ON PSEUDO-OPEN S-IMAGES AND PERFECT IMAGES OF FRÉCHET HEREDITARILY DETERMINED SPACES

Tran Van An

Faculty of Mathematics, Vinh University

Thai Doan Chuong

Faculty of Mathematics, Dong Thap Pedagogical Institute

ABSTRACT. In this paper we prove a mapping theorem on Fréchet spaces with a locally countable k-network and give a partial answer for the question posed by G. Gruenhage, E. Michael and Y. Tanaka.

1. Introduction

Let X be a topological space, and \mathcal{P} be a cover of X. We say that X is determined by \mathcal{P} , or \mathcal{P} determines X, if $U \subset X$ is open (closed) in X if and only if $U \cap P$ is relatively open (respectively, closed) in P for every $P \in \mathcal{P}$.

 \mathcal{P} is a *k*-network, if whenever $K \subset U$ with K compact and U open in X, then $K \subset \cup \mathcal{F} \subset U$ for a certain finite collection $\mathcal{F} \subset \mathcal{P}$. \mathcal{P} is a network, if $x \in U$ with U open in X, then $x \in P \subset U$ for some $P \in \mathcal{P}$.

A collection \mathcal{P} of subsets of X is *star-countable* (respectively, *point-countable*), if every $P \in \mathcal{P}$ (respectively, single point) meets only countable many members of \mathcal{P} . A collection \mathcal{P} of subsets of X is *locally countable*, if every $x \in X$ there is a neighborhood V of x such that V meets only countable many members of \mathcal{P} .

Note that every star-countable collection or every locally countable collection is point-countable.

A space X is a sequential space, if every $A \subset X$ is closed in X if and only if no sequence in A converges to a point not in A.

A space X is *Fréchet*, if for every $A \subset X$ and $x \in \overline{A}$ there is a sequence $\{x_n\} \subset A$ such that $x_n \to x$.

A space X is a k-space, if every $A \subset X$ is closed in X if and only if $A \cap K$ is relatively closed in K for every compact $K \subset X$.

A space X is a σ -space if it has a σ -locally finite network.

A space X has countable tightness (abbrev. $t(X) \leq \omega$), if, whenever $x \in \overline{A}$ in X, then $x \in \overline{C}$ for some countable $C \subset A$.

Typeset by A_{MS} -TEX

A space X is a countably bi-k-space if, whenever (A_n) is a decreasing sequence of subsets of X with a common cluster point x, then there exists a decreasing sequence (B_n) of subsets of X such that $x \in \overline{(A_n \cap B_n)}$ for all $n \in \mathbb{N}$, the set $K = \bigcap_{n \in \mathbb{N}} B_n$ is compact, and each open U containing K contains some B_n .

Note that every Fréchet space is a sequential space and every sequential Hausdorff space is a k-space, every sequential space has countable tightness, locally compact spaces and first countable spaces are countably bi-k-space, and every countably bi-k-space is a k-space.

We say that a map $f: X \to Y$ is *perfect* if f is a closed map and $f^{-1}(y)$ is a compact subspace of X for every $y \in Y$. A map $f: X \to Y$ is *pseudo-open* if, for each $y \in Y$, $y \in \operatorname{Int} f(U)$ whenever U is an open subset of X containing $f^{-1}(y)$. A map $f: X \to Y$ is *Lindelöf* if every $f^{-1}(y)$ is Lindelöf. A map $f: X \to Y$ is a s-map if $f^{-1}(y)$ is separable for each $y \in Y$. A map $f: X \to Y$ is *compact-covering* if every compact $K \subset Y$ is an image of a compact subset $C \subset X$. A map $f: X \to Y$ is *compact-covering* if every compact $K \subset Y$ is an image of a compact subset $C \subset X$. A map $f: X \to Y$ is *sequence-covering* if every convergent sequence (including its limit) $S \subset Y$ is an image of a compact subset $C \subset X$.

Note that every closed map or every open map is pseudo-open, every pseudo-open map is quotient, and if $f : X \to Y$ is a quotient map from X onto a Fréchet space Y, then f is pseudo-open. Every compact-covering map is sequence-covering, and every sequence-covering map onto a Hausdorff sequential space is quotient.

