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Abstract. An anharmonic correlated Debye model has been derived for vibrational 
amplitudes in the X-ray Absorption Fine Structure (XAFS). The model includes 
anharmonic effects based on Morse potential parameters. Analytical expression for 
Debye-Waller factor or second cumulant for different atomic shells has been 
derived. Numerical results for Cu approach those obtained by the anharmonic 
Einstein model. Both they contain zero-point contribution at low temperatures and 
linearly depend on the temperature at high temperatures as the classical limit 
values. They reflect the experimental results.

1. In trod u ction

The Debye-W aller (DW) factor e~W(<p) accounts for the  effects of the  therm al 
v ibration of atom  in the theory  of XAFS. The dom inant term  W(p) = l p 2ơ 2 depends 
on the m ean square  rela tivde  displacem ent (MSRD) [1-4], where p  is photoelectron 
wave num ber. A nharm onic contribution included in the potential yields additional 
term s in the DW factors which if ignored can lead to non-negligible erro rs in 
stru c tu ra l p a ra m e te rs  [4-11] extracted  from XAFS spectra. The form alism  for 
including anharm onic  effects in XAFS is often based on cum ulant expansion 
approach [4, 5]. M any efforts have been m ade [4-17] to include these anharm onic 
contributions, am ong them  the  anharm onic correlated E inste in  model [16] avoids 
complicated calculations yet provides reasonable agreem ent with experim ent.

T his work is the  nex t step  of [15] to derive an anharm onic correlated Debye 
model for v ib rationa l am plitudes in XAFS using quantum  sta tis tica l theory. The 
model includes anharm onic  effects based on the Morse potential param eters . 
Analytical expressions for DW factor or second cum ulant for different atomic shells 
have been derived. N um erical resu lts for Cu are compared to those obtained by the 
anharm onic E inste in  model. Both they contain zero-point energy contribution a t low 
tem pera tu res and linearly  depend on the tem perature  a t high tem peratures as the 
classical lim it values, thus reflecting their experim ental resu lt behaviors [3, 6, 10].

2. Formalism

2.1. A n h a r m o n ic  E in s te in  m ode l fo r  m o n a to m ic  cha in :

In th is  case we use the  M orse po ten tial expanded to the 3rd order about its 
equilibrium

V (x) = D (e -2ax -  2e-ax) « Z) ( - 1 + a  V  -  a 3* 3 + . . . ) ,  (1)
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where X  is scaled relative deviation defined by X = (I - a )  I a ,  I is instantaneous bond 
length between /1th and th atoms and a is the equilibrium bond length between 
these two atom s. The M orse potential p aram eter a  describes the  w idth of the 
potential and D m easures the  dissociation energy.

Taking into account up to the 3rd order we obtain  the  po ten tial

V (x) = - D  + D a 2x 2 -  D a 3Xs . (2)

Using the definition y  = x -  a or x = y  + a w ith a = (X) Eq. (2) is resu lted  as 

V(x) = -D  + D a2 (y 2 +2ay + a2)j - D a 3ịy 3 + 3ay2 + 3 a 2y + a 3 j

= ỊD a 2 - 3 a D a 3 jy 2 -  D a 3y 3 + 2aDa2ị l -  —a a jy  + Ị-D  + D a 2a2 -  D a 3a3 j. (3)

In the  anharm onic E inste in  model the in te rac tion  po ten tia l is given by

v (y) = ^Asy2 - * 3y3 + v ,(a). (4)

Comparing Eq. (3) to Eq. (4) we obtain the spring constan t ks , cubic param eter k3 

ks = 2 (D a2 - 3 aD a3 j » 2D a 2 = M o)\\ = Z)a3, (5)

Einstein  frequency and tem pera tu re

(6)

where M is m ass of v ibrating  atom.

Atomic vibration is quantized as phonon and  anharm onic ity  is the resu lt 
of phonon- phonon in terac tion  th a t is why we describe y  by an ih ila tion  à and
creation â + operators

(7)

Using the  calculation procedure as in [16] we ob tain  DW factor or second 
cum ulant

2 2 1 +  2  2

ơ  ° * =  a (8)

w here 2 = e~°E'T is tem p era tu re  variable.

