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A b s t r a c t . The present paper is a continuation of Nguyen Viet Hai’s ones [3], [4], [6],
[7]. Specifically, the paper is concerned with the subclass of connected and simply 
connected MDs-groups such that their MDs-algebras Q have the derived ideal Gl :=
[Q,G] R3. We show that the ^-representations of these MDs-algebras result from
the quantization of the Poisson bracket on the coalgebra in canonical coordinates.

Introduction

In 1980, studying the Kirillov’s method of orbits (see [9]), Do Ngoc Diep introduced 

the class of Lie groups type MD: n-dimensional Lie group G is called an MDn-group iff 

its co-adjoint orbits have zero or maximal dimension (see [2], [6]). The corresponding 

Lie algebra of MDn-group are called MDn-algebra. W ith n = 4, all MD4-algebras were 

listed by Dao Van Tra in 1984 (see [15]). The description of the geometry of K-orbits of all 

indecomposable MD4-groups, the topological classification of foliations formed by K-orbits 

of maximal dimension given by Le Anh Vu in 1990 (see [11], [12]). In 2000, the author 

introduced deformation quantization on K-orbits of groups A f f ( R ) ,  A f f ( C )  (see [3], [4]). 

In 2001, the author also introduced quantum CO-adjoint orbits of MD4-groups and obtained 

all unitary irreducible representations of MD4-groups (see [6], [7]). Until now, no complete 

classification of MDn-algebras with n  > 5 is known. Recently, Le Anh Vu continued study 

MDs-algebras Q in cases Ợ1 := [G,G] =  k =  1,2,3, (see [13]) and their MDs-groups. 

In the present paper we will solve problem on deformation quantization for MDs-groups 

and MDõ-algebras Q in case Ợ1 = R3. The paper is organized as follows. In Section 1, we 

recall the co-adjoint representation, K-orbits of a Lie group, Darboux coordinates and the 

notion of the quantization of K-orbits. In Section 2 we list indecomposable MDõ-algebras 

Q which Ợ1 = R 3. Finally, Section 3 is devoted to the computation quantum  operators of 

MD5-groups corresponding to these MDs-algebras.
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1 . B asic d e fin itio n s  a n d  P re lim in a ry  re su lts
-V

1.1. T h e  CO-adjoint R e p re se n ta tio n  and  K -o rb its  o f  a L ie  G roup . Let G

be a Lie group. We denote by Q the Lie algebra of G and by Q* the dual space of Q. To 
each element g E G we associate an automorphism

A g  : G  — > G , X I— > ^ ( z ) !  =  g x g ~ l .

Ag induces the tangent map Agt :Q  — > ợ , x  I— » Ag9(X)\  =  ^-[g. exp(iX )#-1 ] |t=0 . 

D efin ition  1 .1 . The action A d  : G — » Aut(G), g I— > Ad(g)  I =  Ag , is called 

the adjoint representation of G in Q. The action K  : G  — > Aut(Q*), g I— * Kg such 

that (K g F , X ) :=  (F, A d(g~ 1)X) ,  (g 6 G , F  € ợ * , x  e  Q), is called the co-adjoint 
representation of G in Q*.

D efin itio n  1.2. Each orbit of the co-adjoint representation of G is called a co-adjoint
orbit or a /^-orbit of G.

Thus, for every £ € Ợ*, the K-orbit containing £ is defined as follows

0< = K(G)Z := {K(g)t \  g e G , t e G * } .
0

Note that the dimension of a if-orb it of G is always even.

1.2. D a rb o u x  co o rd in a tes  on  the orb it We let UJ£ denote the Kirillov

form on the orbit It defines a symplectic structure and acts on the vectors a and 

b tangent to the orbit as W((a,b) = (£,[«,/?]), where a =  ad*£ and b =  ad*pị. The 

restriction of Poisson brackets to the orbit coincides with the Poisson bracket generated 

by the symplectic form U}£. According to the well-known Darboux theorem, there exist 

local canonical coordinates (Darboux coordinates) on the orbit such tha t the form

becomes U)£ — dpk A dqk \ k  =  dim Oệ =  —------- s, where s is the degeneration

degree of the orbit (see [7]). Let be F  € C>Z,F — fie '.  It can be easily seen that 

the trasition to canoniccal Darboux coordinates (/,)  (Pk,qh) amounts to constructing

analytic functions f i  — f i (q,p,€)  of variables (p,q) satisfying the conditions

fi( 0,0,0 = 6;

df i (q,p,  0  _  d f j ( q ,p , t )  a / i (g ,p ,f l  , ,
dpk dqk dpk dqk

We choose the the canonical Darboux coordinates with impulse p ’s-coordinates. From 

this we can deduce th a t the Kirillov form locally are canonical and every element



A  € Q =  LieG can be considered as a function A  on Of,  linear on p ’s-coordinates, i.e. 