In [3] G. Gruenhage, E. Michael and Y. Tanaka raised the following question

Question. Is a Fréchet space having a point-countable cover \mathcal{P} such that each open $U \subset X$ is determined by $\{P \in \mathcal{P} : P \subset U\}$ preserved by pseudo-open *s*-maps or perfect maps?

In [5] S. Lin and C. Liu gave a partial answer for the above question.

In this paper we prove a mapping theorem on Fréchet spaces with a locally countable k-network and give an another partial answer for the above question.

We assume that spaces are regular T_1 , and all maps are continuous and onto.

2. Preliminaries

For a cover \mathcal{P} of X, we consider the following conditions (A) - (E), which are labelled (1.1) - (1.6), respectively in [3].

(A) X has a point-countable cover \mathcal{P} such that every open set $U \subset X$ determined by $\{P \in \mathcal{P} : P \subset U\}$.

(B) X has a point-countable cover \mathcal{P} such that if $x \in U$ with U open in X, then $x \in (\cup \mathcal{F})^o \subset \cup \mathcal{F} \subset U$ for some finite subfamily \mathcal{F} of \mathcal{P} .

(B)_p X has a point-countable cover \mathcal{P} such that if $x \in X \setminus \{p\}$ with p is a point in X, then $x \in (\cup \mathcal{F})^o \subset \cup \mathcal{F} \subset X \setminus \{p\}$ for some finite subfamily \mathcal{F} of \mathcal{P} .

(C) X has a point-countable cover \mathcal{P} such that every open set $U \subset X$ determined by collection $\{P \in \mathcal{P} : P \subset U\}^*$, where $\mathcal{U}^* = \{\cup \mathcal{F} : \mathcal{F} \text{ is a finite subfamily of } \mathcal{U}\}.$

 $(C)_p$ X has a point-countable cover \mathcal{P} such that for every point $p \in X$, the set $X \setminus \{p\}$ determined by collection $\{P \in \mathcal{P} : P \subset (X \setminus \{p\})\}^*$.

(D) X has a point-countable k-network.

 $(D)_p$ X has a point-countable k-network \mathcal{P} such that if K is compact and $K \subset X \setminus \{p\}$, then $K \subset \cup \mathcal{F} \subset X \setminus \{p\}$ for some finite subfamily \mathcal{F} of \mathcal{P} .

(E) X has a point-countable closed k-network.

Now we recall some results which will be used in the sequel

Lemma 2.1 ([1]). The following properties of a space X are equivalent

(i) X has a point-countable base;

- (ii) X is a k-space satisfying (B);
- (iii) $t(X) \leq \omega$ and X satisfies (B).

Lemma 2.2 ([3]). For a space X, we have the following diagram

$$(B) \implies (B)_{p}$$

$$\downarrow \uparrow \qquad \downarrow \uparrow$$

$$(A) \Leftarrow (1) \qquad (C) \implies (C)_{p}$$

$$\Rightarrow \qquad \downarrow \uparrow \qquad \downarrow \uparrow$$

$$(B)_{p}$$

$$(2)$$

$$(2)$$

$$(C)_{p}$$

$$(C)_{p}$$

$$(3)$$

$$(D) \implies (D)_{p}.$$

(1) A cover \mathcal{P} of X is closed,

(2) X is a countably bi-k-space, (3) X is a k-space

Lemma 2.3 ([9]). Every k-space with a star-countable k-network is a paracompact σ -space.

Lemma 2.4 ([2]). Every separable paracompact space is a Lindelöf space.

Lemma 2.5 ([7]). If $f : X \to Y$ is a pseudo-open map, and X is a Fréchet space, then so is Y.

Lemma 2.6 ([3]). For a space X the following statements are equivalent

- (a) X is a sequence-covering quotient s-image of a metric space;
- (b) X is a quotient s-image of a metric space;
- (c) X is a k-space satisfying (A).

