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ABsTRACT. In this paper we prove a mapping theorem on Fréchet spaces with a locally
countable k-network and give a partial answer for the question posed by G. Gruenhage,
E. Michael and Y. Tanaka.

1. Introduction

Let X be a topological space, and P be a cover of X. We say that X is determined
by P, or P determines X, if U C X is open (closed) in X if and only if U N P is relatively
open (respectively, closed) in P for every P € P. .

P is a k-network, if whenever K C U with K compact and U open in X, then
K C UF C U for a certain finite collection F C P. P is a network, if x € U with U open
in X, then z € P C U for some PVE P.

A collection P of subsets of X is star-countable (respectively, point-countable), if
every P € P (respectively, single point) meets only countable many members of P. A
collection P of subsets of X is locally countable, if every z € X there is a neighborhood V
of z such that V meets only countable many members of P.

Note that every star-countable collection or every locally countable collection is

point-countable.
A space X is a sequential space, if every A C X is closed in X if and only if no

sequence in A converges to a point not in A.
A space X is Fréchet, if for every A C X and x € A there is a sequence {zn} C A

such that z,, = .
A space X is a k-space, if every A C X is closed in X if and only if AN K is

relatively closed in K for every compact K C X.
A space X is a g-space if it has a ¢-locally finite network.

A space X has countable tightness (af)brev. t(X) < w), if, whenever z € 4 in X,
then z € C for some countable C C A. -
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A space X is a countably bi-k-space if, whenever (A,) is a decreasing sequence of
subsets of X with a common cluster point z, then there exists a decreasing sequence (B)

of subsets of X such that z € (A, N By,) for all n € N, the set K = ﬂ B, is compact,
neN

and each open U containing K contains some B,,.

Note that every Fréchet space is a sequential space and every sequential Hausdorft
space is a k-space, every sequential space has countable tightness, locally compact spaces
and first countable spaces are countably bi-k-space, and every countably bi-k-space is a
k-space. _

We say that a map f : X — Y is perfect if f is a closed map and f~!(y) is a compact
subspace of X for every y € Y. A map f : X — Y is pseudo-open if, for each y € Y,
y € Int f(U) whenever U is an open subset of X containing f~!(y). Amap f: X — Y is
Lindelifif every f~1(y) is Lindelof. A map f : X — Y is a s-map if f~!(y) is separable for
eachy €Y. Amap f: X — Y is compact-covering if every compact K C Y is an image
of a compact subset C C X. A map f: X — Y is compact-covering if every compact
K C Y is an image of a compact subset C C X. A map f: X — Y is sequence-covering
if every convergent sequence (including its limit) S C Y is an image of a compact subset
C CX.

Note that every closed map or every open map is pseudo-open, every pseudo-open
map is quotient, and if f : X — Y is a quotient map from X onto a Fréchet space
Y, then f is pseudo-open. Every compact-covering map is sequence-covering, and every

sequence-covering map onto a Hausdorft sequential space is quotient.
In [3] G. Gruenhage, E. Michael and Y. Tanaka raised the following question

Question. Is a Fréchet space having a point-countable cover P such that each open
U C X is determined by {P € P : P C U} preserved by pseudo-open s-maps or perfect

maps?
In [5] S. Lin and C. Liu gave a partial answer for the above question.

In this paper we prove a mapping theorem on Fréchet spaces with a locally countable
k-network and give an another partial answer for the above question.

We assume that :spaces are regular T3, and all maps are continuous and onto.

2. Preliminaries

For a cover P of X, we consider the following conditions (A) - (E), which are labelled
(1.1) - (1.6), respectively in [3].
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(A) X has a point-countable cover P such that every open set U C X determined
by {PeP:PCU}.

(B) X has a point-countable cover P such that if £ € U with U open in X, then
x € (UF)° C UF C U for some finite subfamily F of P.

(B), X has a point-countable cover P such that ifzeX \ {p} with p is a point
in X, then z € (UF)° CUF C X \ {p} for some finite subfamily F of P.

(C) X has a point-countable cover P such that every open set U C X determined
by collection {P € P : P C U}*, where U* = {UF : F is a finite subfamily of U}.

(C)p X has a point-countable cover P such that for every point p € X, the set
X\ {p} determined by collection {P € P: P C (X \ {p})}*.

(D) X has a point-countable k-network.

(D), X has a point-countable k-network P such that if K is compact and K C
X\ {p}, then K C UF C X \ {p} for some finite subfamily F of P.

(E) X has a point-countable closed k-network.

Now we recall some results which will be used in the sequel

Lemma 2.1 ([1{). The following properties of a space X are equivalent
(i) X has a point-countable base;
(ii) X is a k-space satisfying (B);
(iii) t(X) € w and X satisfies (B).

Lemma 2.2 ([3]). For a space X, we have the following diagram

(B) = (B)p

I i

@) @)

(A)=1) (C) = (O)
- 7 N}

) ®)

(D) = (D).