There exists on each coadjoint orbit a local canonical system of Darboux coordinates, in 

which the Hamiltonian function A = di(qip i^)ei , A  £ G, o,re linear on p ’s impulsion 
coordinates and in theses coordinates,

a i { q , p , 0  =  c * i { q ) p k  +  * » ( ? ,  0 ;  r a n k a *  (? )  =  ị  d im  . (1 )

1.3. T h e  opera tors £i(q,dq). We now view the transition functions / i ( ợ ,p ;0  

to local canonical coordinates as symbols of operators that are defined as follows: the 

variables pk are replaced with derivatives, Pk Pk =  -ih-Tpz, and the coordinates of a 
covector f i  become the linear operators

/»(<7,p;0 -> f t  (2)

(with h being a positive real param eter). We require that the operators f i  satisfy the 

commutation relations =  c \ j f i .  If the transition to the canonical coordinates is

linear, i.e., a normal polarization exists for orbits of a given type, it is obvious that

f i  =  - i h a ki { q ) - ~  +  X i { q , 0  (3 )

W ith Hamiltonian function A = CLi(q,pi ^)ei , A  £ Ợ, the operators ài as shown by evidence. 
We introduce the operators

ek(q,dq) = ^âk(q,PỉO-  (4)

It is obvious tha t =  C ịjík

D efin itio n  1.3. Let f i  =  / i ( ợ ,p ;0  be a transition to canonical coordinates on the 

orbit of the Lie algebra Q. The operators £i(ợ, dq) is called the representation (the 
^-representation) of the Lie algebra Q.

2 . A S u b c lass  o f  In d e c o m p o sa b le  M D 5-A lg eb ras

From now on, G will denote a connected simply-connected solvable Lie group of 

dimension 5. The Lie algebra of G is denoted by Ợ. We always choose a fixed basis 

(X , Y, z ,  T, S) in Q. Then Lie algebra Q isomorphic to K5 as a real vector space. The 

notation Q* will mean the dual space of Q. Clearly Q* can be identified with R 5 by fixing 

in it the basis ( X \  Y \  z \  T \  S ')  dual to the basis (X ,y f Z ,T ,5 ) . Note tha t for any 

MDn - algebra Qo (0 <  n  < 5), the direct sum Q — Qo © R5_n of Qo and the commutative 

Lie algebra R5_n is a MDs-algebra. It is called a decomposable MD5 ** algebra, the study of
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which can be directly reduced to the case of MDn - algebras with (0 <  n  < 5). Therefore, 

we will restrict on the case of indecomposable MD5 - algebras.

2.1 . L is t  o f  considered  indecom posable MD$  - A lgebras. We consider of 

solvable Lie algebras of dimension 5 which are listed in [13]: Ể?5,3,i(Ai,Aa)> £ 5,3,2(A), £ 5,3,3(A) 

£5,3,4, £5,3,5(A), É?5,3,6(A)> C/5,3,7, ổ5,3,8(\,<p) • Each algebra Q from this set has

Ql =  [G, Q\ =  R.z  © R.T © R.s =  R3; [X, Y] =  Z] adx  =  0.

The operator a d x  € End(Ợ1) =  M at(3,E) is given as follows:

/ Ai 0 0\
• (?5,3,i(Ai,A2) : ad y  =  I 0 A2 0 ;Ai,A2 € R \  {0,1}, Ai ^  A2

V o  0 1 J

/ 1  0 0 \
•  £ 5,3,2(A) : ady =  0 1 0 ;

\ 0  0 A /

/A  0 0 \
• £ 5,3,3(A) : ady = Ị 0 1 0 Ị , À e R \  {0, 1};

V o  0  i j

/ 1  0 0 \
•  ổ5,3,4 : 0-dy — Ị 0 1 0 I ;

\ o  0 1 J

/A  0 0 \
•  ổ5,3,5(A) : a d y  =  I 0  1 1 1 ;

Vo 0 l )

( 1  1 0 \
• £ 5,3,6(A) : ady  =  I 0 1 0 ; A € R \  {0,1};

\ 0  0 A /

( \  1 0>\
•  ổ5,3,7 : a d y  =  ị 0  1 l ị ;

v °  0 1 /

(cos V? -  s in (p 0 \
siny? cosip 0 ; A €  R \  {0}, ip e  (0 ,7r).