Remark 2.7. We write

- (d) X is a k-space satisfying (E);
- (e) X is a compact-covering quotient s-image of a metric space.

Then we have $(d) \Rightarrow [(a) \Leftrightarrow (b) \Leftrightarrow (c)]$, $(e) \Rightarrow [(a) \Leftrightarrow (b) \Leftrightarrow (c)]$, and $(d) \Rightarrow (e)$ hold.

Lemma 2.8 ([3]). Suppose that X is a space satisfying (D) and $f : X \to Y$ is a map. Then either (i) or (ii) implies that Y is a space satisfying (D).

- (i) f is a quotient s-map and X is a Fréchet space;
- (ii) f is a perfect map.

Lemma 2.9 ([4]). Let X be a Fréchet space. Then the following statements are equivalent (i) X has a star-countable closed k-network;

- (ii) X has a locally countable k-network;
- (iii) X has a point-countable separable closed k-network;
- (iv) X is a locally separable space satisfying (D);
- (v) X has a σ -locally finite closed Lindelöf k-network.

3. The main Results

Lemma 3.1. Let X be a space having a locally countable k-network. Then for every $x \in X$ there is a Lindelöf neighborhood V of x.

Proof. Let \mathcal{P} be a locally countable k-network for X. For $x \in X$ there is an open neighbourhood V of x such that V meets only countable many elements of \mathcal{P} . Denote $\mathcal{P}_x = \{P \in \mathcal{P} : P \subset V\}$. Then \mathcal{P}_x is countable and $V = \bigcup\{P : P \in \mathcal{P}_x\}$. Let \mathcal{U} be an any open cover of V. For $y \in V$ there exists $U \in \mathcal{U}$ such that $y \in U$. Since \mathcal{P} is a locally countable k-network for X, there is $P \in \mathcal{P}$ satisfying $y \in P \subset U \cap V$. For $P \in \mathcal{P}_x$ put a $U_P \in \mathcal{U}$ such that $P \subset U_P$. Since \mathcal{P}_x is countable and $V = \bigcup \{P : P \in \mathcal{P}_x\}$, it implies that the family $\mathcal{U}_x = \{U_P \in \mathcal{U} : P \in \mathcal{P}_x\}$ is a countable cover of X. Hence, V is Lindelöf.

Lemma 3.2. Let X be a Fréchet space having a locally countable k-network. Then the following conditions are equivalent

(i) $f: X \to Y$ is a Lindelöf map;

(ii) $f: X \to Y$ is a s-map.

Proof. (i) \Rightarrow (ii). Suppose that $f: X \to Y$ is a Lindelöf map, and X is a Fréchet space having a locally countable k-network \mathcal{P} . For every $y \in Y$, put any $z \in f^{-1}(y)$, by Lemma 3.1 there is an open Lindelöf neighborhood V_z of z such that V_z meets only countably many elements of \mathcal{P} . The family $\{V_z: z \in f^{-1}(y)\}$ is an open cover of $f^{-1}(y)$. Because $f^{-1}(y)$ is Lindelöf, there exists a countable family $\{V_{z_k}: k \geq 1\}$ covering $f^{-1}(y)$ for every $y \in Y$. Putting $U = \bigcup_{k=1}^{\infty} V_{z_k}$ we have $f^{-1}(y) \subset U$, and $\mathcal{Q} = \{P \in \mathcal{P} : P \subset U\}$ is countable. Then it is easy to show that \mathcal{Q} is a countable-network in U. Because every space with a countable-network is hereditarily separable and $f^{-1}(y) \subset U$, it follows that $f^{-1}(y)$ separable. Thus f is a s-map.

(ii) \Rightarrow (i). Suppose that $f: X \to Y$ is a s-map, and X is a Fréchet space having a locally countable k-network. As well-known that every Fréchet space is a k-space. Then by Lemma 2.9 and Lemma 2.3, X is a paracompact σ -space. Since f is continuous, for every $y \in Y$, we have $f^{-1}(y)$ is closed, it implies that $f^{-1}(y)$ is a paracompact subspace of X. Because f is a s-map, by Lemma 2.4, it follows that $f^{-1}(y)$ is Lindelöf. Hence f is a Lindelöf map.

