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ABSTRACT. An anharmonic correlated Debye model has been derived for vibrational
amplitudes in the X-ray Absorption Fine Structure (XAFS). The model includes
anharmonic effects based on Morse potential parameters. Analytical expression for
Debye-Waller factor or second cumulant for different atomic shells has been
derived. Numerical results for Cu approach those obtained by the anharmonic
Einstein model. Both they contain zero-point contribution at low temperatures and
linearly depend on the temperature at high temperatures as the classical limit
values. They reflect the experimental results.

1. Introduction

The Debye-Waller (DW) factor e " gaccounts for the effects of the thermal
vibration of atom in the theory of XAFS. The dominant term W(p)=2p’c? depends

on the mean square relativde displacement (MSRD) [1-4], where p is photoelectron
wave number. Anharmonic contribution included in the potential yields additional
terms in the DW factors which if ignored can lead to non-negligible errors in
structural parameters [4-11] extracted from XAFS spectra. The formalism for
including anharmonic effects in XAFS is often based on cumulant expansion
approach [4, 5]. Many efforts have been made [4-17] to include these anharmonic
contributions, among them the anharmonic correlated Einstein model [16] avoids
complicated calculations yet provides reasonable agreement with experiment.

This work is the next step of [15] to derive an anharmonic correlated Debye
model for vibrational amplitudes in XAFS using quantum statistical theory. The
model includes anharmonic effects based on the Morse potential parameters.
Analytical expressions for DW factor or second cumulant for different atomic shells
have been derived. Numerical results for Cu are compared to those obtained by the
anharmonic Einstein model. Both they contain zero-point energy contribution at low
temperatures and linearly depend on the temperature at high temperatures as the
classical limit values, thus reflecting their experimental result behaviors [3, 6, 10].

2. Formalism

2.1. Anharmonic Einstein model for monatomic chain:

In this case we use the Morse potential expanded to the 3™ order about its
equilibrium

V(x)= D(e'2‘”‘ —2e‘“‘) ~ D(—l A +) (1)
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where x 1s scaled relative deviation defined by x = (I - a)/a, [ is instantaneous bond
length between nth and n+1 th atoms and a is the equilibrium bond length between
these two atoms. The Morse potential parameter o describes the width of the
potential and D measures the dissociation energy.

Taking into account up to the 3™ order we obtain the potential
V(x)=-D + Da*x* - Da®x® 2)
Using the definition y=x-aorx=y + a with a = (x) Eq. (2) 1s resulted as

V(x) = -D + Da* (y2 + 2ay+a2)—Da3 (y3 + 3ay? +3a2y+aa)
= (Da2 -3aDa? )y2 - Dozay3 +2aDa? (1 - %aa)y + (—D + Da’a® - Da’a® ) . (3)
In the anharmonic Einstein model the interaction potential is given by
1
V) =5ksy" ~ky’ +V(a). (4)

Comparing Eq. (3) to Eq. (4) we obtain the spring constant kg, cubic parameter &,
ks =2(Da* -3aDa’ )~ 2Da” = Mwj; ky =Da’®, (5)

Einstein frequency @y and temperature 65

k 2Da? ho h [2Da?
wE:\}ﬁsz\/ M 95=k5=k— M (6)
B B

where M is mass of vibrating atom.

Atomic vibration is quantized as phonon and anharmonicity is the result
of phonon- phonon interaction that is why we describe y by anihilation @ and

creation @' operators

ar  m h hw
y=05(a* +a), oo=\/2Mw =\/4Da2 . 0

Using the calculation procedure as in [16] we obtain DW factor or second
cumulant

1+2 hao ho
o’ =0f—=; oj=—E=—TCE_ (8)
1-z 2k 4D«
where z = e %'T ig temperature variable.
2.2. Anharmonic correlated Debye model for monatomic chain:
In this case the Morse potential Eq. (2) has the form
V(x) = Da*x* - Da’x® =V, + V,, (9)

where the harmonic contribution
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V, = Da’x* = Da®y (u,,, -u,)", (10)
n

and the anharmonic one

V. =-Da’y (u,, --un)3 , (11)

are described in terms of the displacement u, of nth atom. These displacements are

related to phonon displacement operators A, as shown by [18, 19]

T b (12)
" N2NM 5 Jo(k)

where A, satisfies the following relation

and M is mass of composite atoms, w(k)is the phonon spectrum of crystal momenta
k, and N 1s the number of unit cells in the chain.

Based on the calculation procedure presented in [20, 21] we obtained the
dispersion relation w(k) as

2
(k) = 2 /21;; Si“(%d]'; |kd| < 7 (14)

The substitution of Eq. (12) into Eq. (10) yields

pikd(n+1) _ yikdn pikd(n+1) _ ikdn *
Ay A,

V, = Da?y "
0= HE L m@( Ttk Jolk)

2
_ 5;1‘; zl:w(lk) (eikd(n+1) _ eikdn )(e-ikd(m-l) _e-ikdn )AkAlrjl (15)
n,k

2 _ ikd _ _-ikd 2 a
_ Da hN'ZZ e e AA, = Da hzl coskd
2NM 4 (k) M T olk)

AA, .