0 0 A /

2.2 . R e m a r k s .  We obtain a set of connected and simply-connected solvable Lie

groups corresponding to the set of Lie algebras listed above. For convenience, each such Lie

group is also denoted by the same indices as its Lie algebra. For example, G 5 3 6(A) is the 

connected and simply-connected Lie group corresponding to <?5 3 6(A)- We will describe



26 N g u yen  V ie t  H a i

quantum  operators of seven exponential MDs-groups (except for the Ơ5 3 8(A^)) in the 

next section.

3. Q u a n tu m  o p e ra to r s  o f th e  c o n s id e re d  Lie a lg e b ra s

Throughout this section, G will denote one of the groups: G5 3 !(*! A2), Ơ 5 3 2(A), 

(^5,3,4,Ơ5i3t5(A),Ơ5)3i6(A),Gr5i3)7 and Q is its Lie algebra, Q =< X , Y ,  Z , T , S  > = 

R5. We identify its dual vector space Q* with R5 with the help of the dual basis X * , Y*,  z*,  

T* , s* and with the local coordinates as (a , /3, 7 , s, e). Thus, the general form of an element 

of Q is u  =  a X  + bY  +  cZ  + d T  +  f S ,  a, b , c , d , f e R  and the general form of an element 

of Ợ* is £ =  aX*  +  PY* +  7 z*  + ỎT* + eS*. Because the group G is exponential (see [2]), 

for ^ € Ợ ', we have

O ị =  { K ( e x p ( u ỵ \ u  e  Q).

Using Maple 9.5, we will compute quatum operators ỈAÌQtdq) for each considered group

(except for the G5}3,8(A,¥>))-

3.1 . G roup G =  G5>3i 1(A,,A2)

A i  0  0

adY = I 0 A2 0 I ;[X i y] =  Z ;Ai IA2 € R - { 0 , l > J X1 ^ X 2,adx = 0
0 0 1

Let u  — a X  +  bY + cZ + dT  +  / s  be an arbitrary of Q, where a, b, c, d, f  € R. Upon

Maple 9.5, we get:

adu =

e x p (adự)

/ 0 0 0 0
0 0 0 0 0

- 6 a --  cAi bXi 0 0 >
0 d \ 2 0 6À 2 0

V 0 - f 0 0 b )

/ 1 0 0 0 0  \

0 1 0 0 0
(ebXị _ 1)6 (a —cAi )(e6M- 1) pbX, 0 0b\i 6Ai c

0
bX2-l)X

b\2
2 0 e 6A2 0

\ 0 - f
(eb- l )

b 0 0 e6/
( 1

0
Eoo 

n= 1
0
0

6n An — 1
( a  -  c A j )  £ ~ =1 n!_ in—1\n1 v-^OO o A i

~dLm= 1 ----n!
r v^°° _]_
J 2Lm = l n!

0
0

M l

0
0

0
0
0

,b\2

0 \ 
0 
0

0
0  eb )



Thus, £u = ( x . y . z . t ^ s )  is given as follows:
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(e6Al — 1)0 ™ b n\ 1n- 1X = a  — 7 -—  -------— — a
00

- 7 Ệ  
»1 - 1' òAi n! ’

„ =  p  +  7 <— c A . ) ( e » - - l )  ! -  1)A, _  ( e * - ! )
0A1 ÒÀ2 6

n—1 * n=l * n=1
^àX i .

n —1

n!

z =  7 e 

Í =  (5e6A2;

s =  ee6.

From this,

• If7  =  ố =  e = Othen ƠỆ = o 1 = { (a ,/3,0,0,0)}, (K-orbit of dimension zero).

• The set 7  =  s  =  0, e Ỷ  0 is a union of 2-dimensional co-adjoint orbits, which are
half-planes O ị  = o 2 =  { ( a ,  y,  0 , 0 ,  s ) | e s  >  0 } ,

• The set 7  =  0, Ỗ ^  0, e = 0 is a union of 2-dimensional co-adjoint orbits, which are
half-planes Of. = o 3 =  { (a ,t/,0 ,í,0 ) |ổ í >  0}.

• If 7  =  0, ỗ Ỷ  0, e Ỷ  0 then we obtain a 2-dimensional cylinder

O ị =  Ơ 4 =  {(cc, y, 0, t, s)|eA2f =  ỗsXĩ,es  >  0, 5 t >  0}.

