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Abstract: The sư(3) generalized Nambu - Jona - Lasinio (NJL) model is considered 
by means of the Cornwall - Jackiw - Tomboulis (CJT) effective action. This method 
provides a very general framework for investigating many important non- pertubative 
effects: quark condensate and mesons, thermodynamical quantities at finite tempera­
ture. It is shown that the mixing of flavors of u, d and s quarks exists in this formalism. 
The gap equations, which are directly obtained from the effective potential involved the 
quark condensate.

1 . IN T R O D U C T IO N

Description of quark matter within the framework of non - pertubative theory 
turns out to be more crucial for relativistic quantum theoretical study of condensable 
matter. At low energy (about lGeV) the non - pertubative effects concern with the 
confinement of quarks and the dynamical breaking of chiral symmetry. In this respect, 
many authors constructed different symmetry conserving approximation schemes: the 
mean - field approximation [l]-[2], the "Ộ - derivable” method [3], the (second) random 
phase approximation (RPA) [4], an expansion in powers of the inverse number of colors 
[5], the one - loop approximation of the effective action [6]... Ill these works, it is worth to 
mention that the CJT effective action method [7], which obviously includes the Schwinger
- Dyson (SD) equation approach [8], may hopefully provide a promised approximation 
beyond two - loop calculations. Its priority is expressed by the fact that the vacuum 
expectation values of field operators and propagators are treated on the same footing; 
therefore it takes into account all the possible correlation effects. In addition to the 
preceding trend, one has made great attempts to investigate the role of chiral symmetry 
in condensate matter [1], [10].

The Nambu - Jona - Lasinio (NJL) model originally was a model contained nucleons 
[9]. Nowadays this model is used to study the properties of quarks instead of nucleons. 
The SU(2) version of NJL has been applied by many authors to study the restoration of 
chiral symmetry at critical temperature and nonzero density [1], [11]. However, the recent 
consideration [12], [13] indicate that the strange quark matter could be the absolute ground 
state of matter. This leads to the SU(3) version of NJL model, which includes in addition 
to up and down quarks also strange quarks.

Our main aim is to present in detail the CJT effective action approach, which is 
applied to study systematically the SU(3) generalized NJL model. In this connection, it 
is possible to consider our work as being complementary to [1].

This paper is organized as follows. In section 2, the chiral symmetry in SU(3) version 
of NJL model and CJT effective action formalism are presented. Section 3 is devoted to 
loop expansion of effective potential. Hence SD equations and gap equations are directly 
derived. In section 4 the CJT effective potential is evaluated at T  7̂  0. The conclusion 
and discussion are given in section 5.
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2. FORM ALISM

1.1. Chiral sym m etry

Let us consider the SU(3) generalized NJL model whose Lagrangian reads

n  8
£  (j7MaM -  m ,)$  + ^  Y ,  [(*A“* )2 + (* H 5Aatf )2]

a=0
+ GDdetf [$(1+75)*] 4-Godetf [$(1 - 75)$] (2.1)

where 'I'(x) are quark fields = u,d,s  with three colors (Nc — 3) and three flavors 
(Nf = 3),Aa(a = 0 -7- 8) axe the Gell-Mann matrices with A0 =  \J \ .  There are two chiral 
invariant coupling constant Gs and Go of four and six fermions interaction.

The current quark mass

mq =  diag(mUỉmci,ms) = ^  m a\ a (2.2)
a=0,3,8

explicit breaks chiral symmetry, and the six - point vertex

$ ( 1  - 7 5 )® =  $  (2.3)

leads to the mixing between singlet, octet and triplet.
The chiral transformation is defined by

Ý -V U(a)Us{0)V = exp '

*  — W+((3)U+(a) = ỹexp

where

^L(R) — u{a)^L{R) = exp “ a y  J ^L(fi) (2-5)

is the SUl (3) ® SUr (3) transformation in the three flavors, and the transformation

-> Us{0)'& =  exp f t 7 5 y ^ / 3 q y j  'ĩ' (2.6)

i (a  -  /375)

- i  (a 4-̂ 75) 2

VE' (2.4a)

A°
(2.4b)

is the Q5 transformation, which leads to the anomalous divergence of the flavor singlet 
axial current [1].