(1) A cover P of X is closed,
(2) X is a countably bi-k-space, (3) X is a k-space

Lemma 2.3 ([9(). Every k-space with a star-countable k-network is a paracompact o-

space.

Lemma 2.4 ([2]). Every separable paracompact space is a Lindelof space.
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Lemma 2.5 ([7]). Iff: X — Y is a pseudo-open map, and X is a Fréchet space, then

soisY.

Lemma 2.6 ([3]). For a space X the following statements are equivalent
(a) X is a sequence-covering quotient s-image of a metric space;
(b) X is a quotient s-image of a metric space;
- (¢) X is a k-space satisfying (A).

Remark 2.7. We write

(d) X is a k-space satisfying (E);

(e) X is a compact-covering quotient s-image of a metric space.

Then we have (d) = [(a) & (b) & ()], (e) = [(a) & (b) & (c)], and (d) = (e)
hold.

Lemma 2.8 ([3]). Suppose that X is a space satisfying (D) and f : X — Y is a map.
Then either (i) or (ii) implies that Y is a space satisfying (D).

(i) f is a quotient s-map and X is a Fréchet space;

(it) f is a perfect map.

Lemma 2.9 ([4]). Let X be a Fréchet space. Then the following statements are equivalent
(i) X has a star-countable closed k-network;
(i1) X has a locally countable k-network;
(i1i) X has a point-countable separable closed k-network;
(tv) X is a locally separable space satisfying (D);
(v) X has a o-locally finite closed Lindelof k-network.

3. The main Results

Lemma 3.1. Let X be a space having a locally countable k-network. Then for every
x € X there is a Lindelof neighborhood V' of .

Proof. Let P be a locally countable k-network for X. For z € X there is an open
neighbourhood V of = such that V meets only countable many elements of P. Denote
P.={P € P:PcCV} Then P, is countable and V = U{P : P € P;}. Let U be an
any open cover of V. For y € V there exists U € U such that y € U. Since P is a locally
countable k-network for X, there is P € P satisfyingy € PC UNYV. For P € P, put a
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Up € U such that P C Up. Since P, is countable and V = U{P : P € P,}, it implies that
the family U, = {Up € U : P € P, } is a countable cover of X. Hence, V is Lindelof.

Lemma 3.2. Let X be a Fréchet space having a locally countable k-network. Then the
following conditions are equivalent

(i) f:X —Y is a Lindelof map;

(ii) f: X =Y isa s-map.

Proof. (i) = (ii). Suppose that f: X — Y is a Lindelof map, and X is a Fréchet
space having a locally countable k-network P. For every y € Y, put any z € f~1(y),
by Lemma 3.1 there is an open Lindelof neighborhood V, of z such that V, meets only
countably many elements of P. The family {V, : z € f~!(y)} is an open cover of f~1(y).
Because f~1(y) is Lindelof, there exists a countable family {V;, : k > 1} covering f~'(y)
for every y € Y. Putting U = U V., we have f~1(y) cU,and @ ={P € P: P Cc U}

k=1
is countable. Then it is easy to show that Q is a countable-network in U. Because every

space with a countable-network is hereditarily separable and f~!(y) C U, it follows that
f~Y(y) separable. Thus f is a s-map.

(ii) = (i). Suppose that f: X — Y is a s-map, and X is a Fréchet space having a
locally countable k-network. As well-known that every Fréchet space is a k-space. Then
by Lemma 2.9 and Lemma 2.3, X is a paracompact o-space. Since f is continuous, for
every y € Y, we have f~1(y) is closed, it implies that f~!(y) is a paracompact subspace
of X. Because f is a s-map, by Lemma 2.4, it follows that f~!(y) is Lindeléf. Hence f is

a Lindelof map.

Lemma 3.3. Let f: X — Y be a pseudo-open Lindel6f map (or a pseudo-open s-map,
or a perfect map), and X a Fréchet space having a locally countable k-network. Then Y

is a locally separable space.

Proof. Let f : X — Y be a pseudo-open Lindel6f map, and X a Fréchet space having
a locally countable k-network. By Lemma 2.9 it implies that X is a locally separable space.
For every y € Y, we take z € f~!(y). Since X is a locally separable space, there exists
an open neighborhood V, of z such that V; is separable. The family {V; : z € f~1(y)}
is an open cover of f~!(y). Because f~!(y) is Lindelof, there exists a countable family
{V.. : k > 1} covering f~!(y). Denoting U = U V., we have f~(y) C U and U is

k=1
separable. Because f is continuous, it implies that f(U) is a separable subset of Y. Since

f is pseudo-open, we get y € Intf(U). Thus, f(U) is a separable neighborhood of y, and

Y is a locally separable space.
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Because every perfect map is pseudo-open Lindelof and it follows from Lemma 3.2

that the theorem is true for a pseudo-open s-map, or a perfect map.

Theorem 3.4. For a k-space X we have
(i) (E) = (A) holds;

(ii) The converse implication is true if X is a locally separable Fréchet space.