• The set 7  Ỷ  0, Ỏ = e =  0 is a union of 2-dimensional co-adjoint orbits, which are

half-planes O f = o 5 = { ( x , y , z ,  0,0)|Aix =  AiQ +  7  -  2, 7 * > 0}.

• If 7  /  0, Ổ =  0, e ̂  0 then we obtain a 2-dimensional cylinder

0^  = 0  = { { x , y , z , 0 , s ) \ \ lx  = \ 1a + 7 - z , \ i X  = \ 1a  + ' y ( l - ( - ) x'), es >  0}.

If7  7 ^  0, <5 7 ^  0 ,  e =  Othen = o 7 is a 2-dimensional cylinder.

=  { ( x , y , z , t ,  0)|Aix =  Xia  + 'y -  z , \ i X  =  AiQ +  7 ( l  -  ( ị ) ^ ) , ỏ t  > 0}.

Last, if 7  Ỷ  0, õ Ỷ  0. e Ỷ  0 then we also obtain a 2-dimensional cylinder

=  Ơ 8 =  { (x ,y ,2,i ,s ) |A ix  =  Ai« +  7 -  2,Aix =  Aia  +  7(1  -  (~)Al)> 

t = ỏ ( - ) x\ e s >  0}

Thus, = Ỡ 1 U Ỡ 2 U Ỡ 3 U Ỡ 4 U Ỡ 5 U Ỡ 6 U Ỡ 7 U ơ 8.



3.1.1. Hamiltonian functions in canonical coordinates of the orbits o £. Each ele­

ment A  G Q can be considered as the restriction of the corresponding linear functional A  

onto co-adjoint orbits, considered as a subset of Q*, Ã(£) =  (£,>!)• It is well-known that 

this function is just the Hamiltonnian function, associated with the Hamiltonian vector 

field defined by the formula

(C a/)(x) :=  ^ / ( x e x p ( L 4)) |t=0,V / € C ~ ( 0 Ể).

It is well-known the relation £a U)  = { Ã , f } y f  e  C°°{Oị). Denote by Ip the 

symplectomorphism from R 2 onto Ơ£, (p,q) ip(jP,Q) € Oị, we have

P ro p o s itio n  3.1. 1. Hamiltonian function A in canonical coordinates (p,q) of  the orbit

Oị is o f the form

Ã o xp(p, q) =  bp +  (c — a)7 Ẽ9*1 4- dỗeqXĩ +  Ị(.eq 4- a (a  +  7 ) •

2. /n the canonical coordinates (p,q) of  the orbit ƠỊ, the Kirillov form is coincided

with the standard form dp A dq.

Proof.
1. We adapt the diffeomorphism rp (for 2-dimensional co-adjoint orbits, only):

(p, q) € R2 !-> Ip(p, q) = (a + 7  -  7 eqAl, p, 7 egAl, ổe9*2, eẹ9) € •

Element £ <E Ợ* is of the form £ =  a i *  +  (3Y* +  7 -Z* + ỐT* + eS*, hence the value of the

function f A = À o n  the element A  =  a X  + bY + cZ + dT  is

= <£, >1) =  (qX* +  /?y* +  7Z* + ÍT*, aX + fey 4 cZ + dT) = a a  + 0b + 7c + <5d.

It follows that Ẩ o ĩp(p, q) = bp + (c — a)'yeqXl +  dốeqẰ2 +  /ee 9 +  a (a  + 7 ).

2. By a direct com putation, we conclude that in the canonical coordinates the

Kirillov form is the standard symplectic form u  = dp A dq.

The proposition is therefore proved. Ũ

3.1.2. Representations o f the group G5i3tn x l ,x2)- 

T h e o re m  3.2. W ith A = a X  +  bY  +  cZ  +  dT  +  / s  G £/5,3,i(Ai,A2)> then

?A{q,dq) = bdq +  U ( c  -  a b e 9''1 +  dôeqX2 +  f eeq +  a (a  +  7 )]

Proof. Applying directly (3), (4) we have As Ă = bp+ (c—a)^/eqXì +d5eqX2 +  f eeq+a(a+y)  

then
A  =  —ihbdq +  (c — a)^eqXl + dỗeqX2 + 4- a(a +  7 )

28 N guyen V ie t  H ai



and from this.
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^AÌQydq) — - [ —ihbdq +  (c — a) i e qXl +  d5eqX2 +  f eeq +  a(a + 7 )]

=  bdq +  -[{c -  ab e 9*1 +  dSe^*  +  /e e 9 +  a (a  +  7 )]

The theorem is therefore proved. □

As G5,3,i(Ai,A2) is connected and simply connected Lie group, we obtain.