Now we calculate DW factor for the nearest neighbor correlation denoted by index 1

o? = (Af)o = ((u,Ml -u, )2> (16)

0

Applying the above results to Eq. (16) we obtain

2 h Z ei(k+k')dn ( kdl —1)( i'd _I)A A
DT\ ey T

h ei(k+k’)an

" 2NM kz,} Jotk) k) (e = 1)(e™ ~1)(ArA),

0 17

where [19]
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(AsAy )y = (AL(0)A,.(0)) = -Gp,.(0), A, (2) = eo Ay e Ho, (18)

Gf_k.(r) = (Ak (T)Ak'(O))O = =0 _» {(nk + 1)e_hlr'w(“ + (nk)ehlrlm(k)} » (19)
1

("k) ~ groRAT _ 1 (20)

and kg is Boltzmann constant.
Subsituting Egs. (19, 20) into Eq. (18) we obtain

(AeAy), = G4 i {(nk +1)+(n, )}

ha(k)

1 1 1+t 21
=Gy p ha(k) +1+ o (k) =~ T ha(k)
et _1 etT _1 1-e*T
so that the DW factor is given by
hao(k) ha(k)
ikd ~ikd mem
2 h Z(e —1)(e ‘1)1+e"’T _h Zl—coskd1+e ksT
- 2NM 5 holk) — NM w(k Asll)
v Jok).o(-k) Lo T x  ok) L T
osin? [ 24 k) ray (22)
LI 1+e %7 h ZSi“(E) 1+e "7
NM'¥ _[2Da?®| . (kd). 22 NJoMDa® % 2 b
2 Sin(— l_e kBT 1 -e kBT
M 2
which is described in terms of w(k) as
_ha(k)
2 1 chok)l1+e *T
TN 4D’ “ha(k) (23)
l-e ®T

For the limit of large N the summation over %k can be replaced by the
corresponding intergral

x _ha(k) x _ha(k)
d kpT d kgT
0'2 :% -“Sln(_kizgjhe—_fﬁi—dk:%.jz.;(akz) 1+e_hw(k) dk . (24)
nN2MDa* o 1—e T 0 l—e Wl

This expression for DW factor approaches Eq. (8) obtained by the anharmonic
Einstein model if all atoms vibrate by the same frequency , i., e., @(k) = g = const .

It is usually to consider the high temperature (HT) and low temperature (LT)
limit using our derived Debye temperature

ho 2hd 2D
B = ,/ : 25
Pk Ry \M 25
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_hm(k)

In the HT limit (T>>0y) since e "o =112k

kT

(26)

we obtain from
. ha(k) &
dghw(k)2_ kT 4 dk,T n _ [2Da* . (kd
ol == I B I sin[
0

azDa® | kT \ M 2

7 ;3 4Da® haw(k)
kyT

the HT limit equation

. dhgT |7/ o R\, ks o 2
onr = k —_— = =7
2rDa® | o ma2MD 2)lo 2Da na~N2MD 28)
— kB (T—gD—)z kB T
2Da? /4 2Da®

which is linearly proportional to the temperature T.

In the LT limit (T ~0) it is approximated e **”*” ~ 0 so that DW factor is
given by

%3 ;
j"‘"(k) dk = [ |2De sm(kd)dk _ k% . (29)
5 4Da? s 4nDa’ M 2 27 Da’®

which contains zero-point enery contribution.

The derived model can be generalized to calculate DW factors including
correlation with other atomic shells p =2, 3, 4, 5,...

(Af, )0 = <(un+p -u, )2 )0 : (30)

Applying expression for u, to Eq. (17) we obtain
ei(h+k')dn

h : .
o +(05),~{ o B s e 1) 1)

0
h ei(k+k Yan

= ipkd _ ipk'd _ A
2NM %:- Jo(k).o(k'") (e l)(e 1)<Ak k )0 (31)
-hm(k)
h 1-cospkd 1+e "7
B Z ’ ha(k)
NM T o(k) _ha(k)
1-g W

which is replaced by the corresponding intergral for the limit of large N

hm(k)
91
2 /.2 cospkd 1+e
o —<Ap>0 - P . i O (32)

kgT
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3. Numerical results and discussion

Now we apply the expressions derived in previous section to numerical
calculation for Cu. Morse potential parameters have been taken from [22, 23].
Figure 1 shows that the second cumulant or DW factor of Cu calculated by present
anharmonic correlated Debye model and by anharmonic Einstein model contain
zero-point energy contribution at low temperatures and linearly depends on the
temperature at high temperature as the claasical limit values. They reflect
fundamental theoretical [4, 24] and experimental [3, 6, 10] result.
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Figure 1: Comparison of DW factors for Cu calculated by anharmonic
correlated Debye, Einstein models and by classical method.

Figure 2 illustrates the
temperature dependence of DW factor
of Cu calculated by present
anharmonic correlated Debye model for
different atomic shells. It is shown that
the DW factor including correlation
with the atoms located far from the
absorbing atom increases as the shell
number n=p increases. But in this

case the term containing cos(pkd)

becomes a fastly oscillating function of
k so that its contribution to correlation
effect discreases. It is also clear that

cr;‘: will be divergent when p— © so

that it is reduced to the one for
vibration without correlation, that is
why we often take the correlation only
with neighboring atoms in a ‘small
cluster as in the anharmonic correlated
Einstein model [16].
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Figure 2: Temperature dependence of

DW factors af,(T) of Cu calculated by

present anharmonic correlated Debye

model for different atomic shells
n=p=12734.
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4. Conclusions

In this work an anharmonic correlated Debye model has been developed
including d ispersion consideration. Analytical expression for the DW factor has
been derived which reflects behaviors of fundamental theoretical and experimental
results of this quantity.

Numerical results for Cu approach those obtained by the anharmonic Einstein
model containing zero-point energy contribution at low temperature, and at high
temperatures both they linearly depend on the temperature as the classical limit results.

Anharmonic correlated Debye model is more complicated than the Einstein
one due to dispersion consideration, but it has the advantage for research when
atoms in the substance vibrate by different frequencies.
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