2)] ... [u(k)] is the normal form of [w].

The algorithm is very simple and easy to implement on computer. It transfers
a sequential process represented by a string into a concurrent process. The

complexity of this algorithm is O(kz).

3. Concurrency in P/T nets
First of all, we recall some notations concerning Petri nets.

3.1. Place/Transition nets

A Petri net is a triple N = (P, T, F), where P, T are disjoint sets and Fc (P xT)
w (T x P) is a relation, so-called the flow relation of the net N.

A net is simple if and only if its two different elements have no common pre-
set and post-set. A simple net is used to represent statistical structure of a sysiem.
From a simple net one can construct different net models by adding some
components for representing dynamical structure of the system. The
Place/Transition net is such a net and is defined in [6] as follows:

“Shitf-left” algorithms transforming sequential processes... oY

Definition 3.1: The 6-tuple 3 = (P, T, F, K, M° W) is called a
Place/Transition net iff:

1.72=(P, T, F)' 1s a simple net, whereas an element of P is called a place and
an element of T is called a transition.

2.K:P > N uU {«} is a function showing a capacity on each place.

3. W: F 5 N\ {«} is a function assigning a weight on each arc of the flow
relation F.

4.M°: P - N U {«} is an initial marking, which is not greater than capacity
on each place, i.e.: V p € P, M%p) < K(p).

The initial marking represents given tokens on each place of a net. The tokens
are not greater than the capacity of the corresponding place. If tokens on each place
belonging to the pre-set of some transition are greater than or equal to weight of the
arc connecting this place to the transition, i.e. it is enough for “paying”, then the
initial marking can activate the corresponding transition. After performing the
transition, tokens on each place belonging to the pre-set of this transition are
decreased by weight of the arc connecting the corresponding place to this transition
and tokens on each place belonging to the post-set of this transition are increased by
weight of the arc connecting this transition to the corresponding place. It must be
ensured that new tokens on each place are not greater than the capacity of that place.

When the initial marking activates some transition, the transition is
performed and then we get a new marking, the new marking can activate another
transition and the process repeatedly continues in such a way. Therefore, the
activities happened on a P/T net will be mathematically formalized as follows:

The marking M: P - N u {«c} can activate a transition # iff:
L.Vpe't, Mpp)>W(p,t) and

2.Vpet, Mp)< K(p) - W(¢, p), where °t, t° are the pre-set and the post-set
of ¢.

I'n such a case, the marking M is so-called t-activating. After performance of
the transition ¢, we get the following new marking:

M(p)-W(p,t) ,if p e "t\¢
Mi(p) = M)+ Wt(t, p) if pet'\'t

Mp)-Wp,t)+Wt,p) ,if petnt

M) , otherwise

and we often write that: Mt > M.

The marking M’ can activate some other transition and then we get another
marking M”... The set of all markings reachable from the marking M is denoted by
R[M]. This set is so-called a state space of the net 3. It is the environment for
ictivities to be happened.

Let T=(P, T, F, K, M°, W) be a P/T net. Let MY, M2 ..., M be a sequence of
narkings and ¢/, 2, ..., " be a sequence of transitions of the net Z, such that:

60 Hoang Chi Thanh

M[¢E>M,i=1,2,..,n.

The sequence M°[¢! > M![# > M? ... M™![¢* > M" illustrates a sequential
process of the net and the word a =¢'t*.. t" €T’ is called activities sequence on
the net.

The set of all activities sequences on the net I is called the language generated
by the net £ and denoted by L(Z):

LE)={t'e.. " |IM, M2,... M, M e®M):
MO[¢! > M![¢ >M2... M™![¢" >M"}
But the language generated by a net is sequential. It shows us only sequential
performances of the P/T net’s processes.

So when several transitions of the net can be performed concurrently.

3.2. Sequence of maximal concurrent steps

Let U c T be a subset of transitions of the net £ and U # &.
Definition 3.2: The subset U is called a step on the net I iff there is a
marking M € ®[M°] satisfying the following inequalities:
1. Vpe'U Mp) 2 Y, Wi, o) and
tel
2. VpeU, M) < K@)- Y, W, p).
tel

In such a case, the transitions in the step U can be performed concurrently
and after their performance we get the following marking:

(M(p)-Y Wip,t)
b :eZL:1 & ,if pe'UN\U"
M(P)+ W(t,p) : o\ @
M'(p) = uZI:J ,if pe U'\"U
M(p)-Y, Wip,t)+ > Wit p) ,if pe'UnU’
teU téU .
M) , otherwise

We also denote that: M[U > M’ and the marking M is called U-activating.

Such as above, we can find sequences of steps on the net. As big are the steps
as high concurrency is.

Example 3.3: Consider a P/T nets presented by the labelled directed bipartite
graph in Figure 2.

“Shitf-left” algorithms transforming sequential processes...

P4

61

Pi
2 3 2
tI t4
“ 5 2 K | M°
Pz 3 P 3 3
9 pPa| 2 0
Ps 8 1
S t2 t3
P4 5 o
1 2
Ps 4 1
Ps
Fig 2. A PIT net
On this net we recognize the following sequential process:
M° [£,> M! [t > M? [t,> M3 [4, M+
D, 3 1 2 2 2
D2 0 2 0 0 0
D3 1 6 6 2 4
Pa 5 2 2 9 0
Ps 1 1 9 4 4

The following definition answers this question.

So the subset {¢,, t,} is a concurrent step on this P/T net.

Let M°[U, > M'[U, > M? ... M*![U, > M* be a sequence of steps on the net I.
The sequence illustrates a concurrent process on the net. What steps-are “biggest”?