Lemma 3.3. Let $f : X \to Y$ be a pseudo-open Lindelöf map (or a pseudo-open s-map, or a perfect map), and X a Fréchet space having a locally countable k-network. Then Y is a locally separable space.

Proof. Let $f: X \to Y$ be a pseudo-open Lindelöf map, and X a Fréchet space having a locally countable k-network. By Lemma 2.9 it implies that X is a locally separable space. For every $y \in Y$, we take $z \in f^{-1}(y)$. Since X is a locally separable space, there exists an open neighborhood V_z of z such that V_z is separable. The family $\{V_z: z \in f^{-1}(y)\}$ is an open cover of $f^{-1}(y)$. Because $f^{-1}(y)$ is Lindelöf, there exists a countable family $\{V_{z_k}: k \geq 1\}$ covering $f^{-1}(y)$. Denoting $U = \bigcup_{k=1}^{\infty} V_{z_k}$ we have $f^{-1}(y) \subset U$ and U is separable. Because f is continuous, it implies that f(U) is a separable subset of Y. Since f is pseudo-open, we get $y \in \text{Int} f(U)$. Thus, f(U) is a separable neighborhood of y, and Y is a locally separable space. Because every perfect map is pseudo-open Lindelöf and it follows from Lemma 3.2 that the theorem is true for a pseudo-open *s*-map, or a perfect map.

Theorem 3.4. For a k-space X we have

- (i) $(E) \Rightarrow (A)$ holds;
- (ii) The converse implication is true if X is a locally separable Fréchet space.

Proof. Firstly we shall prove the first assertion. Suppose X is a k-space, and \mathcal{P} is a point-countable closed k-network for X satisfying (E), then we shall prove that \mathcal{P} satisfies (A). Let U be open in X, and let $A \subset U$ such that $A \cap P$ is closed in P for every $P \in \mathcal{P}$ with $P \subset U$, and suppose that A is not closed in U. Then because U is open in X, U is a k-space, so we have $A \cap K_0$ is not closed in K_0 for some compact $K_0 \subset U$. Since \mathcal{P} is a k-network for X, there exists a finite $\mathcal{F} \subset \mathcal{P}$ such that $K_0 \subset \cup \mathcal{F} \subset U$. On the other hand, cover \mathcal{P} is closed. This implies that there exists a $P \in \mathcal{F}$ such that $A \cap P$ is not closed in P. This is a contradiction. Hence we have (A), and (E) \Rightarrow (A) holds.

We now prove the second assertion. Suppose X is a locally separable Fréchet space satisfying (A). Since X satisfies (A), it follows from Lemma 2.2 that X satisfies (D). By Lemma 2.9 it implies that X satisfies (E).

By Lemma 2.1, Lemma 2.2, Lemma 2.9 and Theorem 3.4, we obtain the following

Corollary 3.5. For a space X, we have the following diagram

(1) A cover \mathcal{P} of X is closed or X is a countably bi-k-space,

(2) X is a countably bi-k-space, (3) X is a k-space,

(4) X is a k-space, or $t(X) \leq \omega$, (5) X is a locally separable Fréchet space

By Remark 2.7, Lemma 2.9, and using the proof presented in (ii) of Theorem 3.4 we obtain the following

Corollary 3.6. Let X be a locally separable Fréchet space. Then the following statements are equivalent

- (a) X is a sequence-covering quotient s-image of a metric space;
- (b) X is a quotient s-image of a metric space;

- (c) X is a space satisfying (A);
- (d) X is a space satisfying (E);
- (e) X is a compact-covering quotient s-image of a metric space.
- (f) X has a star-countable closed k-network;
- (g) X has a locally countable k-network;
- (h) X has a point-countable separable closed k-network;
- (k) X is a space satisfying (D);
- (1) X has a σ -locally finite closed Lindelöf k-network.