(2J)

ômJ 5m =  - 4 N f G DIm fdeí/ ỉ>)+2im 4 '75í '  (2.8)
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Under SUi{3) ® SUr {3) transformation, the operators are transformed as
follows

$ -  U(a)<ỉ>ư+(f3) (2.9a)
s>+ -» U{P)<t>+U+(a) (2.9b)

It is evident that det/ $  and det/ $+ are invariant due det u = 1, but two last terms 
in (2.1 ) breaks the [/4(1) symmetry

q, _♦ e-" (* )^ ; ^  _> q,ei6(:*) (2.10)

The composite operators are defined by

Sa = - ^ ^ A a^ ; Pa = - - ^ * i j 5\ a*  (2.11)m z m 2

with Gs = g l /m 2.
The action corresponding to (2.1) now takes the form

/ [ * . ¥ ]  =  I  dz j * ( * ) ( i 7 ^ - m 9) t f ( x ) - i m 2]T (s 2  +  p 2 ) j  

~ A (Sa — 2*75 Aapa) ^  ■+■ Godetf  [<£ 4- h.c]
(2 .1 2 )

In the chiral limit (m q = 0), the Lagrangian (2.1) is invariant under the chiral transfor­
mation (2.4a-b).

1 .2 . F in ite  tem p era tu re  C JT  effective action

In order to consider high-temperature contributions in loop approximation of the 
Cornwall - Jackiw - Tomboulis (CJT) effective action for composite operator corresponding 
to (2.12), we start from the CJT finite temperature generating functional for the connected 
Green’s function

yCJT _ Zp -

exp i

expiW0[r],fj,Js,Jp,K,Ks,Kp] = j (£>*][£)*][£>S][DP]

: | y  d x ị L  + ^ 7 0  *  +  f j (x)9{x)  + ®(*)jj(s) + J as {x) s a(x) + j ; { x ) V a{x)

+  ị j  d x d y [ 2 * ( x ) K ( x , y ) * ( y )  +  Sa(x)KZb( x , y )Sb(y) +  P a( x ) K ? ( x , y ) P b( y ) ] \

(2.13)

where f  dx =  Jq dr Ị  dx, the summation here over repeat variable (indices) is assumed 
and external sources are time - independent; f  dxty7o^ = N  is the number operator for 
u, d and s quarks. The integration has to be performed over antiperiodic Grassman fields

* ( 0,f )  = -* (/? ,£ )

and periodic bosonic fields
B(0,£) = B (/?,£)
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where B = ($ ,S a,P a).
The propagators of quarks, scalars and pseudoscalax meson axe determined from

52Wr.
G(x,y);

ỗ2W f.
= Dab(x,y):

S2Wr

Srj(x)ỏĩ](y) v ' an ỐJsa(x)ÓJ?(y) ' an ỖJ$(x)5J$(y)

We defined the mean values of field operators as follows

SWp

&ab(x,y) (2.14)

s T](x)  

SWft

( ý ( x ) )  = 

( * (* ) ) =  ¥>(*)

as it’s well known

6rj(x)

u s k  “  ( S“(I)) =  s - (l) 

{ f w  = ( P “<I)) =  p“(l)

^  = 2 ( ý v ) = ậ = ( ẹ i p  + G) 

^ ậ  = ( s as  b) = l- ( s aSb + Dab)

S  = ( ^ V 4 ( ^  + 4

(2.15)

(2.16)

The CJT effective action r  0  

transform of Wp
0,S,P,G,Z>, A is defined as the double Legendre

0 , S , P , G , A  A V i  V i  J s i  J p i  K , K g ,  K p

x) + Js(x)Sa(x) +  Jp(x)Pa{x)

ĩ ^  ^/3 Vì Vĩ JSi Jpi K )

j  dx <p(x)r](x) + fj(x)ip(:

- \ Ị  dxdy 2ỉp(x)K{x,y)ip(y) + Sa(x)Dab(x ,y )Sb(y) + P a(x)Aab(x ,y )P b(y)