C o ro lla ry  3.3. The irreducible unitary representations T  o f the group G b 3 1(A A ) de­

fined by T(expv4) :=  e x p (^ ) ;  A  e  C?5,3,i(Ai A2)- More detail,

T ( expA)  =  exp (bdq + ị { { c -  a)7 e9A‘ +  dSeqXỉ +  /e e 9 +  a(a  + 7 )]^ .

W hat we did here gives us more simplisity computations in this case for use the 
star-product (see [3], [4], [5], [6]).

Other groups are proved similarly, we get the following results (3.2-3.7).

/ 1 0 ° \
3.2. G roup G =  G5i3,2(A)- adY = 0 1 0 ; [X, Y] =  Z; A e  R -  {0,1},

\0 0 AJ
adx  =  0. W ith u = a X  + bY + cZ  + dT  + f  s € Q,a,b,c,d,  f  G R, upon Maple 9.5, we
get:

/ 1
0

exp(adu) =

0 0 0 0 \
1 0 0 0

+ 1 ( a - c ) ^ ^  e6 0 0

0 0 eb 0

V 0 - f ^ bb\~ l) 0 0 ebX)

P ro p o s itio n  3.4. 1 . Hamiltonian function Ă in canonical coordinates (p, q) o f the orbit
O ị is o f the form

A  o t/;(p, q) =  bp +  ( feeqX +  7 (c -  a) +  dS)eq + a (a  +  7 ) .

2. In the cãĩiomcâl coordinates (p, q) o f the orbit Ỡ£, the Kirillov form is coincided 
with the standard form dp A dq.

T h e o re m  3.5. A — a X  +  bY  +  cZ  +  dT  -f f S  6 G5 3 2(A)> we have

£a (q) dq) =  bdq +  — [(f eeqX + 7 (c — a) 4- dố)e9 +  a (a  +  7 ]
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/A  0 0 \
3.3. G roup G  = G5 33( \y  ady  =  ị 0 1 0 I ; [Xy Y] = Z\  A e R \  {1};

’ \ °  0 V
adx  = 0. W ith u = a X  + bY + cZ + dT  + f S  €  £ 5,3,3(A). upon Maple 9.5, we get:

/ 1

exp(ad[/) =

V

0 0 0 0 \

1 0 0 0
e 6A 0 0

- d i ự 0 eb 0

- f  4 s - 0 0 e » )

P ro p o s itio n  3.6. 1. Hamiltonian function Ă  in canonical coordinates (p,q) of  the orbit 

ỠỊ is of the form

Ả o q) — bp + ( ?  +  cr))eqX +  (d5 +  f e)eq + a a  -

2. In the canonical coordinates (p,g) o f  the orbit ƠỊ, the Kirillov form Uị is coincided

with the standard form dp ỉ\dq .

T h e o re m  3.7. For each A  =  a X  +  bY + cZ  + dT  4- f S  G ổ 5,3,3(A)> we have

eA(g, dg) =  60, +  ị  [ (2  +  CT))eqX +  (d<5 + /e )e 9 +  a a  -

7

1 0  0
5 .4 . G roup  G =  G5 3,4- arfy =  I 0 1 0 I ; [ X , r ]  =  z - a d x  =  0. W ith

0 0 1
u = a X  + bY + cZ + dT  + f S e  £5,3,4, a ,  ft, c, d, / e R ,  upon Maple 9.5, we get

exp (ad[/) =

( 1 
0

- e h - 
0

V 0

0 0 0 0 \
0 0 0
eb 0 0
0 eb 0
0 0 e»)

P ro p o s itio n  3.8. 1. Hamiltonian function Ã in canonical coordinates (p,q) of  the orbit

0 (_ is o f  the form

Ả o Ipfp, q) — bp +  (—a«  +  C7  +  d<5 +  f e)eq +  o.(a +  7 )

2. In the canonical coordinates (p,q) of  the orbit O ị, the Kirillov form is coincided 

with the standard form dp A dq.



T h e o re m  3.9. For each A  = a X  +  bY  +  cZ +  d T  +  f S  E ợ 5 3 4, we have
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?A(q,dq) = bdq +  -  [ ( - a a  + ơy + dS + fe)eq +  a(a  +  7 )]

A 0 0
3.5 . G roup G  =  G5)3>5(A). ady = I 0 1 1 I ; [X, y] =  Z; A € R \{1 }adx  = 0.