The initial marking M° can activate the subset {t;, t;} and we have:
MO [{tb t4} > M1'= (1, 2: 6! 0’ 1)

called a sequence of maximal concurrent steps iff foreachi=1, 2, ..., k-1:
Vte U, M"is not (U;uft}) -activating.

Definition 3.4: The sequence of steps M°[U, > M'[U,>M?. .. MF!U, > Mk is

If transitions of each step can be performed concurrently, then the total time
for performance of the process decreases considerably. Therefore, we always expect

to find sequences of maximal concurrent steps and at that time, the performance of
processes becomes optimal. In order to do so, we propose second “shift-left”
algorithm in the next section.

02 Hoang Chi Thanh

4. Algorithm finding sequences of maximal concurrent steps

Let £=(P, T, F, K, M° W) be a P/T net. Each sequential process: MO[t! > M![¢t2
> M? . .. M¥![t* > M¥ of the net may be considered as a sequence of single steps:
MO[{t]} > M'[{2} > M2 .. M¥![{#}} > M* and as an input of our algorithm.

The algorithm repeatedly goes back on the sequence of steps and shifts a
transition from a step into the previous step if when adding the transition to this
previous step, the obtained step becomes activated by the corresponding marking.
When no transition can be shifted, the algorithm terminates.

Algorithm 4.1 (“Shift-left” algorithm 2):

Input: A sequential process M°[¢, > M'[t,> M? ... M*'[t,> Mk on a P/T net.
Output: A sequence of maximal concurrent steps on the net.

1. for i :=1tok do U;:={t};

2. for j:=1tok-1do

3. begin

4. i:=];

5. while i>=1do
begin

for every transition t € Uj,,,
if M is (U, u{t})-activating then

begin we replace:

(M (p)- UZ | Wip,t) Jif p e *(U, uith \ (U, uie)"
teUalt
M Y Wep A p e (U "\ A
Mi(p)= T teU.dft)
M) Y W+ Y Wip) if pe Uit o Ui’
teU, 6t téU;éft)
L M (p) , otherwise

and U, := Uit} , Uiy, = Uiy \{#} , i.e. we “shift-left” the transition ¢ from the
step U,,, into the previous step U;. After shifting, if U,,,=@ then we ignore both Ui,
and Mi*!;

end ;

end :
6. end ;
7. stop.

The algorithm goes back because we want not only making steps maximal
concurrent but also reducing the number of steps.

“Shitf-left” algorithms transforming sequential processes... 63

Example 4.2: We apply this algorithm to the P/T net drawn in Fig. 2 with tih.
input M°[¢; > M'[¢, > M?[t, > M*[¢, > M.
- After 1** going back: "

The marking M° is {¢,, ¢,}- activating, so we shift left ¢, and get the followimg
sequence:

M° [{E5ts} > M! [&3} > M? [{ta > M’
D; 3 2 2 2
P2 0 0 0 0
D3 1 6 2 4
Py 5 2 2 0
P; 1 2 4 4

- After 2™ going back:

The marking M' now is {t;¢,}-activating, so we shift left £, and obtain the
following sequence:

M | [ftpt> | M| [{tatd> M?
P, 3 2 2
P, 0 0 0
P, 1 6 4
P, 5 2 0
P; 1 2 4

The obtained sequence M° [{t,t,} > M'[{t5t,) > M? is indeed a sequence of
maximal concurrent steps of the net..

Theorem 4.3: When Algorithm 4.1 terminates, its output is the sequence of
maximal concurrent steps of the P/T net.

The complexity of this algorithm is O(| T|.|P|.£2%). So the complexity is square

in the number of steps. This algorithm is simple and easy to implement on
computers.

5. Conclusion

In the paper, we construct one more a very simple algorithm for finding the
normal form of a trace; propose the notation of concurrent step on a P/T net and
build up an efficient algorithm to transform sequential processes of a P/T net into
concurrent ones. These algorithms are not only useful for concurrency control on
systems but also suitable for calculating concurrent behaviours of a system with

64 Hoang Chi Thanh

" dynamical structures. The algorithms may be applied for processing transactions on
Jatabase, for finding the normal form of a semi-trace.

A'cknowledgement: This paper was written during my stay at De Montfort
University, Leicester, UK. I would like to thank Professor Hongji Yang, Dr. Dang
yan Hung and the IIST/UNU for my valuable time at Leicester.

References
1. J.I. Aalbersberg and G. Rozenberg, Theory of Traces, Theoretical Computer
Science 60(1988), pp. 1-82.

9. J.A. Bergstra and J.W. Klop, Algebra for communicating processes with
abstraction, Theoretical Computer Science 37, 1(1985), pp. 77-121.

R. Janicki, Trace semantics for communicating sequential processes, Tech.
Report R-85-12, Univ. of Aalborg, Denmark, 1985.

Cad

.. A. Mazurkiewicz, Concurrent program schemes and their interpretations,
DAIMI Report PB-78, Aarhus Univ., Denmark, 1977.

5. R. Milner, Communication and Concurrency, Prentice Hall, 1989.
6. W. Reisig, Petri Nets: An Introduction, Springer-Verlag, 1985.
A.W. Roscoe, The Theory and Practice of Concurrency, Prentice Hall, 1998.

;. H.C. Thanh, An algorithm for finding the normal form of traces and
synchronous traces, Journal of Computer Science and Cybernetics, Vol. 17, No.
1(2001), pp. 72-77.

y. H.C. Thanh, Control problem on Timed place/transition nets, VNUH Journal of
Science, Vol. XX, No. 4(2004;, pp. 48-55.