-  2 /  didyỊ2G(i,ỉ/)Ar(y,a:) + Dab(x ,y )K “b(y,x) +  Aab(x,y)K °b(y,x) (2.17)

It is evident that

jTg
6<p(x)
sr*

= -v(x) -  J  dxK(x,y)ẹ(y)

= ~v(x) -  Ị  dxự>(x)K(y,x)

)f ^ - ) = ~ Js(x ) -  Ị  d x K f(x ,y )ơ b(y)

ỏip(x)
ST0 

SJc

= _ ja [x) _  J  dxK °b(x,y)Pb(y)

(2.18)
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and

SG{x,y) 
ST0 

ỎDab(x,y)
sr0

= -K (y ,x )

1
K f( y ,x )

2
(2.19)

= - - K f ( y , x )
0&ab(x,y)

To proceed further let us emphasize that when all external sources vanish, ones gets

(p =  tp =  0

and 0, Ơa , Pa tend to condensate quarks and meson’s vacuum expectation values, respec­
tively

-> ộ =diag(ộu,<fid,(ỉ>sSJ 

Sa =(0|S„|0) = ơ  (2.20)

Pa =<0|Pa|0)

where Pa, it’s well known are eight pseudoscalar meson in SU(3) K °ìK ±ỉ 'ĩr°ỉ ir± 1S and TỊ.

The stationary condition for physical processes which correspond to vanishing of 
external sources require

and

= 0- ( s r ì  - 0- ( S T \
\<50/o \ỖSa)o ’ V ỗPa )  0

ỗ r  - 0 - ổ r  - 0 -
ỖT

ỖG ' SD '

(2 .2 1 )

(2 .22)

The system of equations (2.22) is just Schwinger - Dyson equations for the propa­
gators of quarks, scalar and pseudoscalar mesons, respectively.

The expression for r  can be derived directly basing on [7]

ộ , ơ + iTr

-  - T r  
2

-  -T v  
2

InGoG-1 - G õ l(ộ,k)G+ 1 

In DữAbD~£ -  Sõà6(ơ, k )Dab + 1 

In Ao,aòAa(, — / \~ ab(k) A ab + 1

(2.23)

+T}

where the trace, the logarithm and product GoG ì ì D qD  ^A oA -1... are taken in the 
functional sense. Go, A)j Ao,afe are, respectively, the propagators of quarks, scalar and 
pseudoscalar mesons, their momentum representation reads

iG-ữ\ k )  = k -  mq + /X70

ÌDữlb (k ) =  ~ m2ỏab 

lA õ!ab(k ) = -™2àab

(2.24)
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and the momentum representation of G0 l (<f>), ĩ )0 l (ộ) and A 0 lab{ộ) are determined from

iG õ \ộ )  =
Ỗ2I in t

ổộ(x)Sộ(y) 
ỏ2Iiut

k -  M  + /i7o

= ĩ s M Ề m  -  - M ể U

P I m

(2.25)

ỎPa(x)SPb(y) — —Mpõab

r20 is given by all those two particle irreducible vacuum graphs which upon cutting 
of one - line, yield proper self - energy graphs

Q q Q

r r " rQ Tb rẵ r 5
Q q Q

Tr  [GTGTG]

c p
9 s

Tr

S a

GTa DabT G

Q P

Si

T r ơ r fA otrgc]

N / x \ , \  
V )Pb

Gsfiab

Fig 1 : The 2PI graphs of in NJL model

The bold solid line represents the quarks propagator G, the solid line - 
scalar meson’s propagator D ab, the dashed line - pseudoscalar meson’s prop­
agator Aab The bold dots r , r a, r 5 are the interaction vertices. In the bare 
vertex approximation r  = igs, r a = igs\ a, rij = igs~i*)\b

3. T H E  LOOP EXPANSION AND TH E GAP EQUA TION S

For a translation invariant and constant ground state ộ, Ơ, instead of r  
we consider the finite temperature effective potential

0, <T, ơ , D, A

Vn = /3 f  dx (3.1)

V{3 is just the free energy density of quantum by all the thermodynamical parameters of 
the system can be derived from Vp.