2.2. Anharm onic correlated Debye model for m onatom ic chain:

In th is case the M orse po ten tial Eq. (2) has the  form

V(x) = Dcc2x2 -  D a3x 3 =V0 +VC, (9)

w here the harm onic contribution
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V0 = D a*x> = D a> ỵ(un+l- u ny , ( 10)

and the anharm onic  one

( 11)

are described in te rm s of the  displacem ent un of n th  atom. These displacem ents are  
re la ted  to phonon d isp lacem ent operators Ak as shown by [18, 19]

ikdn

Ak , (12)U n = * I 6'2-NM k Jco{k)

w here Ak sa tisfies the  following relation

A k = A*k; [Aa ,A4. ] = 0 , (13)

and M  is m ass of com posite atom s, ũ)(k) is the phonon spectrum  of crystal m om enta
k, and N  is the num ber of u n it cells in the chain.

Based on the  calculation procedure presented in [20, 21] we obtained the  
dispersion re la tion  co(k) as

co (k)  =  2,
2 D à  

M
sin \k d \  <  n (14)

The su b s titu tio n  of Eq. (12) in to  Eq. (10) yields

V0 = D a 2Y - ? — Y  
„ 2N M  Ỷ

f  ikd(n+ 1) p ikdn  N
A

f ikd(n+1) p ikdn  N
e A

+

v \ l o ( k )  *  y [ VSw

D a 2h Y
2JV M  à

D a 2h

— (el
( b \ \

ikd(n+ 1) _  0 ikdn  j  Ịg-iA <i(7i+l) _  0 ~ikdn

co(k)
- e )A A * (15)

2 N M
N ^ 2- -. e-.. - e~ikd A kA k A  la

co (k) M co(k)
k^-k

Now we calculate DW factor for the nearest neighbor correlation denoted by index 1

f f i = ( ^ ) o  =((“■•' - “- O o

Applying the  above resu lts  to Eq. (16) we obtain 

w here [19]

(16)

( 17)
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(AkAk.)o = (A k(0)Ak.(0)) = -G°k r (0), Ah(t) = etH°Ake-tH\  

G°*.(r) = (Ak(r)Ak,(0))0 = - < w { K  + + (nt )e^ < * )Ị ,

(n*) = eh<o(k)lkBT _ J  ’

and is Boltzm ann constant.

S ubsitu ting  Eqs. (19, 20) into Eq. (18) we obtain

(AkAk')o = {(nA +1) + ("*)}

(18)

(19)

(20)

+ 1 + húỉ(k) 
e - 1 >

= -<? 1 + e
hgj(k)
kaT (21)

SO th a t the DW factor is given by

/ ihrt w \
(e - 1 )(e ~ 1) 1 + e k“T _ h v  1 -  coskd  1 + e *®T

hũỉ(k) 
knT

h— ỵ
2 N M Ỵ  J a tk )M -k )

2 sin2
h

y
N M Ỷ

kd
{ 2

l - e  B 
hứỉ(k)

N M Ỷ  co(k)knT 1 - e

„ Ỉ2D a2 ( k d \ ho){k)

H u
Sin

to 
1 l - e  k*T

l  + e *®r ft v  . ( k d )
- ^ = N ^ Ĩ 5 ^ Ỷ S m { 2 Ì  

1 -  e B

ho)(k)
l  + e *ar

(22)

hp)(k) 
1 - e  *B

which is described in term s of U)(k) as

« * - ị i

hta(k)
2 _ J_ y  hco(k) 1 + e *®r

~ N  k 4 D a 2 -ís íiì 
1 - e  *-r

(23)

For the  lim it of large N  the  sum m ation over k can be replaced by the 
corresponding in te rg ra l

_ ho>(k) n hcu(k)
hd ................. ..

(24)a 2 =

£ haỉ(k) X
dỊ . ( A c O l  + e *flT JL d  df

s in r ^ r —  ;  7ĨT dk = —. \  _ ,
0 I 2 J *• 0J 4 0 «1 _ “B1

hú)(k)
Xr~1 -  e "fli 1 -  e

This expression for DW factor approaches Eq. (8) obtained by the  anharm onic 
E instein model if all atom s vibrate by the same frequency , i., e., Ct)(k) = 0)E = const.