We now have a mapping theorem for Fréchet spaces having a locally countable k-network

Theorem 3.7. Let $f: X \to Y$ be a pseudo-open Lindelöf map (or a pseudo-open s-map, or a perfect map). If X is a Fréchet space having a locally countable k-network, then so does Y.

Proof. Because every perfect map is a pseudo-open Lindelöf map, and X is a Fréchet space having a locally countable k-network, by Lemma 3.2 we suppose that $f: X \to Y$ is a pseudo-open s-map. Since X is Fréchet, and f is pseudo-open, it follows from Lemma 2.5 that Y is a Fréchet space. Because every locally countable k-network is a point-countable k-network, and every pseudo-open map is quotient, by Lemma 2.8(i) we get that Y has a point-countable k-network.

From Lemma 3.3 it follows that Y is a locally separable space. Hence, Y is a locally separable Fréchet space satisfying (D). By Corollary 3.6, it implies that Y has a locally countable k-network.

From the above theorem we obtain the following corollary

Corollary 3.8. Let $f: X \to Y$ be a pseudo-open Lindelöf map (or a pseudo-open s-map, or a perfect map). If X is a Fréchet space satisfying one of the following, then so doing Y, respectively.

- (a) X has a locally countable k-network;
- (b) X has a star-countable closed k-network;
- (c) X is a locally separable space satisfying (D);
- (d) X has a σ -locally finite closed Lindelöf k-network;
- (e) X has a point-countable separable closed k-network.

Definition 3.9. A space X is called a Fréchet hereditarily determined space (abbrev. FHD-space), if X is Fréchet and satisfies (A).

Remark. (i) Every metric space is a *FHD*-space.

(ii) Every subspace of a *FHD*-space is a *FHD*-space.

(iii) If X is a FHD-space, and if $f: X \to Y$ is an open s-map or a pseudo-open map with countable fibers, then so is Y.

Now we give a partial answer for the question in $\S1$.

Theorem 3.10. If X is a locally separable FHD-space, and $f: X \to Y$ is a pseudo-open Lindelöf map (or a pseudo-open s-map, or a perfect map), then Y is a locally separable FHD-space.

Proof. Because every perfect map is pseudo-open Lindelöf s-map, we can suppose that X is a FHD-space and $f: X \to Y$ is a pseudo-open s-map or a pseudo-open Lindelöf map. Since X is Fréchet, and $f: X \to Y$ is a pseudo-open map, it follows from Lemma 2.5 that Y is Fréchet. On the other hand, since X is a Fréchet space satisfying (A), by Corollary 3.6 it implies that X is a locally separable space satisfying (D). It follows from Corollary 3.8 that Y is a locally separable space satisfying (D). Using Corollary 3.6 again we obtain Y is a space satisfying (A). Hence, Y is a locally separable FDH-space.

References

- D. Burke and E. Michael, On certain point-countable covers, *Pacific J. Math.*, 64(1)(1976), 79 - 92.
- 2. R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warszawa 1977.
- G. Gruenhage, E. Michael, and Y. Tanaka, Spaces determined by point-countable covers, *Pacific J. Math.*, 113(2)(1984), 303-332.
- Y. Ikeda and Y. Tanaka, Spaces having star-countable k-networks, Topology Proceeding, 18(1993), 107-132.
- 5. S. Lin and C. Liu, On spaces with point-countable cs-networks, Topology and its Appl., 74 (1996), 51-60.
- 6. S. Lin and Y. Tanaka, Point-countable k-networks, closed maps, and related results, *Topology and its Appl.*, **50**(1994), 79-86.
- 7. E. Michael, A quintuple quotient quest, *General Topology and Appl.*, 2 (1972), 91-138.
- 8. E. Michael and E. Nagami, Compact-covering images of metric spaces, *Proc. Amer. Math. Soc.*, **37**(1973), 260-266.
- 9. M. Sakai, On spaces with a star-countable k-network, Houston J. Math., 23 (1)(1997), 45-56.
- Y. Tanaka, Point-countable covers and k-networks, Topology Proceeding, 12(1987), 327-349.
- 11. Y. Tanaka, Theory of k-networks II, Q and A in General Topology, 19(2001), 27-46.