Starting from (2.23) and Fig.l, it isn’t difficult to write down the CJT effective
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potential in momentum space

yCJT _Q s ịộ 2 _|_ 02 ậ ịỳ +4GDộuộdội

+

+

+

J  (27r 

ư
Tr

Tr

lnG0- 1(p )G (p )-G -1[^]G(p) +  l

lnZ?o“àò(p)Daí,(p) -  Do;i6(ơ ,p )D Q6(p) + 1  

ln \ lab(P)A ab{p) -  A~b(p)Aab{p) +  1

+

4-

2 /  (2 ^ 4 T r [lnA0.afe^)Aafe(P) ~ Aai(P)A

/ l r  / | H Gii,)rC<i, + *)rGW]
ỉ  /  ể r  /  (0 Tr [G(p)r“I '(p+

2 /  ( ậ /  ( 0 ^ [ G ( p ) r ? A it(P -m r* G (i ) ]

í  ỷ ? !  (0 i > N r O > . W * ) ]

íGS /  (2^)4 /  ~ ậ jh T r [Dab^ Dba^  +  A af>(P)A ỉ»(fc)

(3.2)

Two terms on first line of (3.2) correspond to the mean field approximation, three 
next terms are just one - loop approximation, and the last terms in expresses the non
- perturbative interaction at two - loop and higher approximation.

The configuration of meson fields is determined from

dVCJT
dSa

9s Í  d*p_  9s Í
m2 J (27r)‘ X Tr [ơ(p)] (3.3)

I t’s just the scalar density, which is invariant under Lorentz transformation

Substituting (3.2) into (2.22), we arrived at the SD equations

(3.4)

G ~ \k )  = Gõ1 k  *]-£(*:) 

D-b\ k )  = D -1ab[ l - G s U s (k)] 

^ W  = A - l b[ l - G ps U%k)]

(3.5)

(3.6)

(3.7)
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where £(/c), IIs (k) and n£fe(/c) are, respectively, the self - energy of quarks, scalar and 
pseudoscalar mesons

Z(k) =

+

+

í  É 1 
J  <2< 

/  

I I  

J

T r r (k ,p)G(p)r (Pip + k)G(p + k)

dAp
(2

d4p

d4p

T r

T r

r a(k,p)G(p)Tb(p,p + k)Dab(p + k) 

rị{k,p)G(p)rị{p,p + k ) A ab(p + k)

n s (fc)= J  Ậ ỷ T r [ r a(k,p)G(p)rb(p,p + k)G(p + k) 

n M  = I  ■ Ệỷ T r[ r ị ( k , p ) G ( p ) r b5(p,p + k)G(p + k) 

The stationary requirement (2.21) takes the form

dv0

(2tt)4 

dAp

Tr G(p)T(k,p)

dội — 2Gsội  -f 4Goộjộk  +  “  iG0 Wi

— 2(jrg0j -f- 4G Dộjộk — rni Mi “h X] — 0 

Here the indices i , j ,k  — (ti,d, s). Similarly, one gets

d S i

dVa
dPl

— —771

= zA;

ab
2

0 ,ab

1 -  Gs n s (k)} + M | = 0

zA-1
‘aò *'i-40,aò

= -m 2 [1 -  G£rp(fc)] + A/p2 = 0 

or, equivalently, it is usually written in the form of the gap equations

Mi = m x -  2G sộị -  ^ G o ộ jộ k  -  £(&)

(3.8)

(3.9) 

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

That means the constituent quarks mass Mi is expressed thought both coupling 
constant Gs,Gq  and the flavor mixing of quark condensate ộjộk exists in Mị. In the 
random phase approximation (RPA) the self - energy of quarks is ignored, i.e = 0.

Similarly, from (3.12) and (3.13) one gets

A/J =  m2 [1 -  Gs u s (k)} 

M l  = m2 [1 -  GPnp(fc)j
(3.15)
(3.16)

From the system of gap equations (3.14) - (3.16), the quark condensate and mesons 
are systematically considered: It is also shown that the influence of condensate matter on 
quark masses are really strong.
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4. T H E  C JT  E F F E C T IV E  A CTIO N  AT FIN IT E  TEM PER A TU R E

As it is well known, the (partial) chiral symmetry is restored at finite temperature 
and nonzero density. It concerns with the energy density of ground state.