I t is usually  to consider the high tem pera tu re  (HT) and  low tem p era tu re  (LT) 
lim it using  our derived Debye tem pera tu re
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h(ú{k)

In the HT lim it ( T » 0 D) since e 

we obtain from

kBT .. hco(k)
kBT

(26)

Ơ

,  hcojk) 1
2 -  Ểl kgT  ^  _ dr dkBT

~ 1Ĩ 5 4Z)a2 fico(k) ~ J ịn D a 2 
kBT

kBT
2D a 2 . Í kd-------- sin

M
dife, (27)

the HT lim it equation

, dkBT
Ơ H T  -

2 n D a 2 

k

7 d + to
0  7 ĨC C \]2 M D

COS
kd
T

Vd= kB T _____2h —
0 2D a2 7rayj2MD (28)

'B
2Z)a

'B
2 D a

which is linearly  proportional to the tem pera tu re  T.

In the LT lim it ( r « 0 )  i t  is approxim ated e~hứ)(k)ỉkBT «  0 so th a t  DW factor is 

given by
/T *

_ 2  d  5f /j<y(/e) _  dr
°7T * — _ „ dk  =

* 4D a 0J
dh 2D a

4 xD a 2 V M
sin M

V 2 ,
dk

2nD a2
* 0 . (29)

which contains zero-point enery  contribution.
The derived model can be generalized to calcu late  DW factors including 

correlation w ith o ther atom ic shells p = 2, 3, 4, 5,...

(âỉ)o (30)

Applying expression for un to Eq. (17) we obtain
Mk+k̂ dn

\ 2 N M  f t .  Jco(k)M k')
i(k+k')an

2NM f t ,  Ja>(k)Mk') 

h

=[e ipkd - l ) ( e ipk'd - 1  )A*AẲ

l ) { A k A k ' ) o
ip k ' d

(31)

y
N M Ỷ

ho)(k)

1 -  COS p kd  1 + e *flT
Cứ ( k )

1 - e
hũ)(k)
koT

which is replaced by the  corresponding in te rg ra l for the  lim it of large N
n hoj(k)

2 / 2 \  _  hd dr L - C O S  p k d  1 + e ksT
ơp \  p / o ~  n M  J co(k) hcủ(k) d k . (32)

1 - e
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3. N um erica l r e su lts  and  d iscu ssio n

Now we apply  the  expressions derived in previous section to num erical 
calculation for Cu. M orse po ten tia l param eters have been  tak e n  from [22, 23]. 
Figure 1 shows th a t  the  second cum ulan t or DW factor of Cu ca lcu la ted  by present 
anharm onic co rre la ted  Debye model and by anharm onic  E in ste in  model contain 
zero-point energy  con tribu tion  a t  low tem pera tu res and  linearly  depends on the 
tem pera tu re  a t  high tem p era tu re  as the claasical lim it values. They reflect 
fundam ental theo re tica l [4, 24] and  experim ental [3, 6 , 10] resu lt.
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F ig u re  1 : C om parison of DW factors for Cu ca lcu la ted  by anharm onic 
co rre la ted  Debye, E inste in  models and  by c lassical m ethod.

Figure 2 i l lu s tra te s  the
tem pera tu re  dependence of DW factor 
of Cu calcu lated  by p resen t
anharm onic correlated  Debye model for 
different atom ic shells. I t is shown th a t 
the DW factor including correlation 
with the atom s located far from the 
absorbing atom  increases as the  shell 
num ber n = p  increases. But in th is
case the term containing COS( p k d )

becomes a fastly  oscillating function of 
k so th a t its contribu tion  to correlation 
effect discreases. I t  is also clear th a t 
ơ ị  will be divergent when p  -> 00 so

that it is reduced to the  one for
vibration w ithout correlation, th a t is 
why we often tak e  the  correlation only 
with neighboring atom s in a ‘sm all 
cluster as in the  anharm onic  correlated 
E instein model [16].
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Figure 2: T em p era tu re  dependence of 
DW factors ơ 2p(T)  of Cu calculated  by

presen t anharm on ic  co rre la ted  Debye 
model for d ifferen t atom ic shells 
rt = p  = l,2,3,4.
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4. C on clu sion s

In th is work an anharm onic correlated  Debye model has been developed 
including d ispersion consideration. A nalytical expression for the  DW factor has 
been derived which reflects behaviors of fundam en ta l theore tical and  experim ental 
resu lts  of th is quan tity .

Numerical results for Cu approach those obtained by the anharm onic Einstein 
model containing zero-point energy contribution a t low tem perature, and a t high 
tem peratures both they linearly depend on the tem perature as the classical lim it results.

A nharm onic correlated  Debye model is more com plicated th an  the  E instein  
one due to d ispersion  consideration, bu t i t  h as the  advan tage  for research  when 
atom s in the substance  v ib rate  by different frequencies.
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