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A b s t r a c t . Composite m a t e r i a l  is  w id e ly  u s e d  in  m o d e r n  s t r u c t u r e s  a n d  t h e  l i f e  t h a n k  
to its advantages. In fact, one has investigated and applied many kinds of three-phase 
composite material obtained by embedding spherical inclusions into the matrix phase 
of fibre reinforced material. Seeking solutions for the effective properties of three- 
phase composite including matrix phase and two other phases, which are spherical 
particles, has been given in [2]. Basing on algorithm introduced in [2], we have deriven 
three-phase problem into two two-phase problems and determined the uniaxial mod
ulus of three-phase composite composed of matrix phase, aligned fibres and spherical 
inclusions. By calculating results for a specific three-phase composite, this paper 
has given conclusions about the influence of third phase (spherical particles) on the 
performance of structures.

1 . S e ttin g  p ro b le m

Composite m aterial of aligned fibres are thought to have cyclic structure, therefore, 

studying this kind of m aterial leads us to considering a representative volume element 

among those cyclic structures. Here, representative volume element has form of a rectan

gular parallelepiped. According to composite cylinders model, the fibre phase is taken to 

be composed of infinitely long circular cylinders embedded in a continuous m atrix phase. 

W ith each individual fibre of radius a, there is associated an annulus of m atrix m aterial of 

radius b. Each individual cylinder combination of this type is referred to as a composite 

cylinder. In three-phase model, one embeds spherical inclusions which are isotropic homo

geneous elastic spheres of equal radii into m atrix phase. Consequently, present problem 

can be posed as follows.

Fig. 1. The representative volume element of fibre reinforced m aterial

and composite cylinder model
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Let us consider a heterogeneous cylinder consisting of inner portion (0 •< r  a) and 

outer portion (a r  -< b). The composed materials are isotropic homogeneous elastic of 

properties (Àa,Ma) and (Am,/xm), respectively. There exist an assum ption th a t association 

between m atrix phase and fibre phase is ideal, therefore, the uniaxial strain  of two portions 

are the same. In this case, three-phase composite m aterial is obtained by embedding 

isotropic homogeneous spheres having the same radius and elastic characteristics (AC,/2C) 

into the continuous m atrix phase of aligned fibre-reinforced m aterial. Our present objective 

is that determine the effective uniaxial modulus EỊỵ of three-phase composite as a function 

of the elastic properties of constituents as well as the volume fractions of the inclusions.

2 . G o v e rn in g  re la tio n s

It is easy to recognise th a t investigating problem will become more convenient if 

governing relations are given in a cylindrical coordinate system [3].

Because of symmetry, assume the following displacement field:

By Hooke’s laws, equation (3) is expressed in term s of the displacement field as follows.

3. S o lu tio n  m e th o d

As mentioned above, governing idea for solving present three-phase problem is that 

converting it into two two-phase problems. Firstly, we combine original m atrix  phase 

and particle phase in order to give a new m atrix phase called effective m atrix  phase. In 

fact, this effective m atrix phase is a spherical particle-reinforced m aterial of which elastic 

properties have been defined by some researchers, such as [1] and [5]. Then we seek 

solution for the effective properties of fibre-reinforced composite m aterial composed of the

ur =  u r {r) , UQ = 0 , u z = e z . (1)

Strain components are defined, respectively

dur ur
Ì €-69 J &ZZ — £ •r (2)dr

In this case, the system of equilibrium equations has simple form

dơ  J'y
dr +

ơrr &60
r

=  0 . ( 3 )

dr2 r dr r ^ Uj" ( 4 )
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effective matrix phase and aligned fibres. Method for determining the elastic moduli of 

aligned fibre-reinforced material has been mentioned in [1]. Basing on that m ethod, we 

have specifically defined the effective uniaxial modulus of two-phase composite of aligned 

fibres.
It is very important to emphasize that process of converting a three-phase model 

into two-phase models must seriously been performed. Specifically, we can not combine 

initial m atrix phase and the fibre phase in order to obtain the effective m atrix phase. This 

fundamentally differ from three-phase model given in [2], where composite m aterial is 

composed of m atrix phase and two particle phases made of two different kinds of material.

3.1. The tw o-phase  m odel

Let us consider two-phase composite consisting of isotropic m atrix phase and isotropi' 

fibre phase having properties (Am, fim) and (Aa, /xa), respectively. Then the effective uni

axial modulus of the two-phase composite is defined according to composite cylinders 

model [1 ] as follows.

$.1.1. Part of matrix phase

In the part of m atrix phase (a ^  r ■< b) the solution of eq. (4) is in form

u^ = A 2 V  + — . (5)
r

By Hooke’s laws, stress field is defined

ơ $  =  2(À2 +  /42 M 2 — 2/Z2 2~ +  ^2e'

After defining integration constants due to boundary and interface conditions

( 2)=  0  , ơ rr  
r = b

p , (7 )
r=a

vherep is interaction stress on the interface of fibre and m atrix phases), the displacement 

idd in the part of m atrix phase is determined as follows.

pa2 A2s
2 (a2 — b2)(X 2 +  /Ì2) 2(A2 +  /Ì2)

pa2b2 1 ( ,
r 7 2 _  o ( ){a2 -  0- ) 2 /i2 r

3.1.2. Part of fibre phase

In this part (0 -< r ■< a), the displacement and stress fields have the form of

u l1̂  = A ir  , ( 9 )



ơ!£) = 2(Ai +  ụ>i)Ai +  Ai £. 