To investigate this system at T  7̂  0, we can apply the ” imagine time” formalism or 
the ’’real time” formalism in field theory at finite temperature [15],[16].

In ”imagine time” formalism, the Feynman rules as the same as those at zero tem­
perature, except that the momentum space integral over the time component ko is replace 
by sum over Matsubasa frequencies ujn = 7TnT, and the chemical potential fi should be 
added to the fermionic frequency in all expression, i.e

where n is even (odd) for boson (fermion).

Starting from (3.2) and (3.5) - (3.7) we arrive at the expression of thermal CJT 
effective potential in Hartree - Fock approximation.

Vt [ộ, M, Ms, Mp] =Gs [4>\ + ộị + ộị} +  4Gd ỘuỘcìỘs

kụ. -> (ÌUJn + /i, k) (4.1)

(4.2)

}flò -  1
K

\)^ab ~ 1

p k
(4.3)

ị ' Ệ ' Ệ Tr  [G(P)75AnAo6(p + k)l5XbG(k)]

) + 3Aafc(p)Aba(Ả:)]

where

(4.4)

and the propagators of boson and fermions are given by

D t ^  k2 - M 2 -fc2 + k2 +  M 2

a„(k\ = __ i____ + (4.6)

(4.5)

ft — M  - k ị  -f k2 -f- M 2
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Using the well - known results [17]

ị r r l n  [k2 -  y2] = [—(ttnT)2 -  k : y2

n2T A y2T2 yZT  c uy 4

90 24 12tt 327r2

r 2 Ty  . <?n 2
12 47r+ 87T2Ỉ/

2 X / 7Euler (4.9)

where 77 is renormalization scale, 7Euler = 0» 577 and as planned the (zero - temperature) 
ultraviolet divergent contributions have been omitted, it is easily to evaluate the high - 
temperature approximation of integrands in (4.3)

Tr [Gq'G  -  1] = Tr [(Gq1 -  G~l) G] = K  -  Mi)  W )  (4-10)

T r l n G ^ G  = T r l n  — — — 7°M (4.11)u 7  k-rr ii  + 7oMo

At chiral limit rrii = 0 and /io =  0, it is being

TWnG- . G .  .  z ! OT| _ £ OT3 _ (4, 2)

where =  (Mj — 7oa0 2*
Finally, the part dependent temperature of CJT effective potential is obtained in 

one loop approximation as a function of quark and meson masses

Vt  [ộ, n, Mi , Ms , Mp] = G s  (ộị  +  ộị  4- 03) +  4ƠD0U0CỈ05

-  ^  (Mp + Ms2 -  2m2)
(4 13)

+ —  [an? -  Ml -  Ms3 -  m2 (Mp + Ms -  2m)]

+ M ị  -  Ms4 -  2m2 (Mp + Ms2 -  2m2)]

where M i, Mp, Ms are the solution of the gap equations (3.14) - (3.16). Note that in (4.12) 
all term linear in the effective masses have canceled out. The term involve square of quark 
masses in proportional to T2/ 8. It is just the part dependent temperature of effective 
quark masses in QCD at hard thermal one loop [18], [19]. Two last terms are higher 
contributions of the CJT effective potential evaluated at the values of quark and meson 
masses.

5. CON CLU SION AND DISCUSSION

In the preceding sections the CJT effective action was used to study systematically 
SU(3) NJL model, where the condensate matter involve u, d and s quarks automatically
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concluded in this formalism. The gap equations are directly derived from the effective 
potential, which is also evaluated at finite temperature. Note that all term linear in the 
effective masses have canceled out. Due to the fact that our next paper is intended to 
consider the quark condensate and mesons in this mechanism. For numerical computation 
purpose the Hartree - Fock HF) approximation will be presented.

The authors would like to thank the Natural Scientific University for the hospitality
extended to us.
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