Proof. Firstly we shall prove the first assertion. Suppose X is a k-space, and P is a
point-countable closed k-network for X satisfying (E), then we shall prove that P satisfies
(A). Let U be open in X, and let A C U such that AN P is closed in P for every P € P
with P C U, and suppose that A is not closed in U. Then because U is open in X, U is
a k-space, so we have AN Kj is not closed in K for some compact Ko C U. Since P is a
k-network for X, there exists a finite F C P such that Ko C UF C U. On the other hand,
cover P is closed. This implies that there exists a P € F such that AN P is not closed in
P. This is a contradiction. Hence we have (A), and (E) = (A) holds.

We now prove the second assertion. Suppose X is a locally separable Fréchet space
satisfying (A). Since X satisfies (A), it follows from Lemma 2.2 that X satisfies (D). By
Lemma 2.9 it implies that X satisfies (E).

By Lemma 2.1, Lemma 2.2, Lemma 2.9 and Theorem 3.4, we obtain the following

Corollary 3.5. For a space X, we have the following diagram

(4) =4 B) = (B

N 1
2) (2)
(B)«(5) (A «=(1) (O = (C)

=

3)=
ooou
(A) <= 6) (D) = (D)
(1) A cover P of X is closed or X is a countably bi-k-space,
(2) X is a countably bi-k-space, (3) X is a k-space,
(4) X is a k-space, or t(X) < w, (5) X is a locally separable Fréchet space

By Remark 2.7, Lemma 2.9, and using the proof presented in (ii) of Theorem 3.4

we obtain the following

Corollary 3.6. Let X be a locally separable Fréchet space. Then the following statements
are equivalent
(a) X is a sequence-covering quotient s-image of a metric space;

(b) X is a quotient s-image of a metric space;
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(c) X is a space satisfying (A);

(d) X is a space satisfying (E);

(e) X is a compact-covering quotient s-image of a metric space.
(f) X has a star-countable closed k-network;

(g) X has a locally countable k-network;

(h) X has a point-countable separable closed k-network;

(k) X is a space satisfying (D);

(1) X has a o-locally finite closed Lindel6f k-network.

We now have a mapping theorem for Fréchet spaces having a locally countable

k-network

Theorem 3.7. Let f : X = Y be a pseudo-open Lindelof map (or a pseudo-open s-map,
or a perfect map). If X is a Fréchet space having a locally countable k-network, then so
does Y .

Proof. Because every perfect map is a pseudo-open Lindel6f map, and X is a Fréchet
space having a locally countable k-network, by Lemma 3.2 we suppose that f : X = Y isa
pseudo-open s-map. Since X is Fréchet, and f is pseudo-open, it follows from Lemma 2.5
that Y is a Fréchet space. Because every locally countable k-network is a point-countable
k-network, and every pseudo-open map is quotient, by Lemma 2.8(i) we get that Y has a
point-countable k-network.

From Lemma 3.3 it follows that Y is a locally separable space. Hence, Y is a locally
separable Fréchet space satisfying (D). By Corollary 3.6, it implies that Y has a locally
countable k-network.

From the above theorem we obtain the following corollary

Corollary 3.8. Let f : X = Y be a pseudo-open Lindelof map (or a pseudo-open s-map,
or a perfect map). If X is a Fréchet space satisfying one of the following, then so doing
Y, respectively.

(a) X has a locally countable k-network;

(b) X has a star-countable closed k-network;

(¢c) X is a locally separable space satisfying (D);

(d) X has a g-locally finite closed Lindel6f k-network;

(e) X has a point-countable separable closed k-network.

Definition 3.9. A space X is called a Fréchet hereditarily determined space (abbrev.
FHD-space), if X is Fréchet and satisfies (A).
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Remark. (i) Every metric space is a F'H D-space.

(ii) Every subspace of a F'H D-space is a F'H D-space.

(i) If X is a F'HD-space, and if f : X — Y is an open s-map or a pseudo-open
map with countable fibers, then so is Y.

Now we give a partial answer for the question in §1.

Theorem 3.10. If X is a locally separable FH D-space, and f : X — Y is a pseudo-open
Lindelof map (or a pseudo-open s-map , or a perfect map), then' Y is a locally separable
F HD-space.

Proof. Because every perfect map is pseudo-open Lindel6f s-map, we can suppose
that X is a F'HD-space and f : X — Y is a pseudo-open s-map or a pseudo-open Lindelof
map. Since X is Fréchet, and f : X — Y is a pseudo-open map, it follows from Lemma
2.5 that Y is Fréchet. On the other hand, since X is a Fréchet space satisfying (A), by
Corollary 3.6 it implies that X is a locally separable space satisfying (D). It follows from
Corollary 3.8 that Y is a locally separable space satisfying (D). Using Corollary 3.6 again
we obtain Y is a space satisfying (A). Hence, Y is a locally separable F'DH-space.
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