\ 0  0  1 J
W ith u — a X  +  bY + cZ  +  d T  + f S  € £5,3,5(A)) upon Maple 9.5, we get:

exp(adu) =

(  1
0

>
b \

0

0

0
1

( q - c A ) ( e 0» - l )
6A

( b f - d ) e b+d
b

0 0 0 >
0 0 0

ebx 0 0

0 e6 beb

0 0 eb }

P ro p o s it io n  3.10. J. Hamiltonian function Ã in canonical coordinates (p, q) o f the orbit
Of is o f the form

Ẩ o ý ( p t q)  = bp + (—ỮỴ +  CT))eqX +  ( /ổ <7 +  dS +  /e )e 9 +  a a  +  a Ị )
^ A

2. In the canonical coordinates (p ,q ) 0/  the orbit ƠỊ, the Kirillov form UỈỊ is coincided 
with the standard form dp A dq.

Theorem 3.11. For each A — a X  + bY  + cZ + cLT + / 5  £ Ọ5 3 5(A)) we have 

?A((],dq) =  6ỡạ +  — Ị(—< +  ơy)eqX +  (f Sq  + dS + fe )e q +  aa  +  a^)J

/ 1  1 D \
3.Ổ. G roup  G =  Gfe|3,B(A). ady = 0 1 0 ; [X, Y] =  Z; A e  R \{ 0 ,1} ad

' \ 0  0 A /
0 W ith C/ =  aX  + fty 4- cZ  -f d T  +  / 5  G Ợ5 3 6 (A),  upon Maple 9.5 we get:

exp(adu)  =

1 
0

1 - e 6

0 
1

(q-c)(eb- l )
~  ---------  e

— 1 +  (1 — b)eb .(a+ ^ ( l-e 6>fc(°-c)eb heb eb

0 0 0 0

0 0 0 \
0 0 0
b 0 0

0
0 0 ebx /



P ro p o s itio n  3.12. 1. Hamiltonian function Ả in canonical coordinates (p,q) o f the orbit 

o z  is o f the form

À  o \ị)(p, q) = bp + (fe e qX +  ( c q  + cqỏ + dỏ + a — a^)eq +  a(a  +  7  — S))

2. In the canonical coordinates (p,ợ) o f the orbit Ơ£, the Kirillov form c i s  coincided 

with the standard form dp A dq.

T h e o re m  3.13. For each A  = a X  + bY  4- cZ  + dT  +  f S  £ ổ 5,3,6(À)> we have

Í a (q, dq) =  bdq +  £  [fe e qX + (ca +  cqS + dS + a — a~i)eq +  a (a  +  7  -  Ổ)] *
IL
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1 1 0 \
3.7 . G roup G =  Ơ5.3,7 . ady  =  I 0 1 1

0 0 1/
Ư = a X  + bY + cZ  + d T  + f S  € Gb 3,7, upon Maple 9.5, we get

; [X, Y] = Z\ adx  =  0. W ith

exp(adu) =

1 0 0 0 0 \
0 1 0 0 0

—b a — c 1 0  0
_ eb +  5 +  1 (2c-a)(e0-__lj+^a--cl g6 _  J g6 0

\ e b _ beb _ 1 (2c-a)(ê - l l  be6 beb eb J

P ro p o s itio n  3.14. 1. Hamiltonian function Ă in canonical coordinates (p , q) o f the orbit 

ƠỆ is o f the form Ả o Ip(p, q) =

=  bp + (ce +  dt -  a5)qeq + (ae — aỏ +  cỏ +  dS 4- /e )e 9 +  a(ỏ — 7 )q +  a (a  +  Ỗ — e) +  c(7  -  Ổ)

2. In the canonical coordinates (p ,q ) o f the orbit ƠỊ, the Kirillov form uiị is coincided 

with the standard form dp A dq.

T h e o re m  3.15. For each A — a X  + bY  +  cZ + dT  +  / 5  € ổ5,3,7) we have

^AÌQ,dq) — bdq +  ^[(ce +  dt -  aô)qeq + (ae -  aỗ + cỗ +  dỗ +  fe )e q +  a(ỗ -  7 )q 

+ a ( a  +  Ổ -  e )  +  c ( 7  -  Ổ)Ị

All of them are exponential MD5-groups. In the next paper, we will describe f- 

representasions of group Ơ5 3 8- This is group not exponential.
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