Specifying the integration constant A \  from the interface
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(1) p ,
r = a

gives US
,(1) =  p ~ x

2(Ai +  H i ) (1 1)

The interaction stress p is defined from continuity condition

u (1)
r = a

as follows

p =
^ 2(AiM2 -  A2M1 )(a2 -  b2)e

/i2(A2 +  ụ-2)(a 2 -  fr2) -  (Ai +  Ail) L 2a 2 +  (A2 +  M2) ^
(13)

3.1.3. The composite cylinders model

According to this model, the effective uniaxial module of fibre-reinforced material 

is determined as follows

£ 11  = -ềiỊỊ
s

1

7xb2e
IJ c T ™ d S  + J ị  ơ g d S
S\ S 2

(13)

where S i  =  7Ta2, s*2 =  7r(b2 — a 2), 5  =  7TÒ2 are the cross-section areas of fibre phase, 

matrix phase and composite cylinder, respectively.

By Hooke’s laws, the uniaxial stresses of phases are defined

» U ) - ( A 1 +  2t o k  +  ^ £ f M -Ai + Hi

ơ z z  — ( ^ 2  +  2/X2 ) ^  +
A2

A2 +  ịi2
pa‘

.a2 — b2
-  À2Ê

( l i )

(1 5 )

Introduction (14), (15) into (13) taking into account (12), we obtain the following relaticn

■ E l l  — £ a . E a  +  ( 1  -  i a ) E m

4 ia (l+ (16)
( 1  -  d a ) G m  ( K a  +  G J 3 ) - 1 +  £ a ơ m  ( K m  +  G m / 3 ) _ 1  +  1 ’

where f a =  a 2/ 62 is the volume fraction of fibre phase.

Expression (16) is a formula for determining the effective uniaxial modulus of two- 

phase composite m aterial of aligned cylindrical fibres.
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3 .2 . The three-phase m odel

Now we embed spherical particles having the same radius and elastic properties 

(Ac , ALc) into the m atrix phase of aligned fibre-reinforced material. Then we combine 

initial matrix phase and particle phase in order to give new m atrix phase called effective 

matrix phase. In fact, this effective m atrix phase is spherical particle-reinforced isotropic 

material of which properties have been determined by Hasin and Christensen [1] as follows

nie) — Qr n  ^  1
_  15(1 -  l/m ) (1 -  G c / g m K c  

7 — 5um +  (8 — 10Vm)Gc/Gr
(17)

K {e) =  K  J__________ (ifc K m)£c_________  , ,
"  m  1 +  ( K c - K r n ) ( K m  +  4 G m / 3 ) - 1 '

where £c is the volume fraction of particle phase.

Substituting the elastic characteristics of matrix phase in equation (16) by their 

effective values (17) and (18), we obtain the following relation

E'n =  ZaE* +  (1 -  Za)El

4 £ a ( l - & )  ( v a - v t f ) 2 G\

I r* /o\~ 1 I c /̂ »(e) (

^ a V - L  “  <*a)  \ " a  —  " m  Ị
+ -------------- -------------------------------------------------- ------ ------ , (19)

(1 -  i a ) G #  ( K a +  G a / 3 ) - 1 +  ZaGm ( k £  +  G #  /  3)
- 1

+ 1

where
Qz<̂ (e)/^(e) Q _  9/7 (5)ỵp(e) _  y^-rn  (e) _  olx-rn

~  I /-(f) ’ ~  _  o n t o 'Oi\rn I v̂ rn 0I\m
Expression (19) is a formula for determining the effective uniaxial modulus of three-phase 

composite material composed of continuous m atrix phase, aligned fibres and spherical 

particles. Obviously, this modulus is a function of the elastic properties and volume 

fractions of constituents.

For example, we consider a three-phase composite material having the following 

characteristics: M atrix phase is made of epoxy having properties Em = 0, 315.106 (kG /cm 2) 

i/m = 0,382, whereas, fibre and particle phases are made of glass having elastic moduli 

E a = E c = 7,4.106(kG /cm 2) , va =  vc =  0,21 in constant relation of volume fractions

£a +  <£c =  0,6.

Calculating results for the effective uniaxial module E h  according to formula (19) 

are given in below table and sketched in figure 2 .

£a 0 0 ,1 0.2 0,3 0,4 0,5 0,6

E[x. 1(T6 0,6842 1,3014 1,9305 2,5716 3,2247 3,8899 4,5672
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the volume fraction of fibre phase

Fig. 2. The variance of the effective uniaxial modulus 

according to the volume fractions of constituents.

4. C onclusions

a) Converting three-phase model into two-phase models is reasonable. We have deter

mined the effective uniaxial modulus of three-phase composite consisting of matrix 

phase, aligned fibres and spherical particles. Solving three-phase problem lead us 

to two two-phase problems. First problem is solved in order to define the effective 

elastic moduli of spherical particle-reinforced material. According to composite 

cylinders model, second one is solved for determining the effective elastic moduli of 

composite material composed of effective m atrix phase and fibre phase.

b) Embedding spherical particles as third phase into the continuous m atrix phase of 

aligned fibre-reinforced material to reduce the effective uniaxial modulus of this kind 

of material. Therefore, if structure is subjected to axial forces, it is necessary to 

consider embedding spherical particles into m atrix phase of aligned fibre-reinforced 
